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Abstract

We study the issues arising when considering the problem of re-
configuring broadcast optical networks in response to changes in
the traffic patterns. Although the ability to dynamically optimize
the network under changing traffic conditions has been recognized
as one of the key features of multiwavelength optical networks, this
is the first in-depth study of the tradeoffs involved in carrying out
the reconfiguration process. We first identify the degree of load
balancing and the number of retunings as two important, albeit
conflicting, objectives in the design of reconfiguration policies.
We then formulate the problem as a Markovian Decision Process
and we develop a systematic and flexible framework in which to
study reconfiguration policies. We apply results from Markov De-
cision Process theory to obtain optimal reconfiguration policies
for networks of large size. The advantages of optimal policies
over a class of threshold-based policies are illustrated through
numerical results.

1 Introduction

One of the key features of multiwavelength optical networks is
rearrangeability [5], i.e., the ability to dynamically optimize the
network for changing traffic patterns. This ability arises as a con-
sequence of the independence between the logical connectivity
and the underlying physical infrastructure of fiber glass. By em-
ploying tunable optical devices, the assignment of transmitting or
receiving wavelengths to the various network nodes may be up-
dated on the fly, allowing the network to closely track changing
traffic conditions.

While rearrangeability makes it possible to design traffic-adaptive
networks, the reconfiguration phase will interfere with existing
traffic and disrupt network performance, causing a degradation
of the quality of service perceived by the users. The issues that
arise in reconfiguring a lightwave network by retuning a set of
slowly tunable receivers have been studied in the context of mul-
tihop networks in [6, 7, 9]. In [6] the problem was to obtain a
virtual topology that minimizes the maximum link flow, while in
[7] algorithms to minimize the number of branch-exchange oper-
ations required to take the network from an initial to a target vir-
tual topology were developed. The objective of [9] was to obtain
near-optimal policies to dynamically determine when and how to
reconfigure the network.

In this paper we study the reconfiguration issues in single-hop
lightwave networks, an architecture suitable for LANs and MANs
[8]. The single-hop architecture employs wavelength division
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multiplexing (WDM) whereby the various channels are dynam-
ically shared by the attached nodes, and the logical connections
change on a packet-by-packet basis creating all-optical paths be-
tween sources and destinations. Thus single-hop networks require
rapidly tunable optical devices that can rapidly switch between
channels.

When tunability only at one end, say, at the transmitters, is em-
ployed, each fixed receiver is permanently assigned to one of
the wavelengths. Since the number of channels is expected to
be smaller than the number of attached nodes, each channel will
have to be shared by multiple receivers, and the problem of as-
signing receive wavelengths arises. Intuitively, a wavelength as-
signment (hereafter referred to as WLA) must balance the offered
load across all channels, such that each channel carries an approx-
imately equal portion of the overall traffic [11]. But with fixed
receivers, the WLA cannot be updated in response to changes in
the traffic pattern.

Alternatively, one can use slowly tunable, rather than fixed, re-
ceivers. While rapidly tunable lasers or filters have a tuning la-
tency in the order of a packet transmission time at the high-speed
rates at which optical networks are expected to operate, slowly
tunable devices have tuning times that can be significantly longer.
As a result, these devices cannot be assumed ‘“tunable” for media
access purposes as this requires fast tunability. Motivation for the
use of slowly tunable devices for reconfiguration is provided by
two factors. First, they can be significantly less expensive than
rapidly tunable devices, making it possible to design network ar-
chitectures that can be realized cost effectively. Second, the vari-
ation in traffic demands is expected to take place over larger time
scales. Hence, even very slow tunable devices will be adequate
for updating the WLA over time to accommodate varying traffic
demands.

Assuming an existing WLA and information about the new traffic
demands, a new WLA, optimized for the new traffic pattern, must
be determined. In [1] we proposed an approach to reconfiguring
the network that is minimally disruptive to existing traffic. Specif-
ically, we devised the GLPT algorithm for obtaining a néw WLA
such that (a) the new traffic load is balanced across the channels,
and (b) the number of receivers that need to be retuned to take the
network from the old to the new WLA is minimized. For more
details on the operation and performance of the GLPT algorithm,
the reader is referred to [1].

While the network makes a transition from one WLA to an-
other, some cost is incurred in terms of packet delay, packet loss,
packet resequencing, and the control resources involved in re-



tuning. Clearly, receiver retunings should not be very frequent,
since unnecessary retunings affect network performance. Hence,
it is desirable to minimize the number of network reconfigura-
tions. However, postponing a necessary reconfiguration also has
adverse effects on the overall performance. Since the network
does not operate at an optimal point in terms of load balancing, it
takes longer to clear a given set of traffic demands, causing longer
delays, buffer overflows, and a decrease in the network’s traffic
carrying capacity. Similarly, if the decisions are made merely by
considering the degree of load balancing, even tiny changes in
the traffic demands can lead to constant reconfiguration, thereby
significantly hurting network performance. Consequently, it is
important to have a performance criterion which can capture the
above tradeoffs in an appropriate manner and allow their simulta-
neous optimization.

In this paper we develop a systematic and flexible framework in
which to study reconfiguration policies by formulating the prob-
lem as a Markovian Decision Process. We also develop an ap-
proximate model with a manageable state space, which captures
the pertinent properties of the original model. We finally apply
results from Markov Decision Process theory to obtain reconfigu-
ration policies for networks of large size.

In Section 2 we present a model of the broadcast WDM network
under study. In Section 3 we formulate the reconfiguration prob-
lem as a Markovian Decision Process, and we discuss the issues
of obtaining an optimal policy. We present numerical results in
Section 4, and we conclude the paper in Section 5.

2 The Broadcast WDM Network

We consider a packet-switched single-hop lightwave network with
N nodes, and one transmitter-receiver pair per node. The nodes
are physically connected to a passive broadcast optical medium
that supports C < N wavelengths, Ay, - - -, Ac. Both the transmit-
ter and the receiver at each node are tunable over the entire range
of available wavelengths. However, the transmitters are rapidly
tunable, while the receivers are slowly tunable. We will refer to
this tunability configuration as rapidly tunable transmitter, slowly
tunable receiver (RTT-STR). All our results can be easily adapted
to the dual configuration, STT-RTR.

We represent the current traffic conditions in the network by a
N x N traffic demand matrix T= [t;;], where t;; is a measure
of the long-term traffic from 7 to j. As traffic varies over time,
the elements of matrix T will change. This variation in traffic
takes place at larger time scales, e.g., we assume that changes
in matrix T occur at connection arrival or termination instants.
We also assume that the current matrix T completely summarizes
the entire history of traffic changes, so that future changes only
depend on the current values of the elements of T.

During normal operation, each of the slowly tunable receivers is
fixed to a particular wavelength. Let A(j) € {\1,---, Ac} be the
wavelength currently assigned to receiver j. A WLA is a partition
R ={R;, c=1,---,C} of the set N = {1,---, N} of nodes,
such that R, = {j | A(§) = A}, ¢ = 1,---,C, is the subset of
nodes currently receiving on wavelength A.. This WLA is used to
determine the target channel for a packet given the packet’s desti-
nation. Network nodes employ a media access protocol, such as

HiPeR-£ [11], that requires tunability only at the transmitting end.
Nodes use HiPeR-£ to make reservations, and schedule packets for
transmission using algorithms that can mask the (short) latency of
tunable transmitters [ 10].

We define the degree of load balancing (DLB) ¢(R, T) of a net-
work with traffic matrix T and WLA R as:
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The right hand side represents the bandwidth requirement of the
dominant (most loaded) channel, while the second term in the left
hand side represents the lower bound, with respect to load balanc-
ing, for matrix T. Thus, the DLB is a measure of how far away
WLA R is from the lower bound. If ¢ = 0, then the load is per-
fectly balanced, and each channel carries an equal portion of the
offered traffic, while when ¢ > 0, the channels are not equally
loaded. Thus, the DLB characterizes the efficiency of WLA R in
meeting the traffic demands denoted by T: the higher the value of
@, the less efficient the WLA is.

2.1 The Transition Phase

In order to more efficiently utilize the bandwidth as traffic varies
over time, a new WLA may be sought that distributes the new load
more equally among the channels. We will refer to the transition
of the network from one WLA to another as reconfiguration. We
assume that reconfiguration is triggered by changes in the ma-
trix T. When such a change occurs, the following actions must be
taken:

1. anew WLA must be determined,

2. adecision must be made on whether or not to reconfigure the
network by adopting the new WLA, and

3. if the decision is to reconfigure, the actual retuning of re-
ceivers must take place.

The first issue was addressed in [1], where we developed the
GLPT algorithm which takes as input the current WLA R and
the new traffic matrix T, and determines the new WLA. The rest
of the paper addresses the second problem of determining whether
the changes in traffic conditions warrant the reconfiguration of the
network to the new WLA. We now discuss the third issue of re-
ceiver retuning.

Let R and T be the current WLA and traffic matrix, respectively,
and let T' be the new traffic matrix. Let R’ be the new WLA com-
puted by the GLPT algorithm with R and T' as input. Assuming
that a decision has been made to reconfigure, there will be a tran-
sition phase during which a set of receivers is retuned to take the
network from the current WLA R to the new WLA R'. Let us
define the distance D between the two WLAs R and R’ as:

c
D(R,R') = N — > |R.NR| )
c=1
D(R,R') represents the number of receivers that need to be taken
off-line for retuning during the transition phase.
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There is a wide range of strategies for retuning the receivers,
mainly differing in the tradeoff between the length of the tran-
sition period and the portion of the network that becomes unavail-
able during this period (see [7] for a discussion of similar issues in
multihop networks). One extreme approach would be to simulta-
neously retune all the receivers which are assigned new channels
under R’. The duration of the transition phase is minimized un-
der this approach, but a significant fraction of the network may be
unusable during this time. At the other extreme, a strategy that re-
tunes one receiver at a time minimizes the portion of the network
unavailable at any given instant during the transition phase, but it
maximizes the length of this phase. Between these two ends of the
spectrum lie a range of strategies in which two or more receivers
are retuned simultaneously.

While the receiver of, say, node j, is being retuned it cannot re-
ceive data, and any packets sent to it are lost. If, on the other hand,
the network nodes are aware that j is retuning its receiver, they can
refrain from transmitting packets to it. In this case, packets des-
tined to node j will experience longer delays while waiting for
the node to become ready for receiving again. Moreover, packets
for j arriving to the various transmitters during this time cannot
be serviced, and may cause buffer overflows. This increase in de-
lay and/or packet loss is the penalty incurred for reconfiguring the
network.

In general, the reconfiguration penalty associated with retuning
a given number D of receivers depends on the actual retuning
strategy employed (e.g., simultaneously retuning all D receivers
versus retuning one receiver at a time). Furthermore, the rela-
tive penalty of the various retuning strategies is a function of sys-
tem parameters such as the receiver tuning latency and the offered
load. Determining the best retuning strategy is beyond the scope
of this paper. We instead develop an abstract model that includes
a cost function to account for the reconfiguration penalty. Our
model is flexible in that the cost function can be appropriately se-
lected to fit any given strategy.

3 Markov Decision Process Formulation
3.1 Reconfiguration Policies

We define the state of the network as a tuple (R, T). R is the
current WLA, and T is a matrix representing the prevailing traffic
conditions. Changes in the network state occur at instants when
the matrix T is updated. Since we have assumed that future traffic
changes only depend on the current values of the elements of T,
the process (R, T) is a semi-Markov process. Let M be the pro-
cess embedded at instants when the traffic matrix changes. Then,
M is a discrete-time Markov process. Our formulation is in terms
of the Markov process M.

A network in state (R, T) will enter state (R', T') if the traffic
matrix changes to T’. Implicit in the state transition is that the
system makes a decision to reconfigure to WLA R'. In order to
completely define the Markovian state transitions associated with
our model, we need to establish next WLA decisions. The deci-
sion is a function of the current state and is denoted by d[(R, T)].
Setting d[(R, T)] = Rnest implies that if the system is in state
(R, T) and the traffic demands change, the network should be
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reconfigured into WLA R,ez:. Note that WLA R,cp: can be
the same as R, in which case the decision is not to reconfigure.
Therefore, for each state (R, T) there are two alternatives: either
the network reconfigures to WLA R’ obtained by the GLPT algo-
rithm with R and T' as inputs (in which case the new state will be
(R', T')), or it maintains the current WLA (in which case the new
state will be (R, T')). The set of decisions for all network states
defines a reconfiguration policy.

To formulate the problem as a Markov Decision Process, we need
to specify reward and cost functions associated with each transi-
tion. Consider a network in state (R, T) that makes a transition to
state (R, T'). The network acquires an immediate expected re-
ward equal to a[¢(R’, T')], where () is a non-increasing func-
tion of ¢(R’', T'), the DLB of WLA R’ with respect to the new
traffic matrix T'. Also, if R’ # R, a reconfiguration cost equal
to B[D(R,R')] is incurred, where (3(-) is an non-decreasing func-
tion of the number of receivers that have to be retuned to take the
network to the new WLA R'. In other words, a switching cost is
incurred each time the network makes a decision to reconfigure.
We assume that the rewards and costs are bounded, i.e.:

Omin < a[¢(R"T')] < Omag

0 S ,Bmin S ,B[D(Ry R’)] S ,Bmam
where amin, Amaz> Bmin and Bmas are real numbers.

The problem is how to reconfigure the network sequentially in
time, so as to maximize the expected reward minus the recon-
figuration cost over an infinite horizon. Let (R(*), T(¥)) denote
the state of the network immediately after the k-th transition,
k =1,2,--.. Let also Z be the set of admissible policies. The
network reconfiguration problem can then be formally stated as
follows (note that D(R, R) = 0):

Problem 3.1 Find an optimal policy z* € Z that maximizes the
expected reward

. 1
F= kli)n;o EE{

The first term in the right hand side is the reward obtained by using
a particular WL A, and the second term is the cost incurred at each
instant of time that reconfiguration is performed. The presence
of a reward which increases as the DLB ¢ decreases (i.e., as the
load is better balanced across the channels) provides the network
with an incentive to associate with a WLA that performs well for
the current traffic load. On the other hand, the introduction of a
cost incurred at each reconfiguration instant discourages frequent
reconfigurations. Thus, the overall reward function captures the
fundamental tradeoff between the DLB and frequent retunings in-
volved in the reconfiguration problem.

k
> afp(RW, TO)] - BD(RI-D,RM)]

=1

For the case B4, = 0, the problem of finding an optimal policy
is trivial, since it is optimal for the network to associate with the
WLA which best balances the offered load at each instant in time.
This is because the evolution of the traffic matrix T is not affected
by the network’s actions and reconfigurations are free. However,
when Bmaez > 0, there is a conflict between future reconfiguration



Tuple (¢ ,D(R, R} ) describes the state of Markov process ¢’ at this point

\\ < R ¢0 (retune to new WLA)

(keep old WLA)
I

\M Time

Decision points for the MDP
(instants at which the traffic matrix T changes)

Figure 1: State of the new Markov process M’

costs incurred and current reward obtained, and it is not obvi-
ous as to what constitutes an optimal policy. We also note that
as Bpin — 00, the optimal policy would be to never reconfig-
ure, since this is the only policy for which the expected reward
would be non-negative. Again, however, the point (i.e., the small-
est value of B,,:,) at which this policy becomes optimal is not
easy to determine, as it depends on the transition probabilities of
the underlying Markov chain.

Consider an ergodic, discrete-space discrete-time Markov process
with rewards and a set of alternatives per state that affect the prob-
abilities and rewards governing the process. The policy-iteration
algorithm in [4] can be used to obtain a policy that maximizes the
long-term reward for such a process. A difficulty in applying the
policy-iteration algorithm to the Markov process M is the poten-
tially very large number of states (R, T'). Next, we show how to
overcome this problem by making some simplifying assumptions
that will allow us to set up a new Markov process whose state
space is manageable.

3.2 Alternative Formulation

A closer examination of the reward function reveals that the imme-
diate reward acquired when the network makes a transition does
not depend on the actual values of the traffic elements or the actual
WLASs involved, but only on the values of the DLBs ¢(R, T') and
¢(R’', T"), and the distance D(R, R'). Thus, we make the simpli-
fying assumption that the decision to reconfigure will also depend
on the DLBs and the distance only. This is a reasonable assump-
tion, since it is the DLB, not the actual traffic matrix or WLA that
determine the efficiency of the network in satisfying the offered
load. Similarly, it is the number of retunings that determines the
reconfiguration cost, not the actual WLAs involved.

We now introduce a new process embedded, as process M, at
instants when the traffic matrix changes, as illustrated in Figure
1. The state of this process is the tuple (¢, D), where ¢ is the
DLB achieved by the current WLA with respect to the current
traffic matrix, and D is the number of retunings required if the
network were to reconfigure. Transitions in the new process have
the Markovian property, since they are due to changes in the traffic
matrix which, in turn, are Markovian. However, as defined, the
process is a continuous-state process since, in general, the DLB
¢ is a real number. Since the policy-iteration algorithm can only
be applied to a discrete-state process, we obtain such a process by
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using discrete values for random variable ¢ as follows.

The DLB ¢ can take any real value between 0 and C — 1,
where C is the number of channels. We divide the interval
[0,C — 1] into a number K + 1 of non- overlappmg 1mervals

(9, 46), 1607, 01), -+, [940, 94¢'), where ¢ and ¢
the lower and upper values of interval k,k = 0,---, K, and.
o < ¢ 6P = 0,4 = ¢}, and 6 = C—1. Let gy de-

note the midpoint of interval k. We define a new discrete-state pro-
cess M’ with state (¢, D), and we use (¢, D) to represent any

state (¢, D) of the continuous-state process with d)fcl) <o < ¢>§C")
Clearly, the larger the number K of intervals, the better the ap-
proximation.

We make one further refinement to the new process M’. The
GLPT algorithm in [1] guarantees that the DLB of the obtained
WLA will never be more than 50% away from the degree of load
balancing of the optimal WLA. The importance of this result is as
follows. Consider a network in which the traffic changes so that
the current WLA provides a DLB ¢ < 0.5 for the new traffic ma-
trix. Then, we can safely assume that the load is well balanced and
avoid a reconfiguration since there is no assurance that the DLB
of the new WLA will be less than ¢. Therefore, we choose to let
d)f)“) = 0.5. We will call any state (¢, D) a balanced state since
the offered load is balanced within the guarantees of the GLPT
algorithm.

We now specify decision alternatives, as well as reward and cost
functions associated with each transition in the new process M’.
Consider a network in state (¢, D). At the instant the traffic ma-
trix changes, the network has two options. It may maintain the
current WLA, in which case it will make a transition into state
(¢u, D'), where ¢y is the DLB of the current WLA with respect
to the new traffic matrix, and D’ is the new distance. Or, it will
reconfigure into a new WLA. In the latter case, the network will
move into state (¢g, D"'), since its new DLB is guaranteed to be
less than 0.5. When the network makes a transition into state
(¢1,D"),l > 0, it acquires an immediate expected reward which
is equal to a(¢;). In addition, if (¢;, D') is a balanced state (i.e.,
if I = 0), a reconfiguration cost equal to (D) is incurred.

We note that the discrete-space Markov process (¢, D) is an ap-
proximation of the continuous-space process (¢, D), since, as dis-
cussed above, in general the DLB ¢ is a real number between 0
and C' — 1. We also note that as the number of intervals K — oo,
the discrete-state process approaches the continuous-state one.
Therefore, we expect that as the number of intervals K increases,
the accuracy of the approximation will also increase and the deci-
sions of the optimal policy obtained through the process (¢, D)
will “converge”. This issue will be discussed in more detail in the
next section, where numerical results to be presented will show
that the decisions of the optimal policy “converge” for relatively
small values of K. This is an important observation since the size
of the state space of Markov process M’ increases exponentially
with K. By using a relatively small value for K we can keep the
state space of the process to a reasonable size, making it possible
to apply the policy-iteration algorithm [4].
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Figure 2: Near-neighbor model

4 Numerical Results

We demonstrate the properties of the optimal policies obtained by
applying the policy-iteration algorithm [4] to the Markov decision
process developed in Section 3.2. We also compare the long-term
reward acquired by the network when the optimal policy is em-
ployed to the reward acquired by other policies. All the results
presented in this section are for the approximate Markov process
M’ with state space (¢, D).

In this study, we consider a near-neighbor traffic model (other
traffic models have been considered in [3]). Specifically, we make
the assumption that, if the network currently operates with a DLB
equal to ¢, and no reconfiguration occurs, the next transition is
more likely to take the network to the same DLB or its two nearest
neighbors ¢x_; and @xq, than to a DLB further away from ¢y.
Specifically, we assume that

03, k=1, K-1l=k—1kk+1
2l k=1,..., K-1l#k-1kk+1
— K-2) I ’ 9 ) Iy
Ploclo =1 048" k=0i=1orkeKl=K-1
35, otherwise

This traffic model is illustrated in Figure 2 which plots the condi-
tional probability P[¢; | ¢] that the next DLB will be ¢; given
that the current DLB is ¢, for K = 20 intervals. The near-
neighbor model captures the behavior of networks in which the
traffic matrix T changes slowly over time and abrupt changes in
the traffic pattern have a low probability of occurring.

Given the above probabilities, we let the transition probabil-
ity, when no reconfiguration occurs, from state (¢, D) to state
(¢, D'} be equal to:

P((¢1,D") | (¢x,D)] = Pl1| éx) ppr 3)

where pp: is the probability that D’ retunings will be required in
the next reconfiguration. The probabilities pp where measured
experimentally, and we also observed that the probability that ran-
dom variable D takes on a particular value is independent of the
DLB ¢y, thus the expression (3).
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We note that we need to obtain two different transition probabil-
ities out of each state [4], one for each of the two possible op-
tions: the do-not-reconfigure option and the reconfigure option.
The above discussion explains how to obtain the transition prob-
ability matrix for the do-not-reconfigure option. The transition
probability matrix for the reconfigure option is easy to determine
since we know that regardless of the value ¢, of the current state,
the next state will always be a balanced state, i.e., its DLB will be
¢o. The individual transition probabilities from a state (¢, D) to
a state (¢y, D') are then obtained by making the same assumption
that the distribution of D is independent of the DLB ¢y. There-
fore, the transition probabilities under the reconfigure option are:

7 _ pp, =0
PlonD) (D)) = {20 120 @
We only consider the following reward and cost functions
A
,D)] = , D) = BD 5
ol(6,D)] = g, AD) ®)

where A and B are weights assigned to the rewards and costs;
other reward and cost functions are studied in [2]. Our first ob-
jective is to study the effect that the number of intervals K in the
range [0, C' — 1] of possible values of DLB ¢ has on the decisions
of the optimal policy. As we mentioned in Section 3.2, we expect
the decisions of the optimal policy to “converge” as K — oo.
More formally, let © be a real number such that 0 < ¢ < C — 1,
and let kx be the interval in which ¢ falls when the total number
of intervals is K. Also let d)[(¢y , D)] be the decision of the
optimal policy for state (¢, , D) of Markov process M’ when
the number of intervals is K. We will say that the decisions of the
optimal policy converge if

Jim dS(¢y,,D)] = dl(¢,D)] Yo, D  (6)

In Figures 3 to 5 we plot the decisions of the optimal policy
to a 20-node, 5-wavelength network with a near-neighbor traffic
model, and for three different values of K’; the weights used in the
functions (5) were setto A = 30 and B = 1. Figure 3 corresponds
to the optimal policy for K = 20 intervals, while in Figures 4 and
5 we increase K to 30 and 40, respectively. The histograms shown
in Figures 3 to 5, as well as in other figures in this section, should
be interpreted as follows. In each figure, the z axis represents the
DLB ¢ (with a number of intervals equal to the corresponding
value of K), while the y axis represents the possible values of D.
The vertical bar at a particular DLB value ¢, has a height equal
to D™ such that:

reconfigure, D < Dihr
do not reconfigure, D > D"

((.0) = { ™
In other words, for each value of ¢y, there exists a retuning thresh-
old value D" such that the decision is to reconfigure when the
number of receivers to be retuned is less than D", and not to
reconfigure if it is greater than Di’”. Since the optimal policy had
similar behavior for all the different reward and cost functions we
considered, its decisions will be plotted as a histogram similar to
those in Figures 3 to 5.



As we car. see in Figures 3 to 5, the decisions of the optimal policy

20 T T T —— T Y T

do converge (in the sense of (6)) as K increases. Specifically, the
policy decisions do not change when the number K of intervals
increases from 30 to 40. In fact, there are no changes in the opti-
mal policy for values of K greater than 40 (not shown here). We —
have observed similar behavior for a wide range of values for the
weights A and B, for different network sizes, as well as for other
reward and cost functions. These results indicate that a relatively
small number of intervals is sufficient for obtaining an optimal
policy.

Retuning Threshold
=
T

Another important observation from Figures 3 to 5 is that the re-
tuning threshold increases with the DLB values. This behavior
can be explained by noting that, because of the near-neighbor dis-

tribution (refer to Figure 2), when the network operates at states 0 05 1 3 38
with high DLB values, it will tend to remain at states with high
DLB values. Since the reward is inversely proportional to the DLB
value, the network incurs small rewards by making transitions be- A=30,B=1
tween such states. Therefore, the optimal policy is such that the
network decides to reconfigure even when there is a large number

of receivers to be retuned. By doing so, the network pays a high

1.5 2 25
Degree of Load Balancing

20 T T T —

Figure 3: Optimal policy decisions for N = 20,C =5, K =

cost, which, however, is offset by the fact that the network makes
a transition to the balanced state with a low DLB, reaping a high

reward. On the other hand, when the network is at states with low
DLB, it also tends to remain at such states where it obtains high
rewards. Therefore, the network is less inclined to incur a high
reconfiguration cost, and the retuning threshold for these states is
lower.

10

Retuning Threshold

In Figures 6 to 8 we apply Howard’s algorithm to a network with
N =100 nodes and C' = 10 wavelengths, operating under a near- 5|
neighbor model similar to the one shown in Figure 2. For this
network we used K = 20 intervals, and we varied the weights A
and B in the reward and cost functions in (5) to study their effect o A .

on the optimal policy. Specifically, we let B = 1 and we varied o 05 3 38

A from 20 (in Figure 6) to 35 (in Figure 7) to 50 (in Figure 8).
We first observe that the optimal policy is again a threshold policy Figure 4: Optimal policy decisions for N = 20, C = 5, K
for each value ¢y, of the DLB. However, as A increases, we see A=30,B=1

that the retuning threshold associated with each DLB value also

increases. This behavior of the optimal policy is in agreement with

intuition since, by increasing A we increase the reward obtained 20

1.5 2 25
Degree of Load Balancing

by taking the network to a balanced state relative to the cost of
reconfiguration, making reconfigurations more attractive. Overall,

we have found that one can obtain a wide variety of policies by

varying the weights A and B. - " TTT]
5 M

We now compare the optimal policy against a class of threshold- g M

based policies. Specifically, there are two thresholds, ¢mq, and E, 10F I

D,0z. If the system is about to make a transition into a state §_

(¢, D), then the network will reconfigure if ¢y, > ¢pqz. Other- e

wise, if ¢r < @maz, the network will reconfigure if the number 5t
D of receivers that must be retuned is less than or equal to D,y 4,
and it will not reconfigure if D > D,n,,. This class of policies
define Markov processes which are outside the class of Marko- 0

. . . . . N 0 .. ) .
vian Decision Processes considered in Section 3. In a Markovian 05 8 35

Decision Process, there are several alternatives per state, but once

an alternative has been selected for a state, then transitions from  Figure 5: Optimal policy decisions for N = 20,C = 5, K
this state are always governed by the chosen alternative. Inthe A =30,B=1

threshold policies, on the other hand, the alternative selected does

1.5 2 25
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Figure 6: Optimal policy decisions for N = 100, C = 10, K =
20,A=20,B=1
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Figure 7: Optimal policy decisions for N = 100, C = 10, K =
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Figure 8: Optimal policy decisions for N = 100, C = 10, K =
20,A=50,B=1
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not depend on the current state, but rather on the next state. There-
fore, the system may select different alternatives when at a partic-
ular state, depending on what the next state is. Since Howard’s
algorithm [4] is optimal only within the class of Markovian De-
cision Processes, it is possible that these threshold policies obtain
rewards higher than the optimal policy determined by the algo-
rithm.

In Figure 9 we compare the optimal MDP policy to a number of
two-threshold policies. The results presented are for a network
with N = 100 nodes, C' = 10 wavelengths, a near-neighbor traffic
model, K = 20 intervals, and the reward and cost functions of (5)
with A = 50 and B = 1. We plot the reward of each policy against
the DLB threshold value; the optimal policy is independent of the
DLB threshold, resulting in a horizontal line. We also plot the
reward of three two-threshold policies, each of which corresponds
to a different retuning threshold (namely, D, = 40, 32, and 24)
and varying DLB thresholds.

The most interesting observation from Figure 9 is that, for cer-
tain values of the DLB-threshold, the two-threshold policy with
retuning threshold Dy, = 40 achieves a higher reward than
the optimal MDP policy obtained through Howard’s algorithm,
This result is possible because, as we discussed earlier, the class
of two-threshold policies is more general than the class of poli-
cies for which Howard’s algorithm is optimal. On the other hand,
we note that the reward of the two-threshold policies depends on
the values of both thresholds. Although within a certain range of
these values the threshold policies perform better than the opti-
mal policy, the latter outperforms the former for most threshold
values. Therefore, threshold selection is of crucial importance for
the threshold policies, but searching through the threshold space
can be expensive. The optimal policy, however, guarantees a high
overall reward and is also simpler to implement since the network
does not need to look ahead to the next state to decide whether or
not to reconfigure.

Figure 10 is similar to Figure 9, but we have used A = 20 and
B =1 as weights in the reward and cost functions, respectively.
As we can see, the reward of the optimal policy is strictly higher
than that of threshold policies across all possible threshold values.
These results demonstrate that the two-threshold policies do not
always perform better than the optimal policy, and their perfor-
mance depends on the system parameters and/or the reward and
cost functions. Furthermore, it is not possible to know ahead of
time under what circumstances the threshold policies will achieve
a high reward, and if the network’s operating parameters change,
threshold selection must be performed anew.

Overall, we have found that the optimal policy can successfully
balance the two conflicting objectives, namely, the DLB and the
number of retunings, and that, by appropriately selecting reward
and cost functions, the optimal policy can be tailored to specific
requirements set by the network designer.

5 Concluding Remarks

We have studied the problem of reconfiguring broadcast mul-
tiwavelength optical networks and we have used results from
Markov Decision Process theory to obtain optimal reconfigura-
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Figure 9: Policy comparison, N = 100, C = 10, K = 20, A =
50,B=1
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Figure 10: Policy comparison, N = 100, C =
A=30,B=1

tion policies. The formulation presented provides a unified frame-
work for reconfiguration problems in optical networks, and pro-
vides further insight into the fundamental tradeoffs involved in
the design of reconfiguration policies.
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