Dynamic Load Balancing in Broadcast
WDM Networks with Tuning Latencies *

Ilia Baldine

Abstract

In this paper we study the problem of dynamic load bal-
ancing in broadcast WDM networks by retuning a subset of
transceivers in response to changes in the overall traffic pat-
tern. Assuming an exvisting wavelength assignment and some
information regarding the new traffic demands, we present
two approaches to oblaining o new wavelength assignment
such that (a) the new traffic load is balanced across the chan-
nels, and (b) the number of transceivers that need to be re-
tuned is minimized. The latter objective is motivated by the
fact that tunable transceivers take a non-negligible amount
of time to switch between wavelengths during which parts of
the network are unavailable for normal operation. Our main
contribution is ¢ new approzimation algorithm for the load
balancing problem that provides for tradeoff selection, using
a single parameter, between the two conflicting goals. This
algorithm leads to a scalable approach to reconfiguring the
network since, in addition to providing guarantees in terms
of load balancing, the expected number of retunings scales
with the number of channels, not the number of nodes in the
network.

1 Introduction

Single-hop lightwave networks have been proposed for Lo-
cal and Metropolitan Area Networks (LANs and MANSs)
[7]. The single-hop architecture employs Wavelength Divi-
sion Multiplexing (WDM) to provide connectivity among the
network nodes. The WDM channels are dynamically shared
by the attached nodes, and the logical connections change on
a packet-by-packet basis creating all-optical paths between
sources and destinations. Single-hop networks require the
use of rapidly tunable optical lasers and/or filters that can
switch between channels at high speeds. Such devices do ex-
ist today; however, they have to be custom-built and they
tend to be extremely expensive, accounting for a significant
fraction of the overall cost of building a lightwave network.
Consequently, media access protocols such as HiPeR-£ [11]
that require tunability only at one end have the potential
of keeping the overall cost at reasonable levels, leading to
network architectures that can be realized cost effectively.

When tunability only at one end, say, at the transmitters, is
employed, each fixed receiver is permanently assigned to one
of the wavelengths used for packet transmissions. In a typical
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near-term WDM environment, the number of channels that
will be supported within the optical medium is expected to
be smaller than the number of attached nodes. As a result,
each channel will have to be shared by multiple receivers,
and the problem of assigning receive wavelengths arises. In-
tuitively, this assignment must be somehow based on the
prevailing traffic conditions. But with fixed receivers, the
assignment of receive wavelengths is permanent and cannot
be updated in response to changes in the traffic pattern.

Alternatively, one can use slowly tunable, rather than fixed,
receivers. We will say that an optical laser or filter is rapidly
tunable if the time it takes to switch between channels is
comparable to a packet transmission time at Gigabit per
second rates. Slowly tunable devices can be significantly
less expensive than rapidly tunable ones, but their tuning
times can also be significantly longer (up to several orders of
magnitude). As a result, these devices cannot be assumed
“tunable” at the media access level (i.e., for the purposes of
scheduling packet transmissions), as this requires fast tun-
ability. However, use of slowly tunable receivers makes it
possible to modify the assignment of receive wavelengths over
time to accommodate varying traffic demands.

The issues that arise in reconfiguring a lightwave network by
retuning a set of slowly tunable transmitters or receivers have
been studied in the context of multihop WDM networks in
[9, 6]. The work in [6] considered the problem of constructing
a sequence of branch-exchange operations of minimum length
to take the network from an initial to a target connection
diagram. The focus in [9] was on the design of dynamic
policies for determining when and how to reconfigure the
network. To the best of our knowledge, reconfiguration and
dynamic load balancing have not been studied in the context
of single-hop networks.

In this paper we consider the problem of reconfiguring a
single-hop network by retuning a subset of the slowly tun-
able receivers in response to changing network traffic condi-
tions. Qur objective is to ensure that the traffic load remains
balanced across the various channels, while minimizing the
number of receivers that need to be retuned. We show that
employing well-known load balancing algorithms leads to an
approach that does not scale well with the size of the net-
work. We then present a new approximation algorithm for
the load balancing problem that provides for tradeoff selec-
tion, using a single parameter, between the two conflicting
goals. Our algorithm is simple, fast, scalable, and tends to



select the least utilized receivers for retuning, hence mini-
mizing the impact of the reconfiguration phase on the car-
ried traffic. Although our work is motivated by a problem
in optical networks, our solution techniques are applicable to
a generalized version of the classical multiprocessor schedul-
ing problem [3], whereby it takes a non-negligible amount of
time to transfer tasks among processors.

The next section introduces the network model, and dis-
cusses the issues arising during the reconfiguration phase. In
Section 3 we describe two approaches for dynamically load
balancing by retuning the slowly tunable receivers. In Sec-
tion 4 we present some numerical results to compare the two
approaches, and we conclude the paper in Section 5.

2 System Model
2.1 Network Model and Operation

We consider a packet-switched single-hop lightwave network
with N nodes, and one transmitter-receiver pair per node.
The nodes are physically connected to a passive broad-
cast optical medium that supports C < N wavelengths,
A1, -, Ac. Both the transmitter and the receiver at each
node are tunable over the entire range of available wave-
lengths. However, the transmitters are rapidly tunable, while
the receivers are slowly tunable. We will refer to this tun-
ability configuration as rapidly tunable transmitter, slowly
tunable receiver (RTT-STR). (We note that all our results
can be easily adapted to the dual configuration, STT-RTR..)

Let A; (A;) denote the normalized tuning latency of trans-
mitters (receivers), expressed in units of packet transmission
time. In the RTT-STR system under consideration, we have
that A, > A; > 1, where A; is a small integer, while A,
takes values that may be significantly greater than A;. The
main motivation for employing slowly tunable receivers vs.
fast tunable ones is the significant savings in cost that can
be realized.

We distinguish two levels of network operation, differing
mainly in the time scales at which they take place. At
the packet scheduling level, connectivity among the network
nodes is provided by reservation protocol such as HiPeR-£
[11] that requires tunability only at the transmitting end.
The protocol schedules packets for transmission by employ-
ing scheduling algorithrns that can effectively mask the tun-
ing latency of tunable transmitters [8, 10]. Since the re-
ceiver latency A, is significantly long and cannot be over-
lapped with packet transmissions, at this level of operation
the receivers are considered to be fixed tuned to a particular
wavelength. Let A(j) € {A1, -, Ac} be the wavelength cur-
rently assigned to receiver j. An assignment of wavelengths
to receivers is a partition R = {R;, ¢=1,---,C} of the set
N = {1, -+, N} of nodes, such that R, is the subset of nodes
currently receiving on wavelength A.:

R, {71 A0) =2} e=1,---,C (1)

The ability of receivers to tune, albeit slowly, is invoked only
at the resource allocation level; in this work, the shared re-
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source of interest is bandwidth. We note that a partition
R = {R.} in (1) implies an allocation of the available band-
width to the various receivers. The availability of tunable
receivers allows this allocation to be optimized to prevailing
traffic conditions. As traffic varies, a new assignment of re-
ceive wavelengths may be sought that satisfies some optimal-
ity criteria. We will use the term “reconfiguration” to refer
to the reallocation of bandwidth to receivers. Since this vari-
ation in traffic will more likely take place over larger scales
in time, reconfiguration is expected to be a relatively infre-
quent event, and each assignment of receive wavelengths will
be long lived relative to the scheduling of packet transmis-
sions by the media access protocol. Consequently, receivers
with a tuning time A, significantly larger than the packet
transmission time, will be acceptable at the resource alloca-
tion level as long as A, is small compared to the mean time
between successive reconfiguration events.

2.2 Assignment of Receive Wavelengths

Intuitively, receive wavelengths should be assigned so that
the traffic load be balanced across the C channels. A recent
study on the performance of HiPeR-£ [11], a new reservation
protocol for broadcast WDM networks, has confirmed this
intuition. Let us define parameter ¢, such that no channel
carries more than U—Zfﬂ times the total traffic offered to the
network. In other words, €; is a measure of the degree of
load balancing of the network; under perfect load balancing,
ey = 0. It was shown in [11] that the maximum sustained
throughput v is directly affected by e, through the following
stability condition:

c
ETSETS (2)

It can be seen from (2) that the higher the degree of load
balancing (i.e., the lower the value of €; is), the higher the
overall arrival rate 4 that the network can accommodate, and
vice versa. (Parameter ¢, is the guarantee on the schedule
length and depends on the scheduling algorithm used, but
for the purposes of this discussion it can be considered a
constant; for more details, the reader is referred to [11]).
Although the stability condition (2) was derived specifically
for HiPeR-£, we believe that load balancing has a similar
effect on the performance of any protocol for multichannel
single-hop networks.

v <

We represent the bandwidth requirements of source-
destination pairs by a traffic demand matrix T= [t;;]. Quan-
tity ¢;; could be a measure of the average traffic originating
at node 7 and terminating at node j, or it could be the effec-
tive bandwidth of the traffic from ¢ to j. Given matrix T, we
can compute the total bandwidth requirement b; of receiver
j as the sum of the elements of the j-th column of T:

N
b = > ty i=1,-N (3)
i=1

Receive wavelengths are assigned on the basis of quantities
bj, j=1,---,N. Based on our observations regarding load



balancing, our objective is to assign the receivers to the avail-
able channels such that the total bandwidth used in each
channel is approximately the same among different channels.
This problem is equivalent to the multiprocessor scheduling
problem [3], where given a set of tasks with a prior:i known
processing times and a number of processing units, the ob-
jective is to allocate the tasks to the processors such that the
overall finish time is minimized. (This implies that the total
processing time of the various processors differs as little as
possible.) In our case the channels take the place of the pro-
cessors, the receivers replace the tasks and the bandwidth
requirements b; replace the processing times.

The multiprocessor scheduling problem is N'P-complete [4].
Two approximation algorithms for this problem are MUL-
TIFIT [2], with an absolute performance ratio of 1.22, and
LPT [5], with an absolute performance ratio of 1.33. Either
of these two algorithms may be used to obtain an assignment
of receive wavelengths based on the receiver bandwidth re-
quirements b5, j = 1,---, N, such that traffic is spread across
the various channels as evenly as possible. We now discuss
what happens when, due to changes in the traffic pattern,
the current wavelength assignment becomes suboptimal.

2.3 The Transition Phase

Let R be an assignment of receive wavelengths based on traf-
fic matrix T and the corresponding bandwidth requirements
{b;}in (3). As traffic varies over time, the elements of matrix
T, as well as the column sums {b;}, will change. Let T’ be a
new traffic matrix, and {b} be the new receiver bandwidth
requirements. If, due to these traffic changes, assignment
R is no longer successful in balancing the load across the
channels, two actions are taken: a new assignment R’ is ob-
tained, optimized for the new bandwidth requirements {5} },
and a number of receivers are tuned to new wavelengths as

specified by R’.

In [6] it was assumed that the traffic pattern is slowly and
predictably changing over time. In this case, an assign-
ment of receive wavelengths may be precomputed for the
expected new traffic conditions. If changes in the traffic
pattern are not predictable, the network nodes (or a spe-
cial node dedicated to managing the network) may moni-
tor packet transmissions on the various channels, and apply
statistical techniques to determine whether the overall con-
ditions have changed in a way that significantly affects the
optimality of the current wavelength assignment. The prob-
lem of determining when the wavelength assignment needs to
be updated is beyond the scope of this paper; rather, we con-
centrate on the issues arising once a decision to reconfigure
the network has been taken based on a new matrix T’.

The reconfiguration phase will take the network from the
current assignment R to some new assignment R’. We define
the distance D between two wavelength assignments R and
R’ as follows:

C
D(R,R) = N - > |R.OR,|

c=1

(4)
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The distance D(R,R’) represents the number of receivers
that would need to be retuned in order to take the network
from wavelength assignment R to the new assignment R’.

There is a wide range of policies for reconfiguring the net-
work, mainly differing in the tradeoff between the length of
the transition period and the portion of the network that
becomes unavailable during this period (see [6] for a discus-
sion on similar issues arising in multihop networks). One
extreme approach would be to simultaneously retune all the
receivers that are assigned new channels under R’. The du-
ration of the transition period is minimized under this ap-
proach (it becomes equal to A, ), but a significant fraction
of the network may be unusable during this time. At the
other extreme, an approach that retunes one receiver at a
time minimizes the portion of the network unavailable at
any given instant during the transition phase, but maximizes
the length of this phase (which now becomes D(R,R')A,).
Between these policies at the two ends of the spectrum lie
a range of approaches in which two or more receivers are
retuned simultaneously.

Let us define a step in the reconfiguration phase as an in-
terval of length A, during which one or more receivers are
retuned. Let k(p) be the number of steps required under
policy p, and let z,(p), n = 1,---,k(p), be the number of
receivers retuned during step n for this policy. During the
transition period, the network incurs some cost in terms of
packet delay, packet loss, packet desequencing, and the con-
trol resources involved in receiver retuning. This cost is di-
rectly proportional to both the portion of the network that
becomes unavailable and the length of the transition period.
A measure of this cost that accounts for both these factors is
the network unavailable fraction-unavailability length prod-

uct, which can be obtained as the sum Zk(pi (Ar %ﬁ))

n=
But, for any reconfiguration policy p, this sum is equal to:

o)

N
Thus, regardless of the policy used, the number of retuning
operations D(R, R’) emerges as an important parameter, one
that determines the impact of the reconfiguration phase on
the traffic carried by the network.

k(p)

>

n=1

D(R,R")

A,
N

Vp (5)

The rest of the paper considers the problem of minimizing the
number of retuning operations given an initial assignment R
and a new traffic matrix T/. As in [6], we also ignore net-
work specific issues such as how to coordinate the individual
steps of the transition phase and inform the nodes of which
receivers to retune and when. Instead, we concentrate on
an abstract model that hides the details of operation but is
applicable to a wide range of network environments.

3 The New Wavelength Assignment

Consider a network operating under wavelength assignment
R optimized for traffic matrix T. As traffic varies over time,
the matrix is updated to reflect the changes in the traffic



pattern. Let T/ be the traffic matrix at the instant recon-
figuration is triggered. Our objective is to obtain a new
wavelength assignment R’ such that (1) the new traffic load,
as specified by matrix T’ is evenly spread across the C chan-
nels, and (2) the number of retunings required to take the
network from assignment R to R’ is as small as possible. We
note that these requirements on R’ represent two conflicting
objectives: minimizing the number of retunings alone would
result in R’ being the same as R, which may be suboptimal
in terms of load balancing; while optimally balancing the
load across the C channels might produce a new assignment
such that the distance in (4) be large.

We distinguish two approaches in constructing a new agsign-
ment R, which we study in the next two subsections.

e The first approach consists of two steps. The first step
is to partition the set of receivers by solving the load
balancing problem on matrix T’ independently of the
initial assignment R. The second step assigns the new
subsets of receivers to wavelengths so as to minimize
the number of retunings required starting from R. This
approach gives rise to the Channel Assignment problem.

e The second approach attempts to solve the load bal-
ancing problem on matrix T’, while at the same time
minimizing the number of retunings that have to be per-
formed. We will call this the Constrained Load Balanc-
ing problem.

3.1 The Channel Assignment Problem

We consider an initial wavelength assignment R and a new
traffic matrix T'. The first step in the reconfiguration process
is to run an approximation algorithm (such as MULTIFIT or
LPT) to obtain a partition & = {5} of the set of receivers
into C sets S, ¢ = 1,---,C. This partition &’ is such that
the bandwidth requirements (as defined by matrix T') of the
receivers in each set S’ is approximately the same among the
C sets. We note that the approximation algorithm does not
distinguish among the various channels. Thus, the output of
the algorithm is simply a partition 8’ of the set of receivers,
not a wavelength assignment as defined in (1); in other words,
there is no association among the receiver subsets S, and the
available wavelengths.

From &' we may obtain a new wavelength assignment R’ by
mapping each subset % to one of the wavelengths, such that
no two subsets map to the same wavelength. Since our objec-
tive is to minimize the number of retuning operations during
the reconfiguration, the problem of selecting a mapping that
results in the least number of retunings arises. This Channel
Assignment (CA)} problem can be formally stated as:

Problem 3.1 (CA) Given an initial wavelength assign-
ment R = {R.}, and a new partition 8" = {S.} of the set
of receivers, find a permutation (wy, we, -+, m¢) of {1,--,C}
such that for the new wavelength assignment R’ = {R,} with
R,=5,,c=1,---,C, the distance D(R,R') is minimum
over all possible permutations.
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Problem CA is an example of a bipartite weighted matching
or assignment problem [1], when given a weighted bipartite
network it is required to find a perfect matching of minimum
weight. Several polynomial-time algorithms exist for the as-
signment problem [1]. The following lemma emphasizes the
importance of employing an optimal algorithm for the CA
problem, by stating that using a simple scheme such as the
identity permutation (i.e., letting R, = S’ for all ¢) may
result in an unnecessarily large number of retunings.

Lemma 3.1 Assume that the traffic matriz has changed so
that at least one retuning is required under the optimal per-
mutation. Then, the difference between the number of retun-
ings required by the identity permutation and thatl required
by the optimal permutation can be equal to N (the number
of receivers) minus one, in the worst case.

Proof. See Appendix A. O

Unfortunately, this approach to obtaining the new wave-
length assignment does not scale well with the size of the
network. Even though the LPT or MULTIFIT algorithms
can successfully balance the traffic load across the C' chan-
nels, this approach performs poorly in terms of the number
of retunings required to change the network to the new wave-
length assignment. The next lemma states that, even under
an optimal solution to the CA problem, the number of re-
tunings required may be very large.

Lemma 3.2 Let R and S’ be the initial wavelength assign-
ment and new partition, respectively, of an arbitrary instance
of the CA problem for a network with N nodes and C' chan-
nels. If the optimal solution to this instance yields wavelength
assignment R', N — C is an upper bound on the number of
retunings required, i.e.,
D(R,R")

< N-C (6)

Proof. See Appendix B. O

The main disadvantage of this solution is that it always satis-
fies the load balancing objective at the expense of the number
of retunings. Furthermore, all the algorithms for the assign-
ment problem are computationally expensive [1], making it
difficult to apply them in dynamic high-speed environments.
What is needed is a fast algorithm that looks at both ob-
jectives at the same time, and which allows the designer to
adjust the tradeofl among them in favor of one or the other.

3.2 The Constrained Load Balancing Problem

We now consider a different approach to obtaining a new
wavelength assignment R’, given an initial assignment R and
a new traffic matrix T’, one that attempts to simultaneously
satisfy the two requirements for R’ discussed earlier in this
section. This approach gives rise to the Constrained Load
Balancing (CLB) problem, which can be formally stated as
a decision problem:



Problem 3.2 (CLB) Given an initial wavelength assign-
ment R, a traffic matriz T', and two positive integers K and
L, is there a wavelength assignment R’ such that EjER’ b;- <

KVcand D(R,R')< L?

The CLB problem is NP-complete because for L > N it
reduces to the multiprocessor scheduling problem which is
NP-complete [4]. We now present a heuristic for the CLB
problem, which is based on LPT [5], an approximation algo-
rithm for the multiprocessor scheduling problem. In describ-
ing the heuristic we will use the terminology of [5], i.e., we
will refer to processors, tasks, and execution times instead
of channels, receivers, and bandwidth requirements, respec-
tively. This will be helpful in referring to the results of [5]
to prove certain properties regarding the performance of our
heuristic.

Recall that LPT first sorts the N tasks in a list L
(v1, -+, vN) In decreasing order of their execution times. Ini-
tially, each of the first C tasks in the list is assigned to a
different processor to execute. Then, whenever a processor
completes a task, it scans the list L for the first available
task to execute, and this procedure repeats until all tasks
have been executed. We modify LPT to take into account
R, the previous wavelength assignment (i.e., the previous as-
signment of tasks to processors), by introducing a parameter
«, 1 € a < N. The new algorithm also orders the tasks in
a list L in decreasing order of their execution times. How-
ever, when a processor i searches for a new task to execute
(initially, or after the completion of a task) it does not im-
mediately select the first available task in the list. Instead,
it considers the first « available tasks in the list (if there
are less than « remaining tasks, then all of them are con-
sidered). If at least one of these tasks was assigned to the
same processor ¢ under the previous assignment R, then the
processor starts executing the larger such task, even if it is
not the first one in the list of available tasks. Otherwise, if
no such task exists, the processor executes the first available
task, as in LPT. There is one exception to this rule, namely,
the first task in the list L (i.e., task v1) is always assigned to
its processor under R.

We will call the algorithm just presented the Generalized
LPT (GLPT) algorithm; its detailed description can be
found in Figure 1. It can be easily verified that, by im-
plementing appropriate data structures, the complexity of
GLPT is O(N max{log N,C,a}). We note that GLPT re-
duces to pure LPT for « = 1. For higher values of «, it is
more likely that receivers will be assigned to the same chan-
nels as before, and the new wavelength assignment R’ will
be closer to R; this may be achieved at the expense of load
balancing. By selecting a value for @ between 1 and N when
implementing GLPT, the network designer can achieve the
desired tradeoff between the two objectives: load balancing
and number of retunings.

The following lemma provides an absolute performance ratio
regarding the behavior of GLPT in terms of load balancing,
regardless of the value of parameter «.
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Algorithm Generalized LPT (GLPT)

Input: Initial wavelength assignment R = {R.}, and new
recetver bandwidth requirements b}, j =1 N, derived
from the new traffic matrix T/; A(j) denotes the receive wave-
length of j under R

Output: New wavelength assignment R’ = {R.}
Parameter: ¢, 1 < a < N

1. begin
2. Initialize Rfc:(f), CZI,"',C
3. Order the receivers as (v, -+, un)s. t. b, > > b

// assign the first receiver to its previous channel

4. Rl «— {v1} where A(v1) = A,

5. Forj=1to N - 1do

6. Order the channels as (Ar,, -, Arg) 8. t.
ZzeR;l bp<---< ZIER;C by

7. Order the non-assigned receivers as (vi, -, Un—j)
s. b by, 220,
// If one of the first « receivers was assigned to
Ar, under R, assign it to the same channel

8. For i =1 to min{a, N — j} do

9. If A(vi) = Ar, then

10. Ry — Ry U{y}

11. goto b
// Otherwise, assign the first receiver to A,

12. Ry, — R, U{wn}

13. end of algorithm

Figure 1: The Generalized LPT algorithm

Lemma 3.3 Letw denote the finish time of a schedule con-
structed by GLPT for any value of «, and let w* denote the
optimal finish time for the same set of tasks. Then,
W 3 1
wr T 2 20

Proof. Let us choose the m, 0 < m < N longest tasks of
the set of tasks to be executed and arrange them in a list L
which gives the optimalsolution for these m tasks under this
strategy: upon completion of a task, a processor scans the
list and starts executing the next available task. Now let us
extend L to include all the tasks by adjoining the remaining
N — m tasks arbitrarily to L, forming list L(m). Let w(m)
denote the finish time for the N tasks when using the above

strategy on L(m), and let w* denote the optimal finish time
for all N tasks. From [3, Theorem 3] we have that:

(M)

w*

1
c

L+ [Z]

Let L’ denote the corresponding list of tasks for GLPT. This
list is not known « priori, instead, it is formed dynamically
during the execution of the algorithm. However, by construc-
tion, the same strategy is followed on L', namely, a processor
that becomes idle is always assigned the next available task
on L’. Then, the result in (7) follows immediately from (8)

w(m) L4 1

(8)

w*



for m = 1, since, regardless of the value of the parameter «,
list L' is formed by concatenating some list of N —1 tasks (as
formed by the algorithm) to the list that gives the optimal
solution for the longest task v. |

Finally, we note that the CLB problem is a generalized ver-
sion of the classical multiprocessor scheduling problem [3],
whereby it takes a non-negligible amount of time to transfer
tasks between processors, and that, because of Lemma 3.3,
GLPT is an approximation algorithm for this new problem.

4 Numerical Results

We now compare the two approaches for obtaining a new
wavelength assignment R’, given an initial assignment R
and a new traffic matrix T/. The first approach is to run
LPT [5] on the new receiver bandwidth requirements {b}}
derived from matrix T/ to obtain a partition S’ of the set of
receivers into C subsets S’; we then run the Shoriest Aug-
menting Paths algorithm [1] to obtain a solution to the CA
problem, i.e., to map the subsets S, to the actual chan-
nels. The running time requirements of this approach are
O(Nlog N + N*). The second approach is to run algorithm
GLPT(x), shown in Figure 1, with R and T’ as input, to
directly obtain the new assignment R’; in our experiments,
we have used various values for parameter «.

The two performance measures of interest are load balancing
and the number of receiver retunings required. Since we do
not have a polynomial time solution for the load balancing
problem, we compare the two approaches against the lower

c . tt ] .
bound, obtained from matrix T' as —%{——J; we note that, in
general, this lower bound may not be achievable.

Figures 2 and 3 show the performance of the two approaches
in terms of load balancing and number of retunings, respec-
tively, as we vary the number N of nodes in the network;
the number of channels remains constant, C = 10. Figures
4 and 5 show results for the same performance measures as
the number of channels varies while the number of nodes is
kept constant at N = 120. To obtain the results shown in
Figures 2 — 5 we constructed random traffic matrices whose
elements were integers uniformly distributed in the range 0
through 20. Each point plotted corresponds to the average
of 100 random instances for the stated values of N and C;
95% confidence intervals have also been computed, but they
are so narrow that they are not plotted in the figures.

Our first observation from Figures 2 and 4 is that the first
approach (i.e., employing LPT for load balancing and then
solving the channel assignment problem), provides the best
performance in terms of load balancing, as expected. How-
ever, algorithm GLPT with a = 5 (GLPT(5)) performs al-
most identical to LPT, while GLPT(10) is also very close to
LPT. As « increases, GLPT starts behaving sub-optimally
in terms of load balancing, as expected. However, even when
« is as large as 40, GLPT is never more than 14% away from
the lower bound, and in some cases it is as close as 3%. In
fact, because of Lemma 3.3, GLPT is guaranteed to always
be within 50% from the optimal, regardless of the value of
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Figure 5: Algorithm comparison on number of retunings
(N = 120 nodes, random traffic matrices)

parameter o.

Let us now turn our attention to Figure 3 which plots the
average number of retunings as a function of the size N of
the network. We observe that the first approach always re-
quires the most number of retunings, and that its retuning
requirements increase linearly with the size of the network.
Furthermore, the expected fraction of receivers that need to
be retuned increases with the number of nodes, from 50%
when N = 20, to 75% when N = 120. This behavior sug-
gests that the approach is not scalable, since, for large N,
either the duration of the reconfiguration phase, or the frac-
tion of the network that becomes unavailable, will be signif-
icant. The behavior of this approach in terms of number of
retunings is in agreement with intuition: LPT is very suc-
cessful in balancing the load of the network, but it does not
take into account the previous wavelength assignment. As
a result, the distance between the initial and target assign-
ments tends to be large. We note also that, for all values
of N, the expected number of retunings is very close to the
upper bound 1 Lemma 3.2.

From the same figure we see that, for small values of «, al-
gorithm GLPT requires a number of retunings which also
increases linearly with the size of the network. However, the
rate of increase is much slower (for instance, when o = 5,
about 50% of the receivers are retuned for all values of N,
while when « = 10, about 20% of the receivers are retuned
on average). As « increases, the behavior of GLPT improves

dramatically. For o = 20, the number of retunings does’

increase with N, but it is always less than 10, while when
a = 40, only about one receiver needs to be retuned, inde-
pendently of the number N of nodes. In fact, doubling the
value of parameter « reduces the number of retunings to less
than half its previous value. As a result, it does not make
sense to use a value of o that is, in this case, larger than 40,
since doing so may increase the running time requirements of
algorithm GLPT without any significant effect on the num-
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ber of retunings. This behavior of GLPT can be explained
by noting that, for sufficiently large values of o, GLPT will
assign most of the receivers to their previous channels. Only
a few of the receivers with the smallest requirements will be
agsigned to new channels if it is necessary to do so in order to
keep the channels balanced. This feature of GLPT, namely,
that the receivers with the smallest requirements under the
new traffic pattern are more likely to be retuned, is highly
desirable. This is because it implies that the reconfiguration
will affect the part of the network that is least utilized, mini-
mizing the impact of the transition phase (in terms of packet
loss, delay, etc.) on the overall traffic carried by the network.

In Figure 5 we plot the number of retunings required against
the number of channels, for N = 120. We note that the
first approach always requires a number of receivers to be
retuned which is very close to the upper bound N — C of
Lemma 3.2. On the other hand, the number of retunings
required by GLPT increases almost linearly with C for all
values of «; also, larger values of « result in a smaller number
of retunings, as expected. This result, combined with our
previous observations, indicates that, for certain values of
parameter « (in this case, for 20 < o < 40), GLPT provides
a scalable approach to reconfiguring the network since (a)
1t achieves a guaranteed level of performance in terms of
load balancing, (b) its retuning requirements are low, and
more importantly, (¢) the number of retunings scales with the
number of channels, not the number of nodes in the network.

5 Concluding Remarks

We considered the problem of updating the bandwidth allo-
cation in single-hop WDM networks to accommodate varying
traffic demands, by retuning a set of slowly tunable receivers.
Our objective was to balance the traffic load across all chan-
nels, while keeping the number of retunings to a minimum.
We presented a new algorithm that attempts to construct
the new wavelength assignment in a way that simultaneously
achieves the stated objectives. The algorithm provides for
tradeoff selection between the two requirements, and scales
well with the size of the network. The main conclusion of
our work is that it is possible to employ rapidly tunable op-
tical devices only at one end of the network without making
sacrifices in terms of performance, thus leading to lightwave
architectures that can be realized cost effectively.
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A Proof of Lemma 3.1

Proof. We will construct an instance of the CA problem for
which the difference in the number of retunings under the
identity and optimal permutations is equal to N — 1. Con-
sider a network with C' > 3 and N > (. Let the initial
wavelength assignment R = {R.} be any arbitrary assign-
ment such that | R, |[> 2 and let j € R¢. Let the new
partition 8" = {S.} be such that

RQU{J}: c=1

r Rc«!—l, C:2)"')C_2

% =\ R - (i), c=C-1 )
R1, c=C

It is straightforward to verify that the identity permutation
requires that all receivers retune to new wavelengths (N re-
tunings), while the optimal permutation (C, 1,2,3, . -,C=1)
requires only one retuning, that of receiver j from wavelength
Ac to wavelength As. 0

B Proof of Lemma 3.2

Proof. We will first prove that no more than N —C retunings
are needed under an optimal solution to the CA problem.
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We will then show that this is a tight bound by construct-
ing instances of the CA problem that require a number of
retunings equal to the upper bound.

Consider a network with N nodes and C' < N channels.
Let m be an integer such that, for any arbitrary instance
(R(N),S'(N)) of the CA problem, there will be at least m
(out of N) receivers that do not need to be retuned under
the optimal solution (the reason why we express R and &’
as functions of the number of nodes will become apparent
shortly). In other words, if R'(N) is the optimal new wave-
length assignment for instance (R(N), 8'(N)), we have that:

C
YTIR(N)NRYN)| > m (10)
c=1

Now consider a network with N/ > N nodes and C' wave-
lengths. We show by contradiction that, if (R(N'), S'(N"))
is an arbitrary instance of the CA problem for this network,
and R/(N') is the optimal new wavelength assignment, then:

N’ > N (11)

c

DS IRMNINR(NY| 2 m/ = m,
e=1

Suppose that m’ < m, and consider an instance of the CA
problem for this network for which the left part of (11) holds
with equality. By removing from this instance N/ — N re-
ceivers that need to be retuned !, we obtain an instance of

the CA problem for a network with N nodes such that

c

DTIR(N)NRYN)| = m' < m (12)
e=1

But, because of our hypothesis that (10) holds, (12) is im-
possible. Therefore, (11) must necessarily hold. The result
in (6) now follows from (11) and the fact that, when C = N,
each channel is assigned exactly one receiver, and, under op-
timal channel assignment, no receiver needs to be retuned

(i.e., when N = C, m = C in (10)).

A trivial instance for which the upper bound is achieved for
a network with N = C' + 1 nodes can be easily constructed.
However, even for large N, the number of retunings may be
very close to the upper bound N ~ C. Specifically, we now
construct an instance of C'A that requires exactly N —C —1
retunings. Consider a network with N = C?2, and an initial
wavelength assignment given by:

R = {(c=1)C+1,--,eC} e=1,---,C (13)
The new partition &’ is:

;L {c}, c=2,--+,C :

Se = {{LC+L~,CQ,C:1 (14)

It is straightforward to verify that (a) a permutation is op-
timal if it assigns 5| to any of channels Ay through A¢, and
that (b) exactly C?—C'—1 = N—C'—1 retunings are required
under an optimal permutation. O

1There will be N’ ~ N receivers that need retuning because N'—= N <
N —-m <N —-m'.



