Multicast Routing with End-to-End
Delay and Delay Variation Constraints *

George N. Rouskas

llia Baldine

Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206

Abstract

We study the problem of constructing multicast trees to meet
the quality of service requirements of real-time, interactive
applications operating in high-speed packet-switched environ-
ments. In particular, we assume that multicast communica-
tion depends on (a) bounded delay along the paths from the
source to each destination, and (b) bounded variation among
the delays along these paths. We first establish that the prob-
lem of determining such a consirained tree is N'P-complete.
We then derive heuristics that demonstrate good average case
behavior in terms of the mazimum inter-destination delay
variation of the final tree. We also show how to dynami-
cally reorganize the initial tree in response to changes in the
destination set, in a way that is minimally disruptive to the
multicast session.

1 Introduction

In multicast communication messages are concurrently sent
to multiple destinations, all members of the same multicast
group. Mechanisms to support such a form of communica-
tion are becoming an increasingly important component of
the design and implementation of distributed systems [1].
One of the core issues that needs to be addressed as part
of providing such mechanisms is the issue of routing, which
primarily refers to the determination of a set of paths to be
used for carrying the messages from the source to the des-
tinations nodes. For reasons related to the efficient use of
network resources, typical approaches to multicast routing
require the transmission of packets along the branches of a
tree spanning the source and destination nodes.

The problem of computing multicast trees has received con-
siderable attention in the past, and several algorithms have
been proposed based on a number of optimization goals. One
frequently considered optimization objective is to minimize
the total cost of the tree, which is taken as the sum of the
costs on the links of the multicast tree. The minimum cost
tree is known as the Steiner tree {2], and finding such a tree
is a well-known N'P-complete problem [3]. Heuristics to con-
struct low cost trees have been developed in [4, 5, 6, 7].

While total tree cost as a measure of bandwidth efficiency
is certainly an important parameter, it is not sufficient to
characterize the quality of the tree as perceived by interac-
tive multimedia and real-time applications. Networks sup-
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porting real-time traffic need to provide certain quality of
service guarantees in terms of the end-to-end delay along the
individual paths from the source to each of the destination
nodes. Heuristics to compute low-cost trees which guarantee
a bound on the end-to-end delay are presented in [8, 9].

In this work we consider an additional criterion to charac-
terize the quality of the multicast tree for interactive, real-
time applications. In particular, we assume that the mul-
ticast tree must guarantee bounds on the variation among
the delays along the individual source-destination paths. Al-
though delay variation has not, to the best of our knowledge,
been considered in the design of multicast tree algorithms,
the maximum delay variation among the paths of the tree
was one of the performance metrics included in a simulation
study of existing multicast algorithms in [10].

There are several situations in which the need for bounded
variation among the end-to-end delays arises. During a tele-
conference, it is important that the current speaker be heard
by all participants at the same time, or else the commu-
nication may lack the feeling of an interactive face-to-face
discussion. Consider also the use of multicast messages to
update multiple copies of a replicated data item in a dis-
tributed database system. Minimizing the delay variation in
this case would minimize the length of time during which the
database is in an inconsistent state. Finally, being able to
look at the information carried by the multicast message long
before others can do the same, might translate into gaining
a competitive edge. A distributed game scenario in which
the players are connected to a game server, and compete
against each other using information sent by the server to
their screens, would be one such example.

Section 2 presents a network model for multicast communi-
cation, and in Section 3 we show that the problem of con-
structing trees to guarantee a bound on the variation of the
end-to-end delays is N'P-complete. In Section 4 we develop
heuristic algorithms, and outline an approach to dynamically
reorganizing the initial tree. We present numerical results in
Section 5, and conclude the paper in Section 6.

2 Network Model for Multicasting

We consider the routing of multicast connections in a packet-
switched communication network. The network is repre-
sented by a weighted directed graph G = (V, A), where V' de-
notes the set of nodes, and A, the set of arcs, corresponds to
the set of communication links connecting the various nodes.
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We will use n =| V| to refer to the number of nodes in the
network. We define a link-delay function D : A — Rt which
assigns a non-negative weight to each link in the network.
The value D(£) associated with link £ € A is a measure of
the total delay that packets experience on that link, including
the queueing, transmission, and propagation components.

Under the multicast routing scenario we are considering,
packets originating at source node s € V have to be delivered
to a number of destinations. We will call the set M C V —{s}
of destination nodes the destination set or multicast group,
and will use m =| M | to denote its size. Several multicast
sessions may proceed concurrently within the network, each
characterized by a source node and a destination set.

We assume that communicationin the network is connection-
oriented, and that multicast connections are established by
issuing a connect request; similarly, at the conclusion of a
session a disconnect request is issued. In response to a con-
nect request, and prior to any data been transferred from
the source to the destinations, a connection establishment
process is initiated. Central to the connection establishment
is the determination of routes between the source and the
destinations, over which multicast packets will be carried.

Let s and M be the source and multicast group, respectively,
of a certain multicast session. Multicast packets for this ses-
sion are routed from s to the destinations in M via the links
of a multicast tree T = (Vp, Ar) rooted at s. The multicast
tree is a subgraph of G (ie., Vp C V and Ar C A) spanning s
and the nodes in M (that is, M U{s} C V). In addition, V7
may contain reley nodes, that is, nodes intermediate to the
path from the source to a destination. Relay nodes are not
consumers of multicast packets; rather, they simply forward
these packets along the downstream links of the tree.

Let T be a multicast tree for the source-multicast group pair
(s, M), and let Pr(s,v) denote the unique path from source
s to destination v € M in the tree T. Multicast packets
from s to v experience a total delay of EZEPT(s,v) D(¢) along
this path. We now introduce two parameters that relate the
end-to-end delays along individual source-destination paths
to the desired level of quality of service required by the ap-
plication performing the multicast:

o Source-destination delay tolerance, A, representing an
upper bound on the acceptable end-to-end delay along
any path from the source to a destination node. This
parameter reflects the fact that the information carried
by multicast packets becomes stale A time units after
its transmission at the source.

o Inter-destination delay varialion tolerance, 6, the maxi-
mum difference between the end-to-end delays along the
paths from the source to any two destination nodes that
can be tolerated. This parameter defines a synchroniza-
tion window for the various receivers.

By supplying values for parameters A and 6, the applica-
tion in effect imposes a set of constraints on the paths of the

multicast tree. The application will proceed only if a tree
satisfying these constraints can be found; otherwise, the ap-
plication will abort. In the following section we take a closer
look at the problem of determining multicast trees that guar-
antee a desired level of performance in terms of the quality
of service criteria discussed above.

3 Delay Variation Bounded Multicast Trees

Let A and § be the delay and delay variation tolerances,
respectively, as specified by a higher level application that
wishes to initiate a multicast session. Our objective is to
determine a multicast tree such that delays along all source-
destination paths in the tree are within the two tolerances.
This problem, which we will call the Delay- and Delay
Variation-Bounded Multicast Tree (DVBMT) problem, can

be naturally expressed as a decision problem:

Problem 3.1 (DVBMT) Given a network G = (V, A), a
source node s € V, a multicast group M CV — {s}, a link-
delay function D : A — R7T, a delay tolerance A, and o delay
variation tolerance &, does there exist a tree T = (Vr, Ar)
spanning s and the nodes in M, such that:

S D) < A VeeM (1)
LePr(s,v)
| > DPO- >, DO < & VuueM (2
LEPT(s,v) LEPr(s,u)

We will refer to (1) as the source-destination delay constraint,
while (2) will be called the inter-destination delay variation
constraint. We will also say that tree T is a feasible tree for a
multicast session with source s and destination set M, if and
only if T satisfies both (1) and (2). Note that, in order for
the multicast session to proceed, it is necessary and sufficient
that a single feasible tree be constructed, as any feasible tree
can meet the requirements expressed by A and 6.

The source-destination delay constraint (1) has been pre-
viously considered in the context of designing constrained
Steiner trees for real-time, interactive applications [8, 9], but
we are not aware of any work that explicitly considers the
inter-destination delay variation comstraint (2) in the con-
struction of multicast trees. However, as part of a recent
study [10] to evaluate the relative performance of a large
number of multicast algorithms and their suitability to high-
speed real-time applications, the following quantity was mea-
sured and used as a criterion in the evaluation:

> D) -

£ePr(s,u)

max < |
uveM

b =

P GIRENE)

LePr(s,v)

Quantity ér is the maximum inter-destination delay varia-
tion in tree T, and, given a value for 6, it can be used to
determine whether tree 7' can meet the quality of service
requirements of the application. According to the study,
none of the existing algorithms provides good performance in
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terms of é7; this is not surprising, as none of the algorithms
considered in [10] takes the delay variation constraint (2)
into account. Our work addresses the problem of designing
multicast algorithms that overcome this inefficiency.

Before proceeding, we would like to resolve the open ques-
tion regarding the existence of efficient algorithms for
DVBMT. Unfortunately, the following theorem establishes
that DVBMT is N'P-complete; its proof is given in Appendix
A. The next section presents a heuristic approach to deter-
mining feasible trees for arbitrary instances of DVBMT.

Theorem 3.1 DVBMT is N'P-complete whenever the size
of the multicast group | M |> 2.

4 Multicast Tree Algorithms for DVBMT

Consider an application running at node s, and suppose that
the application issues a request for establishing a multicast
connection with destination set M. Along with the request,
the application also supplies values for the path delay tol-
erance A, and inter-destination delay variation tolerance 6.
As part of the connection establishment process, a multi-
cast tree satisfying constraints (1) and (2) needs to be de-
termined. In this section we present algorithms that can be
used to construct such a tree. Our algorithms operate under
the assumption that complete information regarding the net-
work topology is stored locally at node s, making it possible
to determine the multicast tree at the source itself. This in-
formation may be collected and updated using one of several
existing topology-broadcast algorithms [11].

The sequence of actions taken by node s during the course
of constructing a multicast tree is illustrated in the flowchart
of Figure 1, where we have assumed that the values of the
delay and delay variation tolerances A and §, respectively,
provided by the application are negotiable. As a first step,
the tree Tp of shortest paths [12] from s to all nodes in M is
constructed. If Ty does not satisfy the path delay constraint
(1) no tree may satisfy it, implying that the delay tolerance
A is too tight: negotiation may then be necessary to deter-
mine a looser value of A. Suppose now that the (original
or negotiated) value of A is such that the delay requirement
(1) is met for tree Tp. If 7y also meets the delay variation
requirement (2) then Tp is a feasible tree for this instance
of the DVBMT problem, and the multicast session may take
place over the tree of shortest paths. As a result, the route
determination phase completes successfully, and the connec-
tion establishment process may then proceed to a subsequent
phase (such as bandwidth reservation, etc.).

It is possible, though, that tree Ty fail to satisfy constraint
(2). Our approach then is to have the source execute a search
algorithm in an attempt to construct a new tree satisfying
both (1) and (2). Since DVBMT is N'P-complete, however,
the search algorithm has to employ a heuristic approach.
Nevertheless, suppose that a heuristic algorithm is available,
and that it returns a tree which constitutes a solution to the
given instance of the DVBMT problem; then a tree for the
multicast session has been found.

Gonstruct the tree of -
shortest paths Ty

Negotiate about the
delay violation

[

Negotiste about the
delay variation violation

l Return Tg

Yes
Yes @
No

Run algorithm DVMA

to obtain a new tree T

Yes
Return T T

Figure 1: Obtaining a tree for the DVBMT problem

However, a heuristic algorithm may fail to discover a fea-
sible tree, either because no such tree exists or because of
the ineffectiveness of the search strategy employed. Other
than abandoning the connection altogether, the only course
of action available at that point would be to determine a new
value for the delay tolerance é that would be acceptable to
all parties involved in the multicast session. If such a value
can be agreed upon the source would go through another it-
eration in the flowchart of Figure 1, otherwise the multicast,
session would have to be abandoned.

An alternative that would result in a considerable speed-up
of the negotiation process would be to design the search algo-
rithm so that it always returns, among the trees considered,
the one with the smallest value of ér in (3). Indeed, regard-
less of whether a solution to the given instance of DVBMT
problem exists or not, the tree corresponding to the small-
est value of é7 1s the best tree that can be obtained with
the search algorithm at hand. If this tree is available at the
termination of the algorithm, all that has to be determined
during the negotiation process is whether an acceptable level
of quality of service can be sustained for the given value of
ér and there is no need to repeat the route determination
process; this is shown in Figure 1.

The following subsection presents a new multicast tree
heuristic designed to solve the DVBMT problem. Following
that, we show how the to develop a solution to the dynamic
problem of updating the tree in response to receiver requests
for joining or leaving an ongoing multicast session.

4.1 Delay Variation Multicast Algorithm

Let Tp be the tree of shortest paths from source s to the nodes
in the destination set M for the multicast connection under
consideration. Let us also assume that Tp meets the delay
requirement (1), but that it does not meet the delay variation
requirement (2). The Delay Variation Multicast Algorithm
(DVMA), described in detail in Figure 2, can then be used
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to search through the space of candidate trees (i.e., trees
spanning s and the nodes in M) for a feasible solution to the
DVBMT problem. DVMA either returns a feasible tree, or,
having failed to discover such a tree, it returns one which (a)
satisfies the delay constraint (1) and (b) has the least value
of 67 among the trees considered by the algorithm. The basic
idea behind the operation of DVMA is now described.

Let M be the destination set, and assume for the moment
that a feasible tree T" = (V, Ar) spanning s and a subset
of M has already been determined. Let U = M — (M N Vr)
be the set of destination nodes not in the tree 7. DVMA
operates by appropriately augmenting tree T to eventually
include all nodes in U; to this end, it repeats the following
three steps as long as U # o:

1. Select a destination node u € U.

2. Find a “good” path from a node v € Vp to u that uses
no nodes in Vg other than v, and no links in Ap.

3. Construct a new tree 7" by including all nodes and links
of this path to the initial tree T, and update U to exclude
u and any other destination nodes along this path.

The second step is crucial to the operation of DVMA, and
warrants further explanation. Recall that our objective is
to construct a feasible tree that includes all nodes in M,
therefore a “good” path in Step 2 above is one which, if
connected to T in Step 3, the resulting tree 7" would be a
feasible tree for the subset of the set of destination nodes
it contains. In order to find such a path, we construct the
{ shortest paths from a node v of T to u. The graph used
to find these paths is created by excluding all nodes of T’
other than v, and all links of T from the original graph G,
in order to guarantee that connecting any of the { paths so
constructed to T" will not create a cycle.

It is possible, though, that none of the ! paths from v to
u will yield a feasible tree. For this reason, we repeat the
process for all nodes v € V7 in an attempt to find a “good”
path between any v € Vr and u. Even so, the algorithm may
still not be able to find such a path; for instance, a feasible
tree for this destination set may not exist in the first place.
Recall, however, that we would like the algorithm to return
the best tree (in terms of maximum inter-destination delay
variation) it can find. We now modify our definition of a
“good” path so that, if a path yielding a feasible tree 7" can
not be found, a “good” path is one for which (a) the total
delay from s to u is at most A, and (b) the tree 77 created by
connecting this path to 7' has the least value of maximum
delay variation among the trees constructed by connecting
the other paths to 7.

To see how an initial tree T is constructed, consider T, the
tree of shortest paths, and let w be the destination node
with the longest path in this tree. Since it is not possible
to make the delay from s to w any smaller than the delay
incurred over the path from s to w in T, the only alternative
to constructing a feasible tree is to find longer paths from s

to some or all of the other destination nodes. Hence, our
approach is to start with an initial tree T' consisting only of
the shortest path from s to w, and repeat the three steps
described above to create a feasible tree that will include all
other destination nodes.

To complete the description of DVMA, note that it is possible
that no feasible tree for the given destination set includes
the shortest path from s to w. However, if a feasible tree
exists, it will contain some path from s to w. Therefore,
if the process of constructing a feasible tree starting from
the shortest path from s to w fails, the second shortest path
from s to w is considered as the initial tree and the process is
repeated. Our search for a feasible tree terminates when one
is found, or when trees based on the first k shortest paths
from s to w have been constructed. In the latter case, the
algorithm will return the tree with the smallest value of ér
in (3). The details of DVMA can be found in Figure 2.

The correctness of DVMA is provided by the following
lemma. Note, however, that although the algorithm returns
the best tree, in terms of maximum delay variation, that it
can find, because of its heuristic nature it may fail to discover
a feasible tree for the given value of § even if one exists.

Lemma 4.1 (Correctness of DVMA) Algorithm DVMA
returns a tree T spanning s and all nodes v € M. The tree
T satisfies constraint (1), and either satisfies constraint (2),
or is the one with the smallest value of 6p in (3) among the
trees considered by the algorithm.

Proof. We first show that the algorithm returns a tree T
spanning s and the nodes in M. If DVMA returns Tp, there is
nothing to prove. Otherwise, T is one of the T;’s constructed
during one iteration of the loop that starts at line 4. T is
initialized to some path p; at line 5; clearly, at this point
T is a tree containing the source s and at least one more
destination w € M. New nodes and links are added to T in
line 15, where a new path ¢ from a node in v € Vr to a node
u € M,u & Vr is incorporated. The resulting graph is a tree
as path ¢ cannot contain any nodes or links of 7" other than
v itself (all other nodes and links of 7" were removed at line
10, before path ¢ was determined). The new tree T has at
least one more node, u € M; since s was in the tree initially,
no nodes are ever removed from 7', and paths are added to
it until all destinations in M are in T, our first claim is true.

That the delay constraint (1) is satisfied by the final tree T
is now is easy to see. If T' = Ty this is true by hypothesis;
if T # Tp this is also true as no path is ever added to any
tree T; unless the delay constraint is satisfied (refer to lines 3
and 12). Finally, if the algorithm terminates at line 18, the
tree returned is a feasible one; otherwise, line 19 guarantees
that the tree returned is the one with the smallest value of
67 among the ones constructed by the algorithm. 0

The next lemma determines the complexity of DVMA.

Lemma 4.2 The worst-case complezity of DVMA s
O(klmn*), where k is the number of paths at line 3 of Figure
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Delay Variation Multicast Algorithm (DVMA)

(To is the tree of shortest paths, and w € M is a node such that ZIEPT (5,0) D({) = maxeenm {ZIEPT (s0) D(Z)})
ol * o (8,

1. begin
2. Let T =T, // T is the tree returned by the algorithm
3. Find the first k shortest paths from s to w in the original graph G = (V, A), such that the delay

from s to w over these paths is less than A; label these paths py,. ..

, Pk in increasing order of delay

4 forz =1 to k do // construct a multicast tree 7; for each path p;

5 Initialize T; = (Vi, A;) to include all the nodes and links of path p;; obviously, s, w € V;

6 Let U = M — (M nV;) be the set of destinations not yet connected to the tree T;

7. while U # ¢ do

8 Pick any node v € U // will connect u to the tree T;

9. for each node v € Vi do // find a path from v to u

10. Construct a new graph G’ from the initial graph G by excluding all nodes in V; — {v} and all links in A;
11. Find the first [ shortest paths from v to u in the new graph G’

12. Of these I paths choose the best one (as described in Section 4.1) and call it ¢

13. end of for each node v € V; loop

14. Select the best path ¢ among all paths g»,v € Vi (as in Step 12 above)

15. Update T; = (Vi, A;) to include all nodes and links in path ¢

16. Update U = M — (M NVi) // node u, and possibly other nodes in U have now been connected to T;
17. end of while loop // construction of tree T; has been completed

18. If tree T; satisfies constraint (2) return 7; and stop

19. Let T be the tree among T and T; with the smallest value of é7 in (3)

20. end of for 7 loop
21. return T
22. end of the algorithm

// no tree satisfied the inter-destination delay variation constraint

Figure 2: Heuristic algorithm for the DVBMT problem

2,1 the number of paths at line 11, m is the size of the multi-
cast group M, and n is the number of nodes in the network.

Proof. The running time of DVMA is dominated by the
iteration between lines 4 and 20; this outer loop is executed
at most k times. During one iteration of the outer loop, the
“while” loop at line 7 is executed at most m—1 times. Let ¢;
be the number of nodes in the tree during the j-th iteration
of the “while” loop. Then, the innermost loop starting at
line 9 will iterate t; times; inside this loop the complexity is
determined by the I-shortest path algorithm at line 11, which
takes time O(IN?) [13] for a graph with N nodes. Graph G’
has n—t;+1 nodes throughout the innermost loop; the latter
then takes time proportional to It;(n —t; + 1)3. For a worst
case analysis, we let t;, for all iterations j, take the value
that maximizes the quantity ¢;(z —¢;)*, where = n+ 1. It
is easy to show that for this value of ¢; the complexity of the
innermost loop becomes O(In*). After accounting for the
“while” and outer loops, we conclude that the complexity of
the algorithm is, in the worst case, O(klmn?). O

Regarding parameters k and [, note that the maximum value
they can take is, in the worst case, equal to the maximum
number of paths of delay at most A between any two nodes in
the network. If A is not very loose, we expect the maximum
value of both & and ! to be a small constant. The actual
values of k and ! were left unspecified in the description of the
algorithm, as in any particular implementation they will be

determined by the desired compromise between the quality
of the final solution of the algorithm and its speed.

4.2 Reorganization of the Multicast Tree

During connection establishment, DVMA can be used to con-
struct a feasible tree for a given destination set. For certain
applications, however, nodes may join or leave the initial
multicast group during the lifetime of the multicast connec-
tion. We assume that nodes currently in the multicast group
may leave the group after issuing a leave request. Similarly,
nodes that wish to join an ongoing multicast session must
first issue a join request. Under such a scenario, it is neces-
sary to dynamically update the multicast tree to ensure that
constraints (1) and (2) are satisfied at all times.

Let T be the initial tree for destination set M, and suppose
that as a result of a join or leave request the new destination
set is M’. One possible way of approaching this dynamic
version of the DVBMT problem would be to run DVMA
anew to obtain a feasible tree 7" for set M’, and, following
a transition period, use the new tree for routing subsequent
packets of this session. Note that there is a certain overhead
associated with this approach, including the computational
cost of running DVMA, and the cost of the network resources
involved in the transition from 7" to T”. Since the new tree
T’ can be significantly different than 7, this overhead can
be very high. Furthermore, such a radical approach may
cause receivers totally unrelated to the destination nodes
added or deleted to experience disruption in service. All
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these drawbacks make this strategy inappropriate for real-
time environments and applications where frequent changes
in the destination set are anticipated.

We now adopt a different strategy, one that attempts to mini-
mize both the cost incurred during the transition period, and
the disruption caused to the receivers. More specifically, the
multicast tree is never modified unless it is absolutely neces-
sary to do so. Even then, the new tree is not computed from
scratch, rather, a feasible tree for the new multicast group
is constructed by making incremental and localized changes
to the old tree. We now describe in detail how the join and
leave requests are handled under our approach.

Let us first consider leave requests, and assume that node
v € M decides to end its participation in the multicast ses-
sion. If v is not a leaf node in the current multicast tree T no
action needs to be taken. The new tree 7’ can be the same
as T, with the only difference being that node v will stop for-
warding the multicast packets to its local user. If, however,
v is a leaf node of T, then in order to avoid wasting band-
width, tree T has to be pruned to exclude v and, possibly,
relay nodes and links used in T solely for forwarding packets
to v. The new tree 7" is essentially the same as T except
in parts of the path from the source to v. We conclude that
leave requests are easy to handle, and no destination node
(other than v) needs to be disrupted.

Let us now turn our attention to the actions taken whenever
a node u € M announces its intention to join the multicast
group. We distinguish three cases, as follows. First, suppose
that u € Vr, i.e., the new node is not part of the multicast
tree T. Our approach is to augment 7T to include a path
from a node V € Vr to the new node u. This can be easily
accomplished by letting 7; = T and U = {u} at lines 5
and 6, respectively, of DVMA (see Figure 2), and executing
the code between lines 7 and 17 to search for a path that
would result in a feasible tree for the set M U {u}. Hence,
the transition phase involves only the establishment of a new
path and does not affect any of the paths from the source to
nodes already in the multicast group ®.

Now suppose that u € V7, i.e., u is a relay node of 7', and
the path from the source node s to u is such that the de-
lay variation constraint (2) is satisfied for the new multicast
group M’ = M U {u} 2. Tree T is then a feasible tree for
the set M’, and can be used without any change other than
having node u now forward multicast packets to its user, in
addition to forwarding them to downstream nodes.

Finally, let v € Vr, but the path from s to u be such that
the delay variation constraint (2) is not satisfied for the new
set M U {u}. Consequently, a longer path from s to u has
to be found. Let W C M be the destination nodes in M
that are downstream of u (i.e., those destination nodes in

1If this fails to discover such a path, there are two possible courses
of action: (a) run DVMA from scratch for the new multicast group, or
(b} deny node u its participation in the multicast session; which course
of action to be taken may depend on several factors, such as the nature
of the application, the cost of rerouting the connection, etc.

2The path from s to u will satisfy (1), as u cannot be a leaf in T'.

the subtree of T' rooted at u). Finding a new path from s
to u will definitely affect the paths to these nodes, however,
the paths to nodes in M — W need not be affected. Let T}
be the tree T after excluding its subtree rooted at u. Our
approach then is to let 7; = 7} and U = W U {u} at lines 5
and 6, respectively, of DVMA in Figure 2. We then execute
the code between lines 7 and 17 to connect the destination
nodes in U into tree T7. As a result, packets will be routed
from s to the nodes in W over new paths in the final tree 77,
but none of the paths to nodes in M — W will change.

As a final observation, besides being minimally disruptive,
this approach has the additional advantage that the algo-
rithm used during set-up time to construct an initial tree for
the multicast connection, can also be used to reorganize the
tree during the lifetime of the session.

5 Numerical Results

We now consider five different algorithms that can be used to
construct multicast trees for a given source and destination
set, and compare their performance in terms of the maximum
delay variation ép among the source-destination paths in the
final tree T', as defined in (3). The five algorithms studied
are: (1) DVMA, the algorithm described in Figure 2. We
run this algorithm with A = 0.05s and é = 0. This value of
& was used in order to force the algorithm to go through all
possible iterations of the outer for loop and return the tree
with the smallest value of ér it can find; (2) DVMA2, an
algorithm very similar to DVMA; it differs from the latter
in the way the graph G’ is constructed at line 10 of Figure
2. More specifically, in addition to excluding all nodes in
Vi — {v} and all links in A;, all the nodes in U — {u} and
their adjacent links are also excluded from the initial graph
G. The values of parameters A and 6 used are the same as for
DVMA above; (3) Dijkstra’s algorithm [12] which constructs
the tree of shortest paths (SPT) from the source to any node
in the network; (4) Prim’s algorithm [14] which constructs
a tree of minimum weight (MST) spanning all nodes in the
network; the weight of each link is set to the delay incurred
along the link; (5) The tradeoff (TDF) algorithm [5] between
the minimum spanning tree heuristic {7] and SPT, considered
here because it was conjectured in {10] that it may yield good
performance in terms of ép.

We have studied the average case behavior of the five al-
gorithms by generating random graphs for a wide range of
values for the total number n of nodes, the average degree of
each node, and the number m of destinations in the multicast
group as a percentage of n. The graphs were constructed to
resemble real-world networks using the method described in
[4]; the nodes graphs were placed in a grid of dimensions
4900 x 4900 Km, and the delay for each link was set to the
propagation delay of light along that link. Figures 3 - 5 plot
ér against the number of nodes n in the network, for the
five algorithms discussed above (other results can be found
in [15]). Each point plotted represents the average over three
hundred different graphs for the stated values of n, m, and
the average degree of each node.
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Our results suggest that DVMA and DVMAZ2 achieve the
best performance among the five algorithms (with DVMA2
outperforming DVMA in most cases), and achieve an im-
provement of up to an order of magnitude over the tree
of shortest paths SPT which exhibits the next best per-
formance. Contrary to the expectations expressed in [10],
the tradeoff algorithms constructs trees with maximum de-
lay variation larger than that of SPT. The MST is by far
the worst tree in terms of ér, but this should be expected as
Prim’s algorithm minimizes the total weight of the tree, with-
out paying any attention to individual paths. As the size m
of the multicast group increases as a percentage of the size n
of the network (compare Figures 3 and 4), the improvement
over the SPT achieved by our algorithms decreases; results
in [15] show that when m is larger than 25-30% of n, it is
preferable to simply use SPT rather than running DVMA or
DVMA2. On the other hand, the larger the average nodal
degree, the better the performance of our algorithms, as Fig-
ure 5 illustrates.

Overall, our algorithms achieve their best performance under
conditions that are typical of multicast applications running
in high speed networks, namely, when (a) the size of the mul-
ticast group is relatively small compared to the total number
of nodes in the network, and/or (b) the number of incom-
ing/outgoing links at each node is relatively large.

6 Concluding Remarks

We have considered the problem of determining multicast
trees that guarantee certain bounds on the end-to-end de-
lays from the source to the each of the destination nodes, as
well as on the variation among these delays. After establish-
ing that the problem of constructing such constrained trees
is A'P-complete, we developed heuristics that exhibit good
average case behavior, especially under conditions typical of
multicast scenarios in high-speed networks. We have also
shown that the strategy employed by the heuristic is appli-
cable to the problem of reorganizing the tree in response to
changes in multicast group membership.
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A Proof that DVBMT is N'P-complete

We now show that problem DVBMT is N'P-complete. The
proof uses a transformation from PARTITION [16], an N'P-
complete problem repeated here for the sake of completeness.

Problem A.1 (PARTITION) Given a set of k elements
S ={1,2,...,k} with a; the weight of element i, and A =
}:f:l a;, does there exist a partition of S into two sets, Sy
and Sz, such that 3, ai =) 05,05 = 42

Proof (of Theorem 3.1). DVBMT is in the class NP, since
a nondeterministic algorithm need only guess a tree span-
ning s and the nodes in the destination set M, and verify in
polynomial time that the tree satisfies both (1) and (2).

We now transform PARTITION to DVBMT, note that it is
sufficient to find a transformation for the case | M |= 2. Let
S = {1,2,...,k} be the set of elements of weights a;,i =

Lk, makinkg up an arbitrary instance of PARTITION,
and let A =), a;. We construct an instance of DVBMT
as follows (see Figure 6). The network G = (V, A) has n =

Figure 6: Instance of DVBMT corresponding to an instance
of PARTITION with S = {1,2,3}

k + 3 nodes and V = {s,v,u,ry,r2,...,75} {s is the source
and M = {v,u} is the destination set). The set A of links is:

A = {(s,v),(s,m1),...,(s8,7),(r1,0), ..., (7, w)
(ri,ra)y o () e, (Pky 1)y oo, (PR, TR-1) } (4)

In other words, there is a directed link from s to v, one link
from s to each node r;, one link from each node r; to u, and
one link from r; torj, 4,5 = 1,...,k,7# j (i.e., the subgraph
of G containing only nodes r;,7 = 1,...,k, is a complete
graph). There is only one path from s to destination node
v consisting of the single link (s,v); a path from s to the
other destination u may contain any number of the nodes
ri,i = 1,...,k, and in any order (see Figure 6). The link-
delay function D is now defined as:

4 ife=(s,0)
D) = 0, if¢=(z,u),zeV (5)
a;, if€={(z,m),z€V

As a result, if the path from s to u passes through node r;
for some ¢, then a delay equal to a; is incurred along the
link that leads to r;. Finally, the delay and delay variation
tolerances are A = %, and § = 0, respectively.

It is obvious that this transformation can be performed in
polynomial time. We now show that a feasible tree exists for
this instance of DVBMT if and only if set S has a partition.
If S has a partition Sy, Sy, then S = {an,,...,ar} for
some | < k. The tree consisting of path (s,v) and path
(8,77y)s (Pay s Pwa )y oo oy (P Ty )y (T w), is then a feasible
tree as the delay along both paths is equal to %,

Conversely, let T be a feasible tree for DVBMT. T includes
the path (s,v) of delay %, as this is the only path from the
source to v. Let (8,7x,), (Pry,Txy)s ooy Py Pmy )s Py 0)s
be the path from s to u on tree T'. Since T is a feasible tree
and 6 = 0, the delay along the latter path is equal to %, and
I < k (for if I = k, the path from s to u would include all
ri,i=1,...,k, and the delay along the path would equal 4,
contradicting our hypothesis that T is a feasible tree). Then,
Yioiar, =4, and S = {an,,...,an}, S2 = S~ S1 # ¢, is
a partition of S. =
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