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Abstract

We consider single-hop lightwave networks with stations in-
terconnected using Wavelength Division Multiplexing. The
stations are equipped with tunable transmitters and/or re-
ceivers. Coordination between the transmitting and receiv-
ing stations is achieved by assuming synchronous control
and a predefined, frequency-time oriented schedule which
specifies the slots and the wavelengths on which commu-
nication between any two pairs of stations is allowed to
take place. We define and analyze, in terms of through-
put, all possible types of schedules in the situation where
the number of available wavelengths is equal to the num-
ber of stations. Our results are valid for the general case,
i.e., non-uniform traffic. We then consider the optimiza-
tion of schedules given the traffic requirements and present
optimization heuristics that give near-optimal results.

1 Introduction

Wavelength Division Multiplexing (WDM) is emerging as
a promising technology for the next generation of mul-
tiuser high speed communication networks. WDM intro-
duces transmission concurrency by dividing the low-loss
wavelength spectrum of the optical fiber into a number of in-
dependent channels. As a result, WDM networks have the
potential of delivering an aggregate throughput that can
grow with the number of wavelengths deployed, and can be
in the order of Tbps.

In single-hop WDM networks packet transmissions are
possible only when a direct communication path is estab-
lished between the source and the destination and tunable
lasers and/or filters with a large tuning range x tuning
speed product are required in order to fully utilize the ca-
pabilities of WDM [2]. Research in this area has focused on
the problem of allocating the bandwidth among the network
stations. Numerous protocols have been devised (see [11] for
an overview). Protocols based on pretransmission coordina-
tion [10, 3, 4, 8] employ one or more shared control channel
for the arbitration of the transmission requests. Protocols
with no pretransmission coordination can employ either ran-
dom access schemes [7] or a predetermined, frequency-time
assignment of the optical bandwidth [5].

The frequency-time assignment technique is the extension
of time division multiplexing over a multi-channel environ-
ment. A schedule specifies the slots within each frame and
the channel on which packet transmissions are permitted
between any source-destination pair. Our work deals with
analysis of all types of schedules when the number of avail-
able wavelengths is equal to the number of stations and the

traffic could be non-uniform. Furthermore, we consider the
problem of schedule optimization, given the traffic require-
ments. Although this is a hard problem, we are able to
derive heuristics that give near-optimal results.

Similar optimization problems, although in a different
context, are addressed in [9, 1]. In [6, 5, 13] a number
of schedules is studied and models are developed to ana-
lyze their performance. These works, in contrast with ours,
do not deal with schedule optimization, and the analysis is
restricted to uniform traffic.

This paper is organized as follows. In Section 2 we de-
scribe our system model and in Section 3 we obtain expres-
sions for the throughput of all types of schedules. Section
4 investigates the problem of obtaining an optimal schedule
and Section 5 presents a heuristic which yields very good
results. In Section 6 a more general heuristic is developed.
Section 7 presents some numerical examples and Section 8
contains some concluding remarks.

2 System Model

We consider a network of N stations, interconnected
through an optical broadcast medium that can support N
wavelengths, A1, Xz,..., An. Each station is equipped with
one receiver and one transmitter. The properties of the net-
work depend on whether the transmitters, the receivers, or
both are tunable. Following the terminology in [11] we refer
to the three resulting types of systems as TT-FR, FT-TR
and TT-TR, respectively. If the receivers (transmitters) are
fixed, wavelength ); is assigned to the receiver (transmit-
ter) of station i. The tunable transmitters (receivers), on
the other hand, consist of lasers (filters) tunable over a wide
range of wavelengths which includes all A;.

The network operates in a slotted mode, with a slot time
equal to the packet transmission time plus the tuning time,
and all stations are synchronized to the slot boundaries. Let
i be the probability that a new packet arrives at station &
during a slot time. Let p;; be the probability that a packet
arriving at station i is destined to station j, and EJ. pi; =1
Each station has N —1 buffers, one buffer for storing a single
packet to each destination. If a packet for station j arrives
at station ¢ while a packet for j is already stored in ¢’s buffer,
the new packet is lost. This is an extension of the model
found in [9].

We assume single hop communication. Coordination be-
tween the transmitting and receiving stations is achieved by
using a predefined, frequency-time oriented schedule that
works as follows. Time slots are grouped in frames of M
slots. Within a frame, a number of a;; slots is assigned
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for packet transmissions between the source-destination pair
(3,7). A schedule indicates, for all § and j, which slots dur-
ing a frame can be used for transmissions from i to j, and

can be described by the variables 59 1 = 1,..., M, defined

2
M
as (ail = Et:l 65;) )
() _ 1,

We also define wf;) € {A1,..., AN} as the wavelength on
which ¢ will transmit a packet to j in slot ¢. This is useful
only for TT-TR systems since for a TT-FR (FT-TR) system

we have that w}) = A; V i,¢ (w( = A V j, ).

if ¢ can transmit to j in slot ¢
; (1)
otherwise

2.1 Transmission Modes

We define the transmitting set, I,(t),t =1,..., M, of station
tin slot ¢ as the set of stations that i is permitted to transmit
to in slot ¢. The receiving set, JJ(.'),t =1,..., M, of station
J in slot ¢ is the set of stations that have permission to
transmit to j. In terms of 62;) we can write

() _ 15 80 ; () — 151 668 = ;
LV={jl&’=1}Vi1t, JP =il & =1} V45, (2)
The following will also be true at all times

JElY <= i€tV Vit (3)

Given a schedule S we distinguish four different trans-
mission modes with respect to the possible values that the

cardinalities of sets I.(‘) and J](»') can take.

Many-to-one mode: The transmission mode in a slot ¢ is
called many-to-one if no station is permitted to transmit to
more than one destination in the slot. In terms of transmit-
ting sets, | I'(') |= Zj{__l 62) =1 V1. There is no restriction
on the cardinality of the receiving sets, allowing for the pos-
sibility that a number of sources are permitted to transmit
to the same destination in slot ¢, thus the name many-to-
one. However, the previous condition and (3) imply that
JONIO =0 vi£1.

One-to-many mode: The one-to-many transmission
mode is such that at most one source is permitted to trans-
mit to a certain destination, or | J¢¥ |= 221 65;) =1 Vj.
The transmitting sets can now take any values as long as
IONIO =0 Vigk ]I |> 1, a single station i is
permitted to transmit to a number of destinations during
slot ¢, although at most one transmission is possible (more
on this later), hence the term one-to-many.

One-to-one mode: This is a special case of the above
two transmission modes, and is such that | I,-(') =l JJ(-t) |=
1 Vi,;5. Transmissions between pairs (4,5) and (k1) are
assigned in slot ¢ if, and only if, i # k and j # I. A station
can transmit to, and receive from, only one other station.
Many-to-many mode: This is the most general transmis-
sion mode, as it allows I,(') and JJ(') to be any sets.

2.2 Types of Policies

Although the transmitting set of a source may contain more
than one destination, only one packet transmission is pos-
sible during a slot. The source, therefore, has the freedom
to select the destination to which it will transmit a packet.
Similarly, if more than one station belongs to the receiving
set of a station and the receivers are tunable, the receiving
station may select one of many possible sources to which it
can tune. The criteria that the transmitting and receiving
stations use to select one station in their transmitting and
receiving sets respectively, define a policy. Two policies that
are simple, very fast to execute and do not require coordi-
nation prior to packet transmission are now described.

Random Policy (RP): At the beginning of each slot ¢ for
which | Il(t) | >1¢] Jy) | > 1 and the receivers are tunable),

i (j) selects randomly one of the stations in IE') (J}')), say
1 (k). i will transmit a packet, if it has one for the selected
station on wavelength wf{ ), 7 will tune to wavelength wi?

and will wait for a transmission, if any, from k.

Round-Robin Policy(RRP): All stations in I{" (J{?)
are ordered. i (j) considers for transmission (reception) in
slot ¢ only one station per frame. By remembering which
station it considered during the previous frame, i (j) con-

siders all stations in I‘(') (JJ(.')) in a cyclic order.

3 Throughput Analysis

A schedule can be characterized by three parameters: (a)
the type of system under consideration (TT-FR, FT-TR,
or TT-TR), (b) the most general transmission mode in any
of its slots, and (c) the policies used by the transmitters
and receivers. The analysis will be different depending on
whether collisions, destination conflicts or both are possible.
This is illustrated in Figures 2 and 3 where we show how
the various transmission modes differ when implemented in
a TT-FR or FT-TR system, respectively. Finally, different
policies will result in different system behavior.

We now proceed to derive expressions for the through-
put of the different types of schedules of a TT-FR system.
Expressions for the FT-TR and TT-TR systems can be
found in [12]. The throughput of a schedule is given by
T = E.N= . Zf;l T:; where Ti; is the throughput of the
source-destination pair (3, 5), i.e., the number of successful
packet transmissions per slot between i and j. When ap-
propriate, the throughput will be given as a function of the
policy used.

3.1 TT-FR Systems

3.1.1 Many-To-One Schedules

As can be seen from Figure 2, a collision will occur if two or
more transmitters try to transmit to the same station in a
slot. Let dst),t =1,..., M be the distance (in slots) between
the beginning of the last slot before ¢ that i was allowed to
transmit to j, and the beginning of ¢ (see Figure 4(a)). If t;

. t
was this last slot, then de) =t—1t;, and Zt,&g?:l dg;) =M.

11b.1.2

1343



Since at most one packet with destination j can be in the
buffer of station ¢ at any time instant, for a many-to-one
schedule we have

1 () (*)
Li= 31 Z [1 — (1 —aipi;) % ] H (1 = onpn;)®es
¢ (1)
=1 v

(4)
Expression (4) is derived by noting that a packet will be
successfully transmitted from i to j in slot ¢ if: (a) i can
transmit to j in that slot, (b) i has a packet for j at the
beginning of the slot, and (c) if another station n is also
allowed to transmit to j in ¢, then n does not have a packet

for 5 at the beginning of the slot.

3.1.2 One-To-One Schedules

An expression for the throughput of one-to-one schedules
can be derived directly from (4) by noting that the product
in the right hand side reduces to 1. However, for one-to-one
schedules we do not need to define the distances dE;) for all
slots, but only for the a;; slots allocated for transmissions
from ¢ to j, as in Figure 4(b). Let df»;-‘),k =1,...,aij, be
the distance between the k-th slot allocated to pair (5,5) in
a frame, and the next such slot (in the same or next frame).
Obviously, 3, dg;‘) = M, and we get
1 o *)
dtk
To = g2 1= (-ow) )

3.1.3 One-To-Many Schedules With RRP

By definition, no collisions are possible in one-to-many
schedules. Consider now the pair (i, 5) and let z2(i,t, f) €
I,(t) be the decision of the round-robin policy (the sta-
tion 1 selects to transmit to) in slot ¢ of frame f. Define
F; = H‘ jer® | I‘-(') |. It is straightforward to show that
the decisions of the round-robin policy for the slots that
i is allowed to transmit to j repeat after F;; frames, or
z(4,3, f) = 2(i,t, f + Fi;) V f. We can now restrict our at-
tention to a window of Fi; consecutive frames. i selects to
transmit to j only once every | Is ") | frames within a window,

for a total of I;; = 3 tier® I?F!'Jrl times. Given the decisions
e t

2(3,t, f), the distances between two successive slots that i

selects to transmit to j are known. Let dg‘), k=1,...,k
be the extension of the distances defined in Figure 4 (b),

over a window of frames. Then, for the pair (3, 7) we obtain

lij

1 (%)
T5(RRP) = =3 1= (1 =owpi)™  (6)
k=1

3.1.4 One-To-Many Schedules With RP

We observe the system at the instants just before the begin-
ning of a slot ¢ such that j is in the transmitting set of 5. Let

t be the I-th such slot, I = 1,2,3,.... We define qﬁ-) as the

probability that ¢ has a packet for j at the beginning of slot
t, and Z{" as the transmitting set of  in slot ¢ (this is similar
to the definition of dg;‘) in Figure 4 (b), but is not restricted
to one frame). Also, let dﬁ), 1=1,2,... be an extension of
df;) over all frames. qg) will be equal to 1 if 1 had a packet
for j at the beginning of the (I — 1)-th slot and j was not
selected by the random policy at that slot. Otherwise, qﬁ)
is equal to the probability that a packet for j arrived at i
during the dg_l) slots between the (I — 1)-th and the I-th
slots. It is important to notice that for k = 1,.. .,ai; and
1=1,2,...
a; la;j
T S I e g
The probability that j is not selected by the random pol-
icy in the I-th slot is just 1 — (1/ | Ifl) |). We can now
express qg-),l =2,3,...as

-1 1
wom )<1_II§H’I)
# [ (1= )| -0 -] @
¢ =0 (9)

The initial condition (9) is obtained by assuming that
the frame starts at a slot in which ¢ can transmit to j. The
recursive equation (8) and the initial condition (9) describe
the dynamics of the system. If this system has a steady
state, these quantities should converge, as | — oo, to time-
independent quantities such that

lim (1+ai5)

[ lim q(l') (10)

l—o0 -0 Y

We now investigate the conditions under which the sys-
tem has a steady state. After some algebraic manipulation
of (8), we get

¢ = Aad™ + B, 1=23,4... (1)

1 a®)
Ai=1—- —— 1—B:),B¢=l—(l—a.‘p.") i (12
( ‘Igl) I) ( 7 )

Because of (7) we have for k =1,...,aij,1=1,2,...

A’a.‘j+k = A , Bla.'_,-+k = Bx (13)

It is easy to show using induction that

aij

-1
qS;aij+1) — q§,‘-‘"+1) zAn’A = HA"’ 1=1,2,... (14)
n=0 k=1

The sum in (14) will always converge as I — oo since
0 < A <1 (see (12)). Therefore, the system always has a
steady state. Define

r('-‘) = lim q(l-aij+k) k=1,..., [ (15)

i l—o00 2
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TE;) is the limiting probability that : has a packet for j in

the k-th slot within a frame that j is in the transmitting set
of i. From (14) we get

ajj aij

A > Bnm H An (16)

m=1 n=m-+1

W _ 1 e+ _

T Erat

We can now obtain r( )

cursion

using (16) and the following re-

TE;) = Ak-;lTSJk_l) + Bx—x k=2,...,ai5 17)

The probability that there will be a successful transmis-
sion from i to j in the k-th slot in a frame, is equal to the
product of the probability that i has a packet for j at the
beginning of the slot times the probability that the random
policy selects j for transmission. As | — oo,

T:;;(RP) = = J (18)

In the special case of a one-to-one schedule, | 1“) |=1
and Ax = 0 for k = 1,...,ai;. Then, r( = Bj_; and
expression (18) reduces to (5).

3.1.5 Many-To-Many Schedules With RP

We define q(l) I(') and r(k) as for the one-to-many sched-
ules. We also define J; M in a way analogous to the definition

of IV, (k) can be obtained by using (16) and (17) How-
ever, two or more stations in the receiving set of j may select
J for transmission in a given slot, introducing the possibility
for collisions (Figure 2). The expression for the throughput
then becomes:

aij (k) r(")
nj
TaRP) = 31 3 ot 7oy 1L -]
ez
n#i

4 Schedule Optimization

We now turn our attention to the problem of obtaining
schedules that maximize the system throughput. The prob-
lem can be stated concisely as: Given traffic parameters o;
and pij,i,7 = 1,..., N, and given the tunability character-
istics of the system, find the optimum schedule. To ensure
fairness, all schedules should have the property that at least
one slot is assigned for transmission between a pair of sta-
tions (i, 7) if the probability of traffic originating at i and
terminating at j is nonzero, or,
Vi,j if oipij >0 then a; 21 (20)
Let Qi; = 1 — (1 — &ipi;)™ be the probability that a
packet with destination j will arrive at station s during a
number of slots equal to the frame length, M. When Q;
is close to one for all source-destination pairs (3, ), one-
to-one schedules are favored over other types of schedules,

as no packet transmissions are wasted due to collisions or
destination conflicts. But in one-to-one schedules, slots are
assigned for the exclusive use of a certain source-destination
pair. Therefore, if the above condition is not true, some
slots may be unused for most of the time. Our approach
then, is to first consider determining an optimal one-to-one
schedule. Next we consider how we may obtain other types
of schedules with good performance in situations where Q;;
is very low for some pairs of stations.

5 Optimizing One-To-One Schedules

Our goal is to determine a one-to-one schedule S such that
the overall throughput is maximized. This was addressed
in [9] for a single channel system. Expression (5) is valid for
all three types of systems. However, it is easy to show that
an algorithm that takes into account that both transmitters
and receivers are tunable cannot produce one-to-one sched-
ules with better throughput than if only, say, transmitters
are tunable. Thus, in the following discussion we only con-
sider TT-FR and FT-TR systems, in which transmissions
to or from a certain station respectively, take place on the
same channel.

The optimization problem can be formulated as

N N a4

(")
P am(a.xM T=— ZZZI—(I—U.;’.,)
I i=1 j=1 k=1
aij
subject to Zd(k) = M Vij (21)
N N
Zai,=Mvj,Za;j=MVi (22)
i=1 j=1

N N
D=1V, > 6)=1Vit (23)
i=1 j=1

80 =0,1 Vi j,t, M,d}), a,; integer Vi j,k (24)

Constraints (22) specify that each station receives and
transmits in exactly M slots, while constraints (23) guar-
antee that the resulting schedule is a one-to-one schedule.

5.1 Upper Bound

As formulated, P; is a hard allocation problem. As a first
step, we will try to get an upper bound. It can be shown
[9] that

iz ) [l (1~ oipij)° "'] (25)

i=1 j=1

Let z,; = ai; /M. Variables z;; indicate the percentage of
time that station i should transmit to station j. Expression
(25) implies that the Mz;; slots assigned for transmissions
from ¢ to j should be equally spaced, separated by a num-
ber of 1/z;; slots. However, the upper bound cannot be
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obtained in general for the following reasons: first, 1/zi;’s
may not be integers, and second, even if they are, schedul-
ing all transmissions between all sources and destinations
in equally spaced slots may violate constraints (23). If we
relax constraints (23), maximizing the upper bound in (25)
can be formulated as

N N
Py max N - EZZ.‘:‘ (1 = oipis)/=es

i=1 j=1

N N
s. t. E:c.y:l Vi, Ezg:l Vi, zi; >0 Vi,

i=1 J=1

Notice that the solution to P; is independent of the frame
length , M. If the values of z;; are known and the num-
ber M of slots per frame has been decided upon, we assign
of ai; slots to the source-destination pair (i,7), such that
constraints (22) are satisfied and

[Mzi5] < ai; < [Mai5] (26)

How the frame length is selected is discussed in detail later.

5.1.1 A Decomposition Heuristic for P,

Unfortunately, problem P, does not yield an analytical so-
lution. We now develop a heuristic for obtaining the slot
assignments. The heuristic is based on the decomposition of
P, into two problems, namely the problems of transmissions
to and from a station, discussed in the following paragraphs.

The Problem of Transmissions To a Station: Here
we consider the problem of transmissions to station j. We
assume that each source has one buffer for storing packets
with destination j. The probability of a packet arrival at
each source 1 is just oipi;. This is exactly the single chan-
nel problem addressed in [9). There it was shown that the
problem, for destination j, can be formulated as,

N
(1)
1-3 20 (1 —aipi) /55 (21)

=1

P : max

N
subject to Z:r,g) =1, 1:8-) >0 Vi (28)
i=1
and the percentage of time a station should be given per-
mission to transmit to j is
_ In(1 — gips;)
= N
Zm:l I"’(l - U'mpmj)

z{)) Vi (29

The Problem of Transmissions From a Station: We
now consider the situation that arises when one source i
transmits to many destinations. In a single channel environ-
ment the obvious solution is to allow the source to transmit
whenever it has a new packet, no matter what the destina-
tion is. However, we require that the source transmits to
a certain destination only in a fixed number of slots, and
our goal is to find the allocation of slots that maximizes the
throughput out of station i. We assume that station : has
a total of N — 1 buffers, one buffer for storing a packet to

each of the destination stations. The probability of a packet
arrival at the buffer that stores packets to j is oipij.

It turns out that this problem, Py, for all i, can be for-
mulated in a similar way as Ps;, with summations over des-
tinations instead of sources, yielding the following solution.

D = —pmloawy) g
D omet 01 = oipin)

How we obtain a solution to problem P; from zS) and :cfj)

will be discussed shortly.

By equating the right hand sides of (29) and (30), we can
obtain the conditions under which a solution z¥; to either
one of P; or Py will also solve P,. One special case is the
uniform traffic, i.e., oipi; = oxpu V 4,5,k 1. Then, the
optimal schedule is a round robin schedule with M = N — 1,
as the one studied in [6).

5.2 Construction of One-to-One Schedules

In this section we assume that each source-destination pair
(1,7) has been assigned a number of a;j slots for packet
transmissions from ¢ to j, a frame size of M slots has been
selected, and constraints (22) are satisfied. We are inter-
ested in finding, for all 4,5, how the a;; slots should be
placed so that the overall throughput is maximized. This
problem, Py, whose formulation can be found in [12}, is
again a hard problem. However, it can be easily shown that
if all a,; satisfy (22), then there always exists a one-to-one
schedule. Instead of trying to solve Ps we will construct a
schedule by considering each channel independently of the
others. In a TT-FR system the channels are identified by
the receivers. Allocating slots for transmissions to each re-
ceiver separately may result in a transmitter being assigned
to transmit to two or more receivers in the same slot, or a
one-to-many overall schedule. Similarly, if a FT-TR is used,
a many-to-one schedule may be produced. The next step
will be to use the algorithm shown in Figure 1 to convert
this schedule to a one-to-one schedule. The proof of cor-
rectness of the algorithm is omitted due to lack of space. It
can be found in [12], where it is shown that the worst case
complexity of the algorithm is O(M?*N?).

Our approach to obtain a near-optimal, one-to-one sched-
ule is based on the golden ratio policy in [9], where only
frames of lengths equal to the Fibonacci numbers are con-
sidered. It can be described by the following steps.

Heuristic 1

1. Solve P, for all j, and obtain sz‘) . Solve P, for all 3,
yielding xg_?).

2. Select the smallest Fibonacci number M >N -1.
From 1:5}) (253)) obtain the aE}) (ag)) that satisfy (26)
and (22). For all (i, j) set a;; = min{ag),agf)}.

3. If the ai; satisfy (22), go to Step 4. Otherwise, for all
(¢, 7) such that oipi; # 0, add 1 to ayy, if doing so does
not violate these constraints. Repeat until the con-
straints are satisfied or until for all (4, 5) with o; pi; # 0,
adding 1 to a;; would violate the constraints. If the lat-
ter is true, repeat adding 1 to all other a; until the
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for d =1 to N (* consider one receiver at a time *)

begin
list < empty;

for t = 1 to M (* consider all transmissions tdo d *)
if s is such that 6, =1 and it violates Ejﬂ 65; <1 then

84— 0; add s to the list;
while the list is nonempty
begin

s — the first item of the list; violation «— false; [~ d

repeat

find a ¢; such that 6:} =0Vj=1,...,d

6 — L

if there exists a m such that §

begin

;=1 then

t1
mi

find a ¢{; such that 6:,’ =0Vi=1,...,N; 6::,«-—1; 5:,‘., —0;
if there is a n < d such that 6§32, =1 then

violation «— true; s «— m;

end
until violation = false
end
end

le—n;

Figure 1: Algorithm for constructing a one-to-one schedule starting with a one-to-many schedule

constraints are satisfied. Notice that in this case, slots
are assigned although they will never be used.

4. If the ai; do not satisfy (20) consider the next Fi-
bonacci number and repeat from Step 2. Otherwise,
for all channels, use the golden ratio policy [9] to as-
sign slots for transmissions within a channel, producing
schedule S. S will be one-to-many (many-to-one) for
a TT-FR (FT-TR) system.

5. Given S, construct a one-to-one schedule S’ using the
algorithm in Figure 1 (if S is a many-to-one schedule,
use a slight variation of the algorithm), and compute
its throughput.

6. Repeat Steps 2 through 5 for the next Fibonacci num-
ber, up to an upper limit, Mymas. Select the frame
length, and the corresponding schedule, that yields the
largest throughput.

Each station has to store its part of the schedule; Myqx
is related to the size of the cache memory available at the
stations. Also, the golden ratio policy places transmissions
within a channel in intervals close to the ones dictated by

(25) [9]-

6 Other Near-Optimal Schedules

Whenever Q;; = 1 — (1 — oupi;)™ <« 1 for some pairs (4, 5),
we can take advantage of the low traffic requirements by us-
ing one-to-many, many-to-one or many-to-many schedules
that may yield better throughput. The idea is that, instead
of assigning one slot per pair of stations, it might be better,
in terms of throughput, to assign a single slot for transmis-
sion from a station, %, to a group of stations, provided that
the probability of i receiving a packet for any of the sta-
tions in the group, during a time period equal to the frame
length, is very small. Heuristic 2 describes our approach,
and assumes that the frame length is given.

Heuristic 2

1. For all 4, let G = {j | Qi; < A < 1}. Partition G;
in disjoint sets gi1, ..., gix such that Qij<e<
,1=1,...,k.

JE€git

2. Run Heuristic 1 for the given M, modified so that only
one slot is assigned for transmissions from ¢ to the sta-
tions in group gi;, { = 1,..., k. The resulting schedule
is, in general, a many-to-many schedule.

3. Compute the throughput of the schedule obtained at
Step 2, by means of the appropriate expressions, and
use it if its throughput is better than the throughput
of the one-to-one schedule of the same frame length.

Parameter A controls which destinations will not be as-
signed a slot of their own for transmissions from ¢. Parame-
ter (> A) controls the number of stations that are grouped
together. The smaller the values of A and ¢, the smaller the
number of stations in a group. By adjusting the values of
the two parameters we can keep the probability of collisions
and/or destination conflicts within a slot to an acceptable
level. Also, by choosing a small A we can have Gi =8 Vi,
in which case a one-to-one schedule will be produced. Even
when G;’s are nonempty, the resulting schedule may be a
one-to-many, many-to-one, or many-to-many schedule, de-
pending on the actual slot assignment for transmissions to
the groups of stations, making Heuristic 2 very general.

7 Numerical Results

7.1 Optimized One-To-One Schedules

We consider several types of traffic matrices. The matrix of
Network 1 is such that the solution of any of problems Ps or
P, will yield the optimal solution to problem P,. Networks
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2, 3 and 4 have a disconnected type, ring type and quasi-
uniform traffic matrix, respectively. For these traffic matri-
ces we computed the throughput of a round-robin schedule,
the throughput of the schedule produced by Heuristic 1, and
an upper bound on the throughput of the optimal solution
to problem Pi. The upper bound was computed by not-
ing that the sum of the objective functions at the optimal
solutions to the N problems P; (P;), one for each destina-
tion (source), is an upper bound for the optimal solution to
problem P, and therefore, an upper bound for problem P;.
The minimum of the two sums is taken as the upper bound.
The value of Myn,. was set to 987.

Due to space limitations, we only show the traffic matrix
of Network 3, as well as the one-to-one schedule produced
by Heuristic 1 with M = 21 for this matrix. The other ma-
trices can be found in [12]. Our results are summarized in
Table 1 where we can see that our heuristic produces sched-
ules that are very close to the upper bound. Similar results
have been obtained over a very wide range of traffic param-
eters. Notice also that our schedules represent a significant
improvement over the round-robin schedule, especially when
the traffic is far from being uniform (Networks 1, 2 and 3).

7.2 Optimized Many-To-Many Schedules

Here we consider a 20-station network (Network 5) with the
following traffic parameters.

OoPo1 = 00Po2 = O1P10 = O1P12 = T2P20 = O2pz1 = 0.49
oipii =01=0,...,19, oip;; = 10~° for all other 1,7

For this network the upper bound for one-to-one sched-
ules is 2.223 and the round robin throughput is 0.320. In
Table 2 we show the throughput of the many-to-many sched-
ules produced by Heuristic 2 for this network for A = 0.01
and ¢ = 0.2 and for frame lengths, M, equal to the Fi-
bonacci numbers between 21 and 987. We also show the
throughput of the one-to-one schedules.

When A = 0.01 and € = 0.2, for all values of M shown,

we have Qi; < A V i,js. t. oipi; = 107>, The groups
produced are as follows: .
3,19, i=0,1,2
g1 =1 {0,...,19) = (i}, i=3,...,19

The throughput of the many-to-many schedules is always
better than that of the one-to-one schedules with the same
frame length. For small values of M, the improvement is sig-
nificant, as, in a one-to-one schedule, slots assigned to pairs
of stations for which Qi; < 1 are mostly wasted. Heuristic
2 improves this throughput by assigning only one slot for
transmissions to a group of stations for which there is low
traffic (see Figure 6 for an example).

8 Concluding Remarks

We have considered single-hop lightwave networks employ-
ing WDM. The stations may have tunable transmitters
and/or tunable receivers. Time is slotted and a frequency-
time oriented schedule is used to coordinate packet trans-
missions. We defined all possible types of schedules based on

three parameters: the tunability characteristics, the trans-
mission mode, and the policy used by the transmitting and
receiving stations. For the round-robin and random poli-
cies we analyzed all types of schedules in terms of their
throughput, and we derived expressions that are valid for
non-uniform traffic.

We also addressed the problem of schedule optimization
and derived heuristics to obtain near-optimal schedules.
How our results are affected when the number of available
wavelengths is less than the number of stations is investi-
gated in a forthcoming paper.
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Figure 5: Ring type traffic matrix (Network 3) and one-to-one schedule for M = 21
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One-To-One Increase % from
Net Throughput from Upper | Upper
No | RR | Heuristic RR Bound | Bound

1 | 4.451 5.090 14.4% 5.247 3.0% |
2 | 3714 | 4.981 341% | 5.330 6.5%
3 |3.337| 5317 59.3% | 5.568 | 4.5%
4 | 4736 | 4.874 2.9% 5.270 7.5%

Table 1: Throughput results and comparisons for 8-station
networks using Heuristic 1 (RR = Round-Robin Schedule)

Throughput
Frame | One-To-One | Many-To-Many
Length Schedule Schedule
21 0.567 1.843
34 1.265 1.990
55 1.694 2.022
89 1.853 2.083
144 1.974 2.089
233 2.050 2.107
377 2.085 2.118
610 2.106 2.123
987 2.118 2.128

Table 2: Throughput results for the 20-station FT-TR net-
work 5 using Heuristic 2 (A = 0.01,¢ = 0.2)
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