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Abstract: Distance adaptive spectrum allocation exploits the tradeoff between spectrum width and reach to improve
resource utilisation by tailoring the modulation format to the level of impairments along the path. The authors first
show that the distance-adaptive routing and spectrum assignment (DA-RSA) problem is a special case of a
multiprocessor scheduling problem. The authors then develop a suite of efficient and effective DA-RSA algorithms for
ring networks, that build upon list scheduling concepts. This work explores the tradeoffs involved in DA-RSA algorithm
design, and opens up new research directions that may leverage the vast literature in scheduling theory.
1 Introduction

Optical networking has a vital role in the operation of the global Internet
and the availability of reliable and survivable communication services.
Conventional fixed-grid WDM technology assigns a full wavelength to
each traffic demand, even small ones, resulting in low utilisation of the
available spectrum [1]. This issue is even more challenging when
transmitting higher data rates over long distance [2]. Elastic optical
networks [2, 3] have been introduced in response to the need to
accommodate the ever growing traffic demands within a finite
spectrum capacity. Using finer spectrum granularity, elastic networks
enable flexibility in allocating spectrum resources proportionally to
the traffic demand size.

Routing and spectrum assignment (RSA) arises as the
fundamental design and control problem in elastic networks.
Several aspects of the problem have been studied in the literature,
including offline RSA [4, 5], online RSA [6, 7], distance adaptive
RSA (DA-RSA) [8, 9], fragmentation-aware RSA [10], RSA and
traffic grooming [11], and RSA with restoration [12]; for a recent
survey of the literature, we refer the reader to [13].

Although operators are in the process of transitioning their
networks to mesh topologies, large portions of the current
infrastructure are built on ring topologies. Hence, RSA algorithms
for rings will be important in the short- and medium-term;
importantly, such solutions are likely to provide insight into
extending the techniques to mesh networks. Therefore, there has
been increasing interest in RSA solutions for ring networks within
the research community. The study in [14] considered the case of
dynamic traffic flows between every pair of nodes, and showed
that employing elastic spectrum allocation in ring topologies
increases spectrum utilisation and reduces the blocking ratio
compared with fixed-grid WDM technology. A distance adaptive
elastic optical ring network with traffic grooming was considered
in [15]. The joint routing, spectrum assignment (SA), and
modulation format problem were formulated as an in integer linear
problem, and was solved with heuristic algorithms. This study also
provided upper bounds for both the spectral minimisation and
transceiver minimisation problems.

Several studies have addressed theoretical aspects of the RSA
problem in ring topologies. For instance, an algorithm with a (4 +
2ɛ)-approximation ratio for ring networks was presented in [16]. In
[17], it was shown that the contiguity (i.e. adjacency) constraint in
the SA problem is redundant, in that it can be constructed from
the optimal solution to the wavelength assignment (i.e.
corresponding colouring) problem. A comprehensive study on the
complexity and approximation ratios for the SA and RSA
problems in rings is available in our recent work [18].

In this paper, we leverage scheduling theory to provide new
insight into the structure of the offline DA-RSA problem and to
present efficient and effective algorithms for rings. In Section 2,
we introduce the general result that DA-RSA with fixed alternate
routing in general mesh networks is a special case of a
multiprocessor scheduling problem in which a task may be
executed by alternate sets of processors. Based on this
transformation, we introduce a set of scheduling algorithms in
Section 3. In Section 4, we present the results of experiments to
compare the performance of the algorithms with respect to the
lower bound (LB), and we conclude the paper in Section 5.
2 DA-RSA as multiprocessor scheduling

Distance-adaptive (DA) spectrum allocation, a concept first
introduced in [19], exploits the tradeoff between spectrum width
and reach (for the same data rate) to improve utilisation by tailoring
the modulation format to the level of impairments: a high-level
modulation format with narrow spectrum and low SNR tolerance
may be selected for a short path, whereas a low-level modulation
with a wider spectrum and high SNR tolerance may be used for a
longer path [9]. The DA-RSA problem with fixed-alternate routing
in mesh elastic optical networks can be defined as:

Definition 2.1 (DA-RSA): Given a directed graph G = (V, E) with V
vertices (nodes) and E arcs (directed edges), k alternate routes,
r1sd, . . . , r

k
sd, from each node s to each node d, and traffic demand

matrix T = [tsd,l] in which tsd,l represents the required amount of
spectrum to transmit traffic from source node s to destination node
d along the lth route, l = 1, …, k, select one of possible route for
each traffic demand and assign required spectrum on all the edges
of this route such that the total amount of spectrum in the network
is minimised while the following three constraints are satisfied:

† Spectrum contiguity constraint: Each demand is assigned
contiguous spectrum on all the edges of each route.
† Spectrum continuity constraint: Each demand is assigned the
same spectrum along all the edges of its route.
† Non-overlapping spectrum constraint: Demands that share an
edge are assigned non-overlapping parts of the available spectrum.
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If there is only one possible route for each traffic demand (i.e. k = 1 in
the above definition), then the RSA problem reduces to the SA
problem. In recent work [20], we have proved that the SA problem
in mesh elastic optical networks is a special case of the
multiprocessor scheduling problem P|fixj|Cmax. That is, the SA
problem can be transformed to P|fixj|Cmax, but the reverse is not
always true. Based on this reduction, any algorithm that solves the
P|fixj|Cmax problem also solves the SA problem. The following
definition of P|fixj|Cmax is adapted from [21, 22].

Definition 2.2 (P|fixj|Cmax): Given a set of m identical processors, a
set of n tasks with processing time pj, j = 1,…, n, and a prespecified
set fixj of processors for executing each task j, j = 1, …, n, schedule
theses tasks under three constraints: (1) preemption is not allowed;
(2) each task must be executed by all of its set of required
processors fixj at the same time; and (3) a processor can process at
most one task at a time, so as to minimise the makespan of the
tasks denoted by Cmax = maxj Cj where Cj stands for the
completion time of task j.

If the number of processors m is fixed and given in advance, then
the problem is denoted by Pm|fixj|Cmax. The proof that SA
transforms to P|fixj|Cmax is available in [20].

Consider now the more general multiprocessor scheduling
problem P|setj|Cmax, defined as follows [23, 24]:

Definition 2.3 (P|setj|Cmax): Given a set of m identical processors, a
set of n tasks, a prespecified set setj = {fix1j , . . . , fix

k
j } of k

alternative processor sets to execute each task j, and processing
time plj for executing task j on set fixlj , schedule these n tasks
under three constraints: (i) preemption is not allowed; (ii) each
task j is processed by exactly one set of processors in setj
simultaneously; and (iii) each processor can execute at most one
task at each time, so as to minimise the makespan Cmax = maxj Cj
of the schedule, where Cj represents the completion time of task j.

We now show that the DA-RSA problem with fixed-alternate
routing in mesh networks is a special case of P|setj|Cmax.

Lemma 2.1: DA-RSA with fixed-alternate routing in mesh networks
transforms to P|setj|Cmax.

Proof: Consider an instance of the RSA problem with fixed-alternate
routing on a directed topology graph G = (V, E), a set of k routes
{r1sd, . . . , r

k
sd} for each source-destination pair (s, d ), and demand

matrix T = [tsd,l], l = 1, …, k. It is possible to build an instance of
P|setj|Cmax such that: (i) there is a processor i for every arc in
ai [ E, (ii) there is a task j for each source-destination pair (s, d ),
(iii) there is a setj = {fix1j , . . . , fix

k
j } for each task j with

fixlj = {q: aq [ {rlsd}} where (s, d ) is the source-destination pair
corresponding to task j, and (iv) and processing time of task j on
processor set fixlj is plj = tsd,l , l = 1, . . . , k. In other words, each
alternate path transforms to the corresponding alternate set of
processors, while the amount of spectrum on that path define the
corresponding processing time in the scheduling problem.

The spectrum contiguity constraint in the given instance of
DA-RSA is equivalent to the no preemption constraint in the
constructed multiprocessor scheduling problem. The spectrum
continuity constraint guarantees that all the processors within an
alternate set of processors execute the corresponding task
simultaneously. Finally, the non-overlapping spectrum constraint
assures that a processor works at most on one task at a time.
Similarly, the total amount of required spectrum on an arc of
graph G in the RSA problem is equivalent to the completion time
of the last task executed on the corresponding processor.
Accordingly, minimising the spectrum use on any arc of the RSA
problem is equivalent to minimising the makespan of the schedule
in the corresponding problem P|setj|Cmax.
2

We also note that it can be shown by counter-example that the
reverse of the above lemma is not true, that is, P|Setj|Cmax does
not transform to DA-RSA and hence, it is a more general problem.

Clearly, the P|fixj|Cmax problem is a special case of P|setj|Cmax

where there is only one set of processors (i.e. k = 1) to execute
each task. Therefore, once a set of processors among the k > 1
alternate sets is selected to execute task j, the P|setj|Cmax problem
reduces to P|fixj|Cmax, in which case any algorithm that solves the
latter problem may be applied to schedule the tasks.

In the context of the P|fixj|Cmax problem, we refer to tasks as
compatible if they can be executed simultaneously, that is, they do
not share any processors. More formally, we have the following
definition.

Definition 2.4 (Compatible Tasks): A set T of tasks for the P|fixj|
Cmax problem are said to be compatible if and only if their
prespecified sets of processors are pairwise disjoint, that is,
fixi > fixj = ∅, ∀i, j [ T .
2.1 Lower bound for ring networks

To evaluate the performance of an algorithm for the DA-RSA
problem, and since the optimal solution cannot be obtained in
polynomial time, it is important to compute a LB. To this end, we
note that the amount of flow across any cut of the network is a LB
on the amount of spectral resources that would be needed on any
link. The tightest such bound occurs for a cut with the maximum
flow between the two network partitions. In general, determining
such a cut for a mesh network is a hard problem. In a ring
network, however, we find such a cut by considering all possible
two-link cuts and selecting the one with the maximum flow. In an
N-node ring, there are N!/(N− 2)!2! two-link cuts, hence a LB can
be obtained in O(N2) time. Note that an N-node bidirectional ring
has N links in each direction, hence the corresponding
multiprocessor scheduling problem has m = 2N processors;
therefore, the complexity of obtaining the LB can also be
expressed as O(m2).
3 DA-RSA algorithms for rings

In ring networks, each demand may take either the clockwise or the
counter-clockwise path to the destination, hence the DA-RSA
problem is equivalent to the P|setj|Cmax problem with k = 2 sets of
processors for each task. It has been shown that, in the general
case, there can be no constant-ratio polynomial time
approximation algorithm for P|setj|Cmax unless P = NP [25]. The
two-processor problem P2|setj|Cmax has been proved in [26] to be
NP-hard. Therefore, in order to solve the DA-RSA problem in
large ring networks, new low complexity algorithms with good
performance are needed.

The DA-RSA problem requires both RSA decisions. There are
two broad approaches to solve this problem [13]. One strategy is
to first select one of the possible routes for each source-destination
pair, and then assign the required amount of spectrum along each
path. Such methods are commonly referred to as R + SA in the
literature. A second approach is to make RSA decisions jointly.

We now present four algorithms to solve the DA-RSA problem.
The algorithms make routing and/or SA decisions by building
upon the multiprocessor scheduling perspective above. All four
algorithms utilise the concept of compatible tasks to minimise the
makespan, Cmax, of the corresponding scheduling problem.

3.1 R + SA algorithms

In this section, we describe two algorithms that first select the
clockwise or counter-clockwise path for each demand, and then
employ a multiprocessor scheduling algorithm to solve the
corresponding Pm|fixj|Cmax problem. The algorithms only differ in
how they make the routing decision, or, from the point of view of
IET Netw., pp. 1–7
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Fig. 1 TLB algorithm to select one set fixj for executing each task j of the Pm|setj|Cmax problem
multiprocessor scheduling, how they select one of the two sets of
processors on which a task is to be executed. The input to these
algorithms is a list of tasks along with the two alternative set of
processors and corresponding processing times.

The first algorithm simply assigns each traffic demand to its
shortest path (in the scheduling problem, it assigns each task to the
set with the smallest number of processors), with ties broken
arbitrarily. We refer to this algorithm as SP. The second algorithm
attempts to balance the spectrum demands on all the processors,
and is referred to as traffic load balancing (TLB). A pseudocode
description of the TLB algorithm is shown in Fig. 1. Briefly, the
algorithm processes the tasks sequentially. When processing task j,
the algorithm tentatively adds the processing time of each set fixlj
to the processing time of each processor in the set, and selects the
set that results in the smallest total processing time on any
processor. In essence, the algorithm ignores the simultaneous
processing constraint (equivalently, the spectrum continuity
constraint of DA-RSA), hence, it only considers the amount of
work (load) in making a selection, not the actual schedule length.

The complexity of the TLB algorithm is determined by the
running time of the two nested for loops within the outer while
loop. Therefore, the running time of TLB is O(kn) where n is the
number of tasks in the input list and k is the maximum number of
alternative processor sets for any task. Since, in the scheduling
problem corresponding to a ring network, the number of
alternative sets is k = 2, the complexity of the TLB algorithm is
linear in the number n of input tasks.

Once a set of processors to execute each task has been determine by
either the SP or TLB algorithms, the original Pm|setj|Cmax problem has
been reduced to the Pm|fixj|Cmax problem. In [20], we introduced a
suite of list scheduling algorithms for solving the latter problem (i.e.
for performing the SA) in chain networks. Based on the
comprehensive set of experiments reported in [20], the longest first
compact (LFC) algorithm exhibits the best performance across
various network sizes and traffic demand distributions. Therefore,
we adopt the LFC algorithm to solve the Pm|fixj|Cmax problem
corresponding to ring networks; for the details on the operation of
LFC, the reader is referred to [20]. Since the running time of LFC
is O(n2), it follows that the overall complexity of both the SP + LFC
and TLB + LFC algorithms is also O(n2).
IET Netw., pp. 1–7
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3.2 Joint routing and spectrum assignment algorithms

The two R + SA algorithms described in the previous section have low
complexity and are easily implementable, as they decompose the
DA-RSA problem into independent RSA subproblems that are solved
sequentially. The disadvantage of an R + SA approach, even in the
case of the TLB algorithm that takes into account the work load on
each processor (i.e. arc) is that it does not consider the possible idle
times (i.e. spectrum gaps) that may occur due to the spectrum
continuity constraint. Hence, the makespan of the schedule
constructed by an R + SA algorithm may be longer than necessary.

In this section, we propose two new algorithms that make routing
decisions jointly with SA. The algorithms are a variant of the
well-known class of list scheduling algorithms in that they take as
input a list of tasks, process the list sequentially, and build the
schedule one task at a time, as they encounter the tasks in the list.
However, our algorithms differ in two important points from
classical list scheduling. First, since each task may be executed by
alternate sets of processors, the input list contains not individual
tasks, but rather task-processor set pairs, one pair for each set of
processors that may execute a given task; therefore, we refer to
these algorithms as set scheduling (SS). Second, the list is not
built once at the beginning of the algorithms; rather, it is built
incrementally during the execution of the algorithms, as we
explain shortly.

The basic SS algorithm consists of the following logical steps:

(i) Task selection: A subset of the input set of tasks is selected.
(ii) Task ordering: For each task selected in the first step,
task-processor set pairs are created for each processor set that can
execute this task. These task-processor set pairs are sorted in a list.
(iii) Task scheduling: The list is scanned and tasks are considered
for inclusion in the schedule. Scheduled tasks are removed from
further consideration.
(iv) Iteration: Repeat from the first step until all tasks have been
scheduled.

We now describe the first three steps of the algorithm in more
detail.
3



Fig. 2 SS algorithm for Pm|setj|Cmax
Task selection: This step starts with a set S of tasks (traffic
demands) that have not been scheduled yet; initially, the set
includes all n input tasks and decreases in size at every iteration as
tasks are scheduled in the third step. Our goal is to identify tasks
in S that are critical in terms of scheduling, and consider them
early on. Therefore, we consider the ring network with only the
traffic demands corresponding to the tasks in S, determine the cut
that results in the LB we discussed in the previous section, and
identify the demands (tasks) that make up the maximum flow
across this cut. Let T # S denote the latter set of tasks. Since
tasks in T contribute to the LB, it is important to minimise the
gaps between them in the schedule. Therefore, we consider T as
the next set of tasks to schedule.
4

Task ordering: For each task j [ T selected in the previous step,
we pair it with each alternate processor set fixlj that can execute the
task. In the case of a ring network in which the only two path options
for a traffic demand are in the clockwise and counter-clockwise
direction, there are only two alternate processor sets, fix1j and fix2j ,
for the corresponding task. For each task, we sort its two
task-processor set pairs in increasing order of the processor set
size, that is, |fix1j | ≤ |fix2j |, with ties broken arbitrarily. Then, we
sort the tasks in decreasing order of the processing time p1j of their
smallest processor set fix1j . This sorted list of task-processor set
pairs, L = [(1, fix11), (1, fix

2
1), (2, fix

1
2), (2, fix

2
2), . . . ] is the input

to the task scheduling step. With this order, tasks that have larger
processing times, and hence are more critical in terms of
IET Netw., pp. 1–7
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Fig. 3 Average ratio against number of nodes, distance-independent distribution
scheduling, are considered earlier; and for a given task, the smaller
processor set is considered first as it requires fewer resources
(processors, or arcs) and smaller processing time (due to the DA
modulation).

Task scheduling: The input to this step is the list L of tasks from
the previous step, and a partial schedule in which the last task ends at
time t; initially, the schedule is empty and t = 0. We schedule the first
task in list L to start execution at time t on processor set fix11 (recall
that (1, fix11) is the first item in list L). We then remove from the list
both task-processor set pairs (1, fix11), (1, fix

2
1), and update the

processors in set fix11 as busy at time t. We scan list L to find the
next task j and processor set that is compatible with fix11; we
schedule task j at time t, update the processors on which it will be
executed as busy, and remove all pairs with this task from the list.
We continue scanning list L to find all the task-processor sets that
are pairwise compatible, and schedule all these tasks to start at
time t. Note that scheduling a task implies making both a routing
decision (i.e. selecting one of the two processor sets of the task or
Fig. 4 Average ratio against number of nodes, distance-increasing distribution
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route for the corresponding demand) and a SA decision (i.e.
assigning a start time to the task, or a starting spectrum slot for the
corresponding demand).

Once we have reached the end of the list, we update the set S of
unscheduled tasks that was provided as input to the task selection
step by removing all the tasks that were scheduled in this step. We
also update the end time of the new partial schedule to the
maximum completion time of any scheduled task. We then continue
to the fourth step to iterate until all tasks have been scheduled.

3.2.1 Pseudocode description of the SS algorithm: A
pseudocode description of the SS algorithm is presented in Fig. 2.
The pseudocode consists of two phases. In the first phase, from
lines 5–21, we consider the critical tasks computed by the source/
sink cut. Then, we select a task with a set of processors that are
currently idle and schedule it to start exectution at the current time
t. If some tasks in L (i.e. the set of tasks defined by the current
source/sink cut) cannot be scheduled at scheduling instant t, we
5



Fig. 5 Average ratio against number of nodes, distance-decreasing distribution
keep a copy of these tasks in list R. Phase two, which starts at Line
22, starts whenever no more tasks in L can be scheduled at time t. In
this case, all the remaining tasks in S are considered to determine if
some of them can be scheduled at time t. Finally, time t is updated to
the next time some processors will become idle (i.e. the earliest time
a scheduled task will complete execution), and this process is
repeated until all the tasks in S are scheduled.

The running time complexity of the SS algorithm is defined by the
nested for loop within the two nested outer while loops. Thus,
the overall running time of the SS algorithm is O(n3), where n is
the number of tasks.
3.2.2 SS algorithm with shortest path routing (SS + SP):
The SS algorithm with shortest path routing (SS + SP) is a
modified version of the SS algorithm that attempts to assign
spectrum to as many demands as possible using the respective
shortest paths (equivalently, to schedule tasks using the smallest
processor sets). The input of each iteration of this algorithm is a
sorted list L which is calculated using a source/sink cut, as with
the basic SS algorithm. Under the SS + SP algorithm, list L is
scanned to find tasks that can be scheduled at the current time t
using their smallest processor sets. Tasks that cannot be scheduled
on their smallest processor sets are skipped, and scheduled later,
that is, either during the optimisation phase of the algorithm
(which starts in Line 22 of the pseudocode shown in Fig. 2) or
after the time t is updated.
4 Numerical results

We now describe the experiments we have carried out to compare the
performance of the three DA-RSA algorithms in bidirectional ring
networks with N = 4, 6, 8, 10, 12, 14, 16 nodes (recall also that
the scheduling problem corresponding to an N-node bidirectional
ring has m = 2N processors). We generate traffic demands between
each pair of nodes in the ring based on one of the following three
distributions:

† Distance-independent: traffic demands may take any of the five
discrete values in the set {10, 40, 100, 400, 1000} with equal
probability; these values correspond to data rates (in Gbps) to be
supported by EONs.
† Distance-increasing: traffic demands may take one of the five
discrete values in the set {10, 40, 100, 400, 1000} such that
6

higher values are assigned to a node pair with a probability that
increases with the length of the shortest path between the two node.
† Distance-decreasing: traffic demands may take one of the five
discrete values in the set {10, 40, 100, 400, 1000} such that
higher values are assigned to a node pair with a probability that
decreases with the length of the shortest path between the two node.

In our experiments, we also used various other probability values
for both the discrete low and discrete high distributions, but the
trends regarding the relative performance of the algorithms were
very similar to the ones shown below.

We consider distance adaptive spectrum allocation based on the
traffic rate and the length of each possible path (i.e. number of
processors in the corresponding scheduling problem) [2, 19]. As in
[27], we assume that the ring diameter does not exceed 100 Km, a
reasonable value for rings covering metropolitan areas. Further,
following [15], we make the assumption that all links are of equal
length, hence the reach of each modulation format can be
expressed in number of links. Thus, we assume that the slot width
is 12.5 GHz, and the two modulation formats represented in [19]
are sufficient for the metro ring sizes:

† 16-QAM modulation format for paths with up to eight links (i.e.
processors) such that 10, 40, 100, 400, and 1000 Gbps take 1, 1, 2, 8,
and 20 slots, respectively.
† QPSK modulation format for more than eight links (i.e.
processors), whereby 10, 40, 100, 400, and 1000 Gbps are
assigned 1, 2, 4, 16, and 40 spectrum slots, respectively.

The performance metric we consider in this study is the ratio of the
spectrum required by the solution constructed by one of the
algorithms, over the LB (computed as described earlier); the closer
this ratio is to 1.0, the better the performance of the algorithm in
terms of its use of available spectrum. Note that, since the P2N
|setj|Cmax problem corresponding to a bidirectional ring network
with N nodes is NP-hard for N≥ 4 [18], the optimal makespan
value is not known for the problem instances considered in this
study. Clearly, this optimal value is greater than or equal to the
estimated LB; therefore, the performance of the algorithms with
respect to the optimal may be better than this ratio indicates.
Nevertheless, this metric accurately characterises the relative
performance of the algorithms.

Figs. 3–5 plot the average ratio of the four algorithms, denoted by
SP + LFC, TLB + LFC, SS, and SS + SP, as a function of the number
IET Netw., pp. 1–7
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of ring nodes; each figure presents results for problem instances
generated using the distance-independent, distance-increasing, and
distance-decreasing demand distributions, respectively. Each data
point on these plots is the average of ten replications, each
replication being the average over 30 randomly generated
instances; 95% confidence intervals, estimated using the method of
batch means, are also shown in the figures.

We first observe that the best algorithm has a ratio of no more than
1.15, that is, it is always within 15% of the LB on the amount of
spectrum required to route all demands. Since the (unknown)
optimal solution will generally lie above the LB, these results
indicate that our algorithms are effective in constructing solutions
close to optimal one.

Another important observation is that of the two R + SA
algorithms, TLB + LFC outperforms SP + LFC, regardless of the
demand distribution, for small- and medium-size ring networks,
but SP + LFC performs better for rings with 14 or more nodes.
Note that in the ring networks in which TLB + LFC is better than
SP + LFC, and based on the modulation formats we consider, a
demand requires the same number of slots regardless of whether it
is routed on the shortest or non-shortest path. In this case, the TLB
is successful in making efficient use of the spectrum resources by
occasionally using non-shortest paths to balance the traffic load.
However, whenever demands routed along the non-shortest path
require a larger number of slots than along the shortest path, it is
more difficult to achieve load balancing by using the longer path.
Therefore, SP + LFC is the better solution in large networks since
selecting the non-shortest path incurs a spectrum penalty along a
large number of links.

We also observe that from small- to medium-size rings, the SS
algorithm is able to find solutions using non-shortest paths that
outperform both R + SA algorithms, but does not work well for
larger ring networks. On the other hand, the SS + SP algorithm,
which gives preference to shortest paths, has by far the best
performance as the ring size increases. Overall, our results indicate
that (i) due to the spectrum penalty of long paths, strategies that
give preference to shortest path routing work best for large rings,
and (ii) the SS-based algorithms outperform the R + SA algorithms
across the range of ring network sizes and traffic demand
distributions that we have considered in these experiments.
5 Concluding remarks

We have shown that the DA-RSA problem transforms to a processor
scheduling problem, and we have developed list scheduling
algorithms for ring networks. Our results indicate that as the
network size increases beyond a point that depends on the traffic
demand distribution, the spectrum overhead associated with using
a long path becomes sufficiently high that it is always best to use
the shortest path. Overall, the best algorithm is always within 10–
20% of the LB, indicating that scheduling concepts can be
successfully adapted to address network design problems. Our
current research focuses on extending these techniques to mesh
networks.
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