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Abstract—We study the spectrum assignment (SA) problem
in ring networks with shortest path (or, more generally, fixed)
routing. With fixed routing, each traffic demand follows a
predetermined path to its destination. In earlier work, we have
shown that the SA problem can be viewed as a multiprocessor
problem. Based on this insight, we prove that, under the shortest
path assumption, the SA problem can be solved in polynomial
time in small rings, and we develop constant-ratio approximation
algorithms for large rings. For rings of size up to 16 nodes (the
maximum size of a SONET/SDH ring), the approximation ratios
of our algorithms are strictly smaller than the best known ratio
to date.

I. INTRODUCTION

Elastic optical networking has been the subject of con-
siderable research and development activities in recent years
due to its potential to accommodate efficiently the ongoing
growth in traffic demands [4], [6], [12]. Key enabling technolo-
gies of elastic networking include optical OFDM, distance-
adaptive modulation, flexible spectrum selective switches,
and bandwidth-variable transponders [18]. These technologies
make it possible for network operators to support multirate
connections and adapt to variable bandwidth requests dynam-
ically, by “slicing off” just the right amount of spectrum for
each traffic demand [6].

Routing and spectrum assignment (RSA) [2], [7], [16] has
emerged as the essential problem for network-wide manage-
ment of spectral resources in the context of design and control
of elastic optical networks. The objective of the RSA problem
is to (1) assign a physical path to each demand, and (2)
allocate continuous and contiguous spectrum to the demand
along the links of each path, so as to optimize a metric of
interest typically related to spectrum utilization. Several offline
and online variants of the problem have been studied; for a
survey and classification of existing approaches, the reader is
referred to [14]. Since general versions of the RSA problem
are computationally intractable, common solution approaches
include integer linear programming (ILP) formulations (for
small network sizes) and heuristics.

While most studies of the RSA problem consider general
network topologies, we note that not only are large parts of
the current infrastructure based on SONET/SDH rings, but
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DWDM networks with topological rings are being deployed
that are based on technologies other than SONET (e.g., Ether-
net, IP/MPLS, etc.). Therefore, more recently there has been
increasing interest in RSA solutions for ring networks [8]–
[10], [13], [17]. Most of these studies employ heuristics,
although some interesting theoretical results do exist. For in-
stance, using results from graph coloring theory, it was shown
in [13] that there exists a (4+2ε)-approximation algorithm for
the spectrum assignment problem in rings; whereas the work
in [9] proves that the contiguity (i.e., adjacency) constraint in
spectrum assignment can always be satisfied starting from an
optimal solution to a corresponding coloring problem.

In this paper we present a formal study of the spectrum as-
signment (SA) problem in ring networks with shortest path (or,
more generally, fixed) routing. With fixed routing, each traffic
demand follows a predetermined path to its destination. In
earlier work [15], we have shown that the SA problem can be
viewed as a multiprocessor problem. We extend those results to
prove that the SA problem can be solved in polynomial time
in small rings, and to develop constant-ratio approximation
algorithms for large rings. For rings of size up to 16 nodes
(the maximum size of a SONET/SDH ring), the approximation
ratios of our algorithms are strictly smaller than the best known
(4 + 2ε) ratio presented in [13]. We also note that our results
apply to the wavelength assignment problem, a special case of
spectrum assignment in which all demands are of equal size.

The paper is organized as follows. In Section II, we show
that the SA problem in rings with shortest path routing
transforms to a classical multiprocessor scheduling problem.
Based on this insight, in Section III, we investigate the
complexity of the SA problem and prove that, under shortest
path routing, SA can be solved in polynomial time on rings
of small size. In Section IV, we develop new constant-ratio
approximation algorithm for large rings, and we conclude the
paper in Section V.

II. SPECTRUM ASSIGNMENT IN BIDIRECTIONAL RINGS

Consider the following general definition of the spectrum
assignment (SA) problem in elastic optical networks:

Definition 2.1 (SA): Given

• a graph G = (V,A) where V is the set of nodes and A
the set of arcs (directed links),



• a spectrum demand matrix T = [tsd], where tsd is the
amount of spectrum required to carry the traffic from
source node s to destination node d, and

• a physical path rsd from node s to node d,
assign spectrum to each demand so as to minimize the total
amount of spectrum used on any link in the network, under
three constraints:

1) each demand is assigned contiguous spectrum (spectrum
contiguity constraint);

2) each demand is assigned the same spectrum along all
links of its path (spectrum continuity constraint); and

3) demands that share a link are assigned non-overlapping
parts of the available spectrum (non-overlapping spec-
trum constraint).

In this work, we study the SA problem in bidirectional rings
under the assumption that each traffic demand is carried over
the shortest path from its source to the destination node. Let
N be the number of nodes (and links) of the ring network.
Note that, whenever N is even, there are two shortest paths
between every pair of nodes that are diametrically opposite
each other. In this case, we assume that one of these paths (in
either the clockwise or counter-clockwise direction) is selected
and is provided as input to the SA problem.

As we have shown in our recent work [15], the SA problem
in mesh networks transforms to the multiprocessor scheduling
problem, denoted as P |fixj |Cmax, in which some tasks are to
be executed on multiple processors simultaneously. Problem
P |fixj |Cmax, which we will be referring to throughout this
paper, is defined as [1], [5]:

Definition 2.2 (P |fixj |Cmax): Given
• a set of m identical processors,
• a set of n tasks with processing time pj , j = 1, . . . , n,

and
• a prespecified set fixj of processors for executing each

task j, j = 1, . . . , n,
schedule the tasks so as to minimize the makespan Cmax =
maxj Cj , where Cj denotes the completion time of task j,
under the constraints:

1) preemptions are not allowed;
2) each task must be processed simultaneously by all

processors in fixj ; and
3) each processor can work on at most one task at a time.

Also, we denote by Pm|fixj |Cmax the special case of
P |fixj |Cmax in which the number of processors m is consid-
ered to be fixed. The proof of the transformation is available
in [15]. Briefly, each link in the SA problem transforms to a
processor, each traffic demand (s, d) to a task j, the demand
size tsd and path rsd to the processing time pj and set fixj of
the corresponding task j, respectively, the maximum spectrum
assigned to any link to Cmax, and each of the three constraints
of the SA problem to one of the three constraints of problem
P |fixj |Cmax.

Since any algorithm that solves the P |fixj |Cmax problem
also solves the corresponding SA problem, in the following
we will derive results for the SA problem in rings by studying

the corresponding multiprocessor scheduling problem. In our
discussion, we will make use of two concepts related to
P |fixj |Cmax.

Definition 2.3 (Compatible Tasks): A set T of tasks for the
P |fixj |Cmax problem are said to be compatible if and only if
their prespecified sets of processors are pairwise disjoint, i.e.,
fixi ∩ fixj = ∅,∀ i, j ∈ T .
Compatible tasks may be paired with each other (i.e., they
can be executed simultaneously), as they do not share any
processors.

Definition 2.4 (Dominant Processor and Lower Bound):
Consider an instance of P |fixj |Cmax, and let Tk denote the
set of tasks that require processor k, i.e., Tk = {j : k ∈ fixj}.
Clearly, all the tasks in Tk are pairwise incompatible, hence
they have to be executed sequentially. Therefore, a lower
bound LB for the problem instance can be obtained as:

LB = max
k=1,...,m

 ∑
j∈Tk

pj

 . (1)

We will refer to a processor that achieves the lower bound LB
as the dominant processor.

III. COMPLEXITY RESULTS

We first note that, under shortest path routing, the clockwise
and counter-clockwise directions of the ring become decoupled
and completely independent of each other. Consequently, the
SA problem in bidirectional rings is decomposed into two
disjoint subproblems, one for each direction, that can be
solved separately; the subproblem in the clockwise (respec-
tively, counter-clockwise) direction takes as input the subset
of clockwise (respectively, counter-clockwise) links and the
subset of demands with shortest paths along these links. It
can be seen that this decomposition is optimal, in that finding
the optimal solution (i.e., minimum total spectrum on any link)
for each subproblem and taking the maximum of the two is an
optimal solution to the original problem on the bidirectional
link. Therefore, for the remainder of this paper, we will only
consider the SA subproblem for the clockwise direction of
the ring; because of symmetry, the same results apply to the
subproblem defined on the counter-clockwise direction.

We have shown in [15] that the SA problem in unidirec-
tional rings can be transformed to a P |fixj |Cmax problem.
Moreover, in the general case, i.e., whenever there are traffic
demands between any pair of nodes, the SA problem in
unidirectional rings with N = 3 nodes transforms [15] to
the P3|fixj |Cmax problem that is strongly NP-hard [5]. On
the other hand, the SA subproblem defined on the clockwise
direction of a bidirectional ring is a special case of the
unidirectional ring problem inasmuch as its input consists of
only the subset of demands that are routed in that direction.
Therefore, the problem can be solved in polynomial time for
small rings, and approximation algorithms with constant ratios
exist, as we show next.



A. Rings with N = 3, 4 Nodes

The following two lemmas establish that, under shortest
path routing, the SA problem can be solved in polynomial
time in three- and four-node bidirectional rings, since the
subproblems defined on the clockwise (and, hence, also the
counter-clockwise) direction yield polynomial solutions. Note
also that the wavelength assignment (WA) problem [11] is a
special case of the SA problem in which all demands are of
size tsd = 1. Consequently, these two lemmas also establish
that the WA problem is solvable in polynomial time in three-
and four-node rings with shortest path routing.

Lemma 3.1: The SA subproblem defined in the clockwise
direction of a bidirectional ring with N = 3 nodes and shortest
path routing is solvable in polynomial time.

Proof. In a bidirectional ring with N = 3 nodes, the shortest
path for each demand consists of a single link. Consider
the SA subproblem defined on the clockwise direction. This
subproblem has three demands, each carried on exactly one
of the three clockwise links of the ring. The corresponding
P3|fixj |Cmax multiprocessor scheduling problem has three
tasks, each requiring exactly one of the three processors
(i.e., |fixj | = 1, j = 1, 2, 3). Since the tasks are pairwise
compatible, they can be scheduled simultaneously. Hence,
the optimal value of the total amount of spectrum required in
the network (respectively, Cmax) is equal to the maximum
demand size (respectively, the maximum task processing
time).

Lemma 3.2: The SA subproblem defined in the clockwise
direction of a bidirectional ring with N = 4 nodes and shortest
path routing is solvable in polynomial time.

Proof. In a four-node ring, the clockwise and counter-
clockwise paths between two non-adjacent nodes are of equal
length (i.e., two), and either may be selected as the shortest
path. Let us consider the case where all demands between
non-adjacent nodes are routed in the clockwise direction. In
other words, if nodes 1 and 3 are non-adjacent, then both
traffic from 1 to 3 and traffic from 3 to 1 is routed clockwise;
and similarly for the other pair (2,4) of non-adjacent nodes.
Hence, the input to the SA subproblem consists of four one-
link demands and four two-link demands. Consequently, the
input to the corresponding P4|fixj |Cmax problem consists of
four single-processor tasks and four two-processor tasks. Let
us denote these tasks as T1, T2, T3, T4, T12, T23, T34, and
T41, where the subscript of each task denotes the processors
in the corresponding set fixj .

The proof is by construction of the optimal schedule, as
shown in Figure 1. Specifically, first schedule the task T12 in
parallel with the task T34 starting at time t = 0. Then, add all
the single processor tasks T1, T2, T3, T4 to this initial schedule
without any gaps. Finally, execute the two-processor tasks T23

and T41 as soon as both processors of each task are available.
For the instance depicted in Figure 1, the schedule is optimal
as it is equal to the lower bound determined by the sum of the
processing times of tasks requiring processor 2 (the dominant
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Fig. 1. Optimal schedule for the clockwise direction of a four-node
bidirectional ring with shortest path routing

processor). In fact, because of symmetry, the schedule is
optimal regardless of which processor is the dominant one.

If some of the demands between non-adjacent nodes are
routed in the counter-clockwise direction, then the instance
of P4|fixj |Cmax defined on the clockwise direction will
not include the corresponding two-processor tasks. Again,
it can be seen that the above algorithm yields an optimal
schedule. For instance, if task T23 is excluded from Figure 1,
then the schedule remains optimal. The same is true if
T41 is excluded, or T23 and T41 are both excluded, or
any combination of two-processor tasks is excluded. If all
two-processor tasks are excluded (i.e., all demands between
non-adjacent nodes are routed in the counter-clockwise
direction), then the problem contains only single-processor
tasks and the algorithm again produces an optimal schedule.

The above lemma shows that as long as traffic demands in
a four-node bidirectional ring are routed along a shortest path
(with ties broken arbitrarily), the SA problem is solvable in
polynomial time using a simple algorithm that is linear in the
number of tasks (spectrum demands). The following lemma
shows that if one of the demands between adjacent nodes takes
a non-shortest path, the SA problem becomes NP-complete.
The proof is by reduction from the PARTITION problem [3]
which is defined as:

Definition 3.1 (PARTITION): Given a set of k integers
A = {a1, a2, . . . , ak} such that B =

∑k
j=1 aj , does there

exist a partition of A into two sets, A1 and A2, such that∑
aj∈A1

aj =
∑

aj∈A2
aj = B

2 ?
Lemma 3.3: The SA subproblem defined in the clockwise

direction of a bidirectional ring with N = 4 nodes and such
that:
• all demands between non-adjacent nodes are routed in

the clockwise direction, and
• all demands between adjacent nodes are routed along

their (one-link) shortest path in the clockwise or counter-
clockwise direction, except for one such demand that is
directed to a three-link path in the clockwise direction,

is NP-complete.
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Fig. 2. A feasible schedule with Cmax = 3B for the clockwise direction
of a four-node bidirectional ring with shortest-path routing except for one
demand routed along a three-link path.

Proof. If a traffic demand with a one-link shortest path in
the counter-clockwise direction is routed along the alternate
clockwise three-link path, then the P4|fixj |Cmax problem
defined on the clockwise direction will include a three-
processor task. Without loss of generality, assume that this
three-processor task requires processors 3, 4, and 1 (similar
arguments apply for any other three-processor task). Given
an instance of PARTITION, we create an instance of this
P4|fixj |Cmax as follows. For each aj ∈ A we create a task
τj with processing time pj = aj and fixj = {2} (note that
these tasks must be executed by processor 2, the one that is
not required by the three-processor task). We also create the
following eight gadget tasks:

task pj fixj

Ta B {1, 2}
Tb B/2 {3, 4}
Tc B {2, 3}
Td B/2 {4, 1}
Te B/2 {3, 4, 1}
T1 B {1}
T2 B {3}
T3 3B/2 {4}

If A can be partitioned into two disjoint sets A1 and A2

such that
∑

aj∈A1
=

∑
aj∈A2

= B/2, then there is a feasible
schedule with Cmax = 3B, as shown in Figure 2.

Conversely, let us assume that there exists a feasible
schedule S with Cmax ≤ 3B. Without loss of generality,
suppose that Ta and Tb are executed before Tc and Td in S;
otherwise, we can use similar arguments and reach the same
conclusion. Then, all the single processor tasks T1, T2, and
T3 must be executed immediately after Ta or Tb complete,
as scheduling any other task at that time would lead to a
makespan greater than 3B. Tc must also be scheduled exactly
right after T2 and before Te, otherwise it would not be
possible to obtain the schedule with length of at most 3B.
Using a similar argument, Td must be scheduled right after T1

and T3 and before Te, and in parallel with Tc. The schedule
corresponding to this set of tasks is shown in Figure 2 where
only the intervals [B, 3B/2] and [5B/2, 3B] are available
for the execution of the PARTITION jobs on processor 2.
Therefore, a partition must exist.

B. Rings with N ≥ 5 Nodes

The next theorem states that the SA problem on five-
node bidirectional rings (and, hence, on any larger ring) is
intractable.

Theorem 3.1: The SA subproblem defined in the clockwise
direction of a bidirectional rings with N = 5 nodes and
shortest path routing is NP-complete.

Proof. As the number of nodes is odd, there is a unique
shortest path for each traffic demand between any two non-
adjacent nodes; therefore, the problem in the clockwise direc-
tion includes only the demands with a shortest path along
the clockwise links. The proof is by reduction from the
PARTITION problem, and follows an approach similar to the
one we used in the proof of Lemma 3.3. Specifically, for each
aj ∈ A, we create a task τj with processing time pj = aj and
fixj = {2}. We also create the following set of tasks:

task pj fixj

Ta 3B/2 {1, 2}
Tb 5B/2 {2, 3}
Tc B/2 {3, 4}
Td B {4, 5}
Te 2B {5, 1}
T1 3B/2 {1}
T2 2B {3}
T3 7B/2 {4}
T4 2B {5}

If there exists a partition of A into two disjoint sets A1

and A2 such that
∑

aj∈A1
=

∑
aj∈A2

= B/2, then we can
execute the tasks as shown in Figure 3 and create a feasible
schedule with Cmax = 5B.

Conversely, assume that there exists a feasible schedule
S with Cmax ≤ 5B. Similar to the proof of Lemma 3.3
and without loss of generality, suppose that Ta and Td are
executed before Tc and Te in S; otherwise, we can use
similar arguments and reach the same conclusion. We need
to schedule T2 in parallel with Ta and Td, otherwise the
schedule length will exceed 5B. As Td completes earlier than
Ta, we need to execute T4 before Te. Therefore, T1 must be
scheduled right after Ta and before Te. On the other hand,
T3 must be executed immediately after Td, and Tc must be
scheduled at the very end of S , since if we change the order
of execution of T3 and Tc in S, the makespan will be greater
than 5B. Finally, executing Tc between [9B/2, 5B] means
that Tb must be scheduled immediately after T2. A feasible
schedule corresponding to this set of tasks is shown in
Figure 3 where only the intervals [3B/2, 2B] and [9B/2, 5B]
are available for the execution of the PARTITION jobs on



𝑻𝒆 𝑻𝟒 

𝑪𝒎𝒎𝒎 

Processor 

𝟓 

𝟒 

𝟑 

𝟐 
𝑻𝒃 

𝑻𝟐 

𝑻𝒎 

𝑻𝒄 

𝟏 

𝑻𝒅 

𝟏
𝟐𝑩 𝑩 

𝟑
𝟐𝑩 𝟐𝑩 

𝟓
𝟐𝑩 𝟑𝑩 

𝟕
𝟐𝑩 𝟒𝑩 

𝟗
𝟐𝑩 𝟓𝑩 

𝑻𝟑 

𝑨𝟏 𝑨𝟐 

𝑻𝒆 𝑻𝟏 

Fig. 3. A feasible schedule with Cmax = 5B for the clockwise direction
of a five-node ring with shortest path routing.

processor 2. Thus, we conclude that a partition of A must
exist.

IV. APPROXIMATION ALGORITHMS

In this section, we first provide approximation algorithms
for the SA problem on bidirectional rings with N = 5, 6
and 7 nodes under shortest path routing. We then build upon
the approximation algorithms for path networks we presented
in [15] to develop approximation algorithms for bidirectional
rings with N ≥ 8 nodes. Since, as we mentioned earlier,
the WA problem is a special case of SA, all approximation
algorithms in this section also apply to WA.

A. Rings with N = 5− 7 Nodes

Lemma 4.1: There exists an 1.5-approximation algorithm
for the SA subproblem defined on the clockwise direction of a
bidirectional ring with N = 5 nodes and shortest path routing.

Proof. As we mentioned earlier, in a five-node ring each
traffic demand has a unique shortest path. Therefore, the
clockwise direction serves 10(= 5 ∗ 4/2) demands, and the
corresponding scheduling problem has 10 tasks as shown
in Figure 4, where the subscript of each task indicates the
processors required by the task. Without loss of generality,
let processor 3 be the dominant processor, i.e., the one that
achieves the lower bound LB in (1). Let OPT denote the
optimal value of the makespan for this problem; clearly,
LB ≤ OPT .

Consider now the seven tasks that do not require proces-
sor 3, shown in the left part of the schedule in Figure 4.
The scheduling problem consisting of these seven tasks can be
viewed as the scheduling problem on a four-processor system
(i.e., one without processor 3), similar to the one depicted
in Figure 2 – but with three rather than four two-processor
tasks. In essence, this scheduling problem corresponds to
the SA problem on the clockwise direction of the five-node
after removing the link corresponding to processor 3 and the
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Fig. 4. Two-part schedule for a five-node bidirectional ring with shortest
path routing

three traffic demands using that link. Based on our earlier
result regarding the four-node rings, these seven tasks can be
scheduled optimally, as shown on the left part of Figure 4. Let
OPT ′ be the makespan of this schedule; then, OPT ′ ≤ OPT .

Now consider the three tasks that require processor 3. These
can be scheduled back-to-back without any gaps, as shown in
the right part of Figure 4. The makespan of this schedule is
equal to LB. Hence, the makespan of the two-part, 10-task
schedule depicted in Figure 4 is equal to: OPT ′ + LB ≤
2×OPT .

We can improve the approximation ratio of 2 by modifying
the above two-part schedule as follows. Without loss of
generality, assume that T23 ≥ T34 as indicated in Figure 4;
if T34 is larger than T23, then simply reverse the roles in the
following discussion. In this case, we have that:

T34 ≤ T3 + T23

⇒ 2T34 ≤ T3 + T23 + T34 = LB ≤ OPT

⇒ T34 ≤ 0.5×OPT (2)

Now slide the right part of the schedule in Figure 4 (i.e.,
the three tasks T3, T23 and T34) as far left as possible so that
tasks T3 and/or T23 overlap with the tasks in the left part of
the schedule. Consider the resulting nine-task schedule, i.e.,
the one consisting of all tasks of the problem except T34. It
can be seen that this schedule is optimal for these nine tasks.
Let OPT ′′ be the makespan of this nine-task schedule, and
OPT ′′ ≤ OPT . Scheduling task T34 immediately after the
end of this schedule results in a ten-task schedule of length
OPT ′′ + T34. Using (2), we conclude that the makespan of
this schedule is no larger than 1.5×OPT .

Lemma 4.2: There exist 2-approximation algorithms for
the SA subproblem defined on the clockwise direction of
bidirectional rings with N = 6, 7 nodes and shortest path
routing.

Proof. The proof is by construction of a two-part schedule
similar to the one we created for the proof of Lemma 4.1.
The proof is omitted due to its length, and the details are



Ring size N Approximation ratio
3-4 1
5 1.5

6-7 2
8-10 3

11-14 3.5
15-16 4

TABLE I
APPROXIMATION RATIOS FOR THE SA PROBLEM ON THE CLOCKWISE

DIRECTION OF BIDIRECTIONAL RINGS OF VARIOUS SIZES UNDER
SHORTEST PATH ROUTING.

available in the first author’s dissertation.

B. Rings with N ≥ 8 Nodes

We now present a general approximation algorithm for rings
that builds upon corresponding algorithms for directed paths
we developed in [15]. Consider the SA problem defined on
the clockwise direction of a ring with N ≥ 8 nodes and
shortest path routing. The key idea is based on the observation
that if we remove a link from the ring along with the traffic
demands whose shortest paths use this link, the resulting SA
subproblem is equivalent to the SA problem on a directed path
with N −1 nodes. Therefore, the approximation algorithm for
rings consists of the following steps:

1) Formulate the PN |fixj |Cmax problem for the clock-
wise direction of the original ring.

2) Let processor N be the dominant processor (and relabel
the processors appropriately if necessary).

3) Remove processor N and all tasks j that use this pro-
cessor (i.e., tasks j such that N ∈ fixj) and formulate
the resulting P (N − 1)|linej |Cmax scheduling problem
defined in [15]1.

4) Use the approximation algorithm in [15] to create
schedule S1 for the P (N − 1)|linej |Cmax problem; let
α(N − 1) be the approximation ratio of this algorithm.

5) Schedule all tasks that use processor N sequentially
without any gaps to create schedule S2.

6) Concatenate schedules S1 and S2 to create schedule S
for the ring network.

Let OPT be the optimal makespan for the ring network.
By construction, the makespan of S2 is equal to LB ≤ OPT ,
while the makespan of S1 is no longer than α(N − 1)OPT .
Hence, the approximation ratio of the above algorithm for an
N -node ring is 1+α(N−1). Using our earlier results and the
values for α(N − 1) from [15], we obtain the approximation
ratios shown in Table I for various ring sizes. As we can see,
for rings of sizes encountered in practice, the approximation
ratio of our algorithm is strictly better than the 4+2ε algorithm
presented in [13].

1This scheduling problem corresponds to the SA problem on the (N − 1)-
link path, as discussed in [15].

V. CONCLUDING REMARKS

We have studied the complexity of the spectrum assignment
problem in bidirectional rings with shortest path routing, and
we have developed new constant-ratio approximation algo-
rithms for rings of large size. In ongoing work, we study the
RSA problem in bidirectional rings, also from a multiprocessor
scheduling perspective.
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