
Network-Aware Virtual Request Partitioning
Based on Spectral Clustering

Lingnan Gao, George N. Rouskas
North Carolina State University, Raleigh, NC 27695-8206 USA

Abstract—Virtual request partitioning is an essential subprob-
lem of two common problems in virtual networks, namely, vir-
tual network embedding (VNE) and virtual machine placement
(VMP). In this study, we consider a network-aware variant of
the problem where the objective is to partition a virtual request
so as to minimize the total amount of inter-cluster traffic. This
problem is equivalent to the (k, v)-balanced partitioning problem,
an NP-complete problem. To handle the inherent complexity of
this problem, we develop a spectral clustering-based partitioning
scheme that produces good solutions in a reasonable amount of
time. Our solution consists of several components: (a) spectral
clustering, (b) a constrained k-means partitioning algorithm that
ensures that capacity limits for clusters are met, and for which we
present an optimal polynomial-time greedy algorithm, and (c) a
greedy refinement algorithm using simulated annealing to further
improve the clustering solution. Simulation results indicate that
our algorithm outperforms existing partitioning schemes in terms
of inter-cluster traffic minimization.

I. INTRODUCTION

Network virtualization is seen as crucial in reshaping the
Internet architecture and introducing diversity into the cur-
rent network [1]. With network virtualization, conventional
providers are decoupled into infrastructure providers (InP),
who mainly focus on the management of the infrastructure,
and service providers (SP), who are responsible for the cre-
ation of the network and provide end-to-end service to end
users. Such an environment allows the deployment of network
architectures regardless of the underlying infrastructure, and
thus facilitates the evolution of network architecture [2].
The cloud computing paradigm also employs virtualization
techniques. Data centers aggregate all the computing resources
(including CPU, memory, and storage), and provide the end
users services in the form of virtual machines (VM). Server
virtualization allows multiple VMs to co-locate on the same
physical server to increase utilization and lower the operational
cost [3].

A key challenge for network virtualization and cloud com-
puting is resource allocation. In network virtualization, re-
source allocation arises in the context of the virtual network
embedding (VNE) problem, where the objective is to embed
the virtual network to the substrate network so as to maximize
the benefit from the existing hardware [4]. In the area of cloud
computing architecture, the related virtual machine placement
(VMP) problem arises, whereby the objective is to optimally
assign the VMs to physical hosts so as to utilize the available
resources without performance degradation [5].

This work was supported in part by the National Science Foundation under
Grant CNS-1111088

In either area, mapping virtual to physical resources may
involve partitioning of the virtual request. For the VNE
problem, mapping virtual requests to multiple domains may
be required for various reasons, including load balancing [6]
and managing the embedding cost [7]; for the VMP problem,
VMs must be mapped onto underlying physical resources that
may span across physical hosts, racks, even data centers [8].
Therefore, for communication-intensive applications, mapping
virtual requests to physical resources must be accomplished
in a manner that satisfies capacity constraints and takes into
account the communication cost and quality of service (QoS)
requirements [8], [9].

In this work, we consider the problem of virtual request
partitioning and present an algorithm inspired by spectral
clustering to partition the set of virtual nodes under capacity
constraints. This algorithm produces high quality solutions,
compares favorably to existing algorithms, and scales well;
simulation experiments indicate that it can tackle virtual net-
works consisting of hundreds of nodes within a few seconds.
Following the introduction, we review previous work in this
topic in Section II. In Section III, we formally define the
problem and present the various components of the virtual
request partitioning algorithm. In Section IV, we present the
results of simulation experiments we have conducted to com-
pare the performance of this algorithm to existing algorithms.
We conclude the paper in Section V.

II. RELATED WORK

Several studies [6], [7], [9] have addressed the virtual
request partitioning problem using max-flow, min-cut schemes.
With existing algorithms, it is possible to compute efficiently
the maximum flow between a pair of nodes and obtain the
minimum cut between them. The work in [7] recursively
uses the max-flow, min-cut approach to partition the network
into the desired number of clusters. In [6], [9], a clustering
approach based on Gomory-Hu trees is explored. A Gomory-
Hu tree represents the n − 1 minimum s − t cuts in a graph
of n nodes. By removing the k− 1 least weight edges of this
tree, a partition of the n nodes into k clusters is obtained that
is close to optimal. One shortcoming of this method is that
the resulting clusters may be highly imbalanced in terms of
the number of nodes they contain.

The virtual network embedding problem across multiple
domains has been considered in [10], where it was proposed
to use iterative local search (ILS) to partition the virtual
request. For this problem, ILS starts with a random clustering,



following which a sequence of solutions is generated by
randomly remapping some of the nodes to other clusters. Of
these solutions, the one that improves upon the current solution
the most is kept, and the algorithm iterates until a stopping
criteria is met. Despite the simplicity of this method, it is hard
to guarantee the quality of the solution within a limited time.
In a related study, a general procedure for resource allocation
in distributed clouds was presented in [8]. The objective was
to select the data centers, the racks, and processors with the
minimum delay and communication costs, and then to partition
the virtual nodes by mapping them onto the selected data
center and processors.

III. VIRTUAL REQUEST PARTITIONING

Virtual request partitioning is required in both the VNE
and VMP problems, whereby the objective is to partition the
virtual network into a set of clusters in order to minimize
the inter-cluster traffic. Figure III(a) shows a set of virtual
nodes that have been partitioned in three clusters such that
traffic between clusters is minimum. In the VNE scenario
of Figure III(b)), mapping each of the clusters to a different
domain will minimize onter-domain traffic (which presumably
is more expensive than intra-domain traffic). In the context of
the VMP problem in Figure III(c), assuming that each cluster
is assigned to a different processor or even rack, optimal
partitioning of the virtual request minimizes the traffic that
has to be handled by the aggregate and core switches of the
data center network, hence improve the scalability and stability
of the network.

In this section, we formally define the virtual request
partition problem as it applies to both the VNE and VMP
probleme, and then present an algorithm based on spectral
clustering.

A. Problem Statement

We model the communication between virtual nodes as
a traffic matrix W = [wij ], where element wij represents
the data rate from virtual node i to j. Each virtual node is
associated with a resource requirement ri, and each cluster h
is associated with a capacity threshold Caph.

With these definitions, partitioning the set of virtual nodes
into k clusters so as to minimize the inter-cluster traffic can
be formulated as the following interger linear program (ILP):

minimize
∑
k

∑
i,j

wij(1− ykij) (1)

subject to
∑
i

rix
k
i ≤ Capk, ∀k (2)∑

j

ykij = xki , ∀i, k (3)∑
k

xki = 1, ∀i (4)

xki = {0, 1}, ykij = {0, 1} (5)

The binary variable xki ∈ {0, 1} here indicates if virtual node
i is assigned to cluster k while binary variable ykij ∈ {0, 1}:

binary variables indicates if virtual nodes i and j are both
mapped onto cluster k.

Constraint (2) ensures that the amount of resources assigned
to each cluster will not exceed its capacity limit. Constraint (3)
guarantees consistency between decision variable x and y.
Constraint (4) makes sure that virtual machine i is assigned
to exactly one cluster. This formulation is equivalent to the
(k, v)-balanced partitioning problem, which is an NP-complete
problem [17]. We also note that by replacing “virtual node”
with ”VM” and cluster with “processor,” the above formulation
also expresses the problem of placing VMs onto processors so
as to minimize inter-processor traffic.

We apply a spectral clustering [12] approach to solving the
virtual request partitioning problem. The general procedure is
outlined as Algorithm 1 below, and is explained in detail in
subsequent sections.

Algorithm 1 Spectral clustering based Virtual Request Parti-
tioning Algorithm
Input:

W : n× n traffic matrix of VNodes
k: number of clusters
R = r1, r2, ..., rn: resource requirement of VNodes
Cap = cap1, cap2, ..., capk: capacity of each cluster

Output:
The cluster to which each VNode belongs

1: Construct diagonal matrix D with dii =
∑n

j=1 wij

2: Compute the unnormalized Laplacian L = (D −W )
3: Solve the generalized eigenproblem Lu = λDu
4: Obtain the eigenvector associated with the k smallest

eigenvalues
5: Let matrix U contain the above eigenvectors as columns
6: Let zi be the vector associated with ith row of U .
7: Cluster the points (zi)|i=1...n under the capacity con-

straints Cap via Constrained-K-means
8: Refine the partitioning result by Greedy-Refinement

based Simulated Annealing

B. Spectral Clustering
Spectral clustering [12] is used to find a set of clusters

such that the edges between clusters have low weights (in this
case, the weights represent inter-cluster traffic). An important
feature of spectral clustering is that, unlike the conventiona
min-max flow approach, it can avoid the creation of imbal-
anced partitions whereby some clusters are assigned a much
larger number of nodes than others. Given an n × n traffic
matrix W , the normalized Laplacian matrix is defined as
Lrw = D−1(D − W ), where D is a diagonal matrix with
element dii =

∑n
j wij .

Let P1, . . . , Pk be a partition of the set of n virtual nodes
into k sets (clusters), i.e., the sets Pi are pairwise disjoint and
their union is {1, . . . , n}. Further, let P̄i be the complement
of set Pi. We define the NCut metric as:

NCut(P1, P2, ..., Pn) =
k∑

i=1

cut(Pi, P̄i)

vol(Pi)
(6)



Fig. 1. Virtual request paritioning for Virtual Network Embedding and Virtual Machine Placement

where the numerator represents inter-cluster traffic (i.e., be-
tween nodes in Pi and nodes not in Pi) and the denominator
denotes inter-cluster traffic within cluster Pi.

Minimizing NCut will result in a set of k clusters that
have low inter-cluster traffic, while the presence of vol(Ai) in
the denominator will prevent the creation of clusters with few
nodes, and hence, cluster sizes will not be highly inbalanced.
The normalized Laplacian has the following property that
allows us to find an approximate solution to the NCut
problem efficiently: for a given matrix H , if we take hij as:

hij =

{
1/
√
vol(Pi) ifvi ∈ Pj

0 otherwise
(7)

then, the trace of the product HTLH can be written as
Tr(HTLH) =

∑n
i=1

cut(Pi,P̄i)
|vol(Pi)| = NCut(P1, P2, ..., Pn).

Also observe that HTH = I . Therefore, we can reformulate
the problem of minimizing NCut as follows:

minimize HTLH

subject to HTH = I (8)

hij = {1/
√
vol(Pi), 0}

We can obtain an approximate solution to this problem in
polynomial time by relaxing the last condition. According
to the Rayleigh-Ritz Theorem, the solution to the relaxed
problem would be to take H as the k smallest eigenvectors
of Lrw, i.e. the eigenvectors corresponding to the k smallest
eigenvalues. For the proof of this property and other details
relating to spectral clustering, please refer to [12].

Let matrix U be a n × k matrix that contains the above k
eigenvectors as columns, and let zi be the vector associated
with the i-th row of U . To obtain the final solution, a
clustering algorithm may be employed to cluster the points
zi, i = 1, . . . , n while satisfying the capacity constraints
Cap. Our approach to clustering is the topic of the following
subsections.

C. Constrained K-means

Conventional spectral clustering uses the k-means algo-
rithm [19] to cluster the data points zi. One drawback of
the k-means algorithm is that it may converge to a solution
in which some clusters have very few data points while
others are overloaded. Therefore, we use the constrained k-
means algorithm proposed in [13]. Given a set of data points,
the constrained k-means algorithm aims to find a set of
cluster centers C1, C2, . . . , Ck, such that the sum of distances
between each node and the center it is assigned to is minimal.
Specifically, the problem solved in [13] is:

minimize
m∑
i=1

k∑
h=1

Sih ·
(

1

2
‖zi − Ch‖22

)

subject to
k∑

h=1

Sih = 1, ∀i; Sih ≥ 0, ∀i, ∀h. (9)∑
i

Sih ≥ τh∀h

In this formulation, Sih is a selection variable denoting wheter
data point i belongs to cluster h. The last constraint is used to
control the size of each cluster, i.e., to ensure that each cluster
has size at least equal to τh.

In the virtual request partitioning problem, the resource
requirement for each cluster should not exceed its capacity.
To this end, we replace the constraint

∑
i Sih ≥ τh with∑

i riSih ≤ Caph, and follow the iterative method proposed
in [13].

Given n data points z1, z2, ..., zn, k cluster center points
Ct

1, C
t
2, ..., C

t
k at iteration t, and capacity limit Caph for

cluster h, the cluster center for iteration t + 1 is computed
using the following steps.

Cluster Assignment. Given the fixed cluster center points Ch,
find the selection variables so that the distance between the



data points and the corresponding cluster center is minimized.

minimize
m∑
i=1

k∑
h=1

Sih ·
(

1

2
‖zi − Ch‖22

)

subject to
k∑

h=1

Sih = 1, ∀i (10)∑
i

riSih ≤ Caph, ∀h

Sih ≥ 0, ∀i, ∀h

Cluster Update. Compute the center point at iteration t + 1
as:

Ct+1
h =

{ ∑m
i=1 St

ihx
i∑m

i=1 St
ih

if
∑m

i=1 S
t
ih > 0

Ct
i otherwise

(11)

It was shown in [14] that cluster assignment is is equivalent
to the Minimal Cost Flow (MCF) problem. We now show that
this cluster assignment subproblem can be solved optimally
within O(kn log n) time using a greedy approach.

We first reduce cluster assignment to the MCF problem
following the steps outlined in [14]. The supply from the
source node (src) and the demand by sink node (dst) is
equivalent to the total requirement

∑n
i=1 ri. src is connected

to all the data points (zi)|i=1,...,n, and each data point is
connected with all the cluster centers, while cluster centers
are connected to dst. Each edge is associated with a weight
tuple (Price,MaximumCapacity, F low). The Price from
data points to cluster centers are set to the correspond-
ing distance, while on other edges it is set to zero. The
MaximumCapacity from src to the data points is the
resource requirement ri and from cluster center h to dst is
Caph; on other edges, it is set to infinity. An example of
the reprsentation of a cluster assignment problem to an MCF
network is shown in Figure III-C(a).

Now, we show how this problem can be solved with a
greedy approach. First, ascending sort the price on all the
paths from src to dst and augment flow accordingly. When
we think of this problem in terms of negative cycle canceling
algorithm, each time we augment the flow by f on a path, we
create a reverse path with negative price on the residual graph.
An example can be found in Figure III-C(b) and (c).

A brief proof of optimality is as follows. Denote the iteration
to augment flow on path i as ti. At ti, we augment flow on
path i. For tj > ti, no negative cycle will form on the residual
graph involving the reversed path i, because the price of path
j will be no less than of path i. Also, for path j with ti¿tj ,
the price of path i is higher, hence a negative cycle will be
formed only when we take forward direction from on path j
and backward on i, which is impossible. This is from the fact
on path j, the capacity on src to a data point or from cluster
center ot dst is depleted. In the former case, we cannot find a
forward path from src to the data point, so path j is blocked,
and no cycle will form. The same applies to the latter case
when path i and j go through a different cluster center. If they
pass through same cluster center, then, we cannot augment the

flow on path i, because there is no available capacity from
the cluster center to dst, so no negative circle will form. In
conclusion, no negative cycle can be found and the solution
will be optimal.

At each step, denote the remaining capacity of cluster h
as Rmh

cap, and the remaining resource requirement of each
virtual node i as Rmi

res. Our constrained−k-means with
greedy cluster assignment algorithm is shown as Algorithm
2.

Algorithm 2 Constrained-K-Means
Input:

(zi)i=1,...,n: data points formed by eigenvectors
k: number of clusters
R = r1, r2, ..., rn: resource requirement of VNodes
Cap = cap1, cap2, ..., capk: capacity of each cluster

Output: Selection indicator Sih

1: Iteration t← 0, randomly initialize Ct
h ∀h

Remaining resource requirement Rmreq ← R
Remaining capacity Rmcap ← Cap

2: while Ct+1 6= Ct do
3: Compute pairwise distance between data points and

cluster centers D = {d11, d12, ..., dnk}
4: Ascending sort D to get Dasc = {d′1, d′2, ..., d′n∗k}
5: Clustering Assignment:
6: for j ← 1 to (n ∗ k) do
7: Choose point i and center point h associated with d′j
8: if Rmi

req < Rmh
cap then

9: Sih ← Rmi
req/ri; Rm

h
cap ← Rmh

cap − Ri
res;

Rmi
res ← 0

10: else
11: Sih ← Rmh

cap/ri; Rm
i
req ← Rmi

req − Rmh
cap;

Rmh
cap ← 0

12: end if
13: end for
14: Clustering Update:
15: update the center points according to (11)
16: t← t+ 1
17: end while
18: P ← round S without violating capacity constraint.

Note that the some of the resulting variables may be frac-
tional. We round the fractional selection variable by assigning
the node i to the cluster h with maximum Sih without violating
the capacity constraints. Observe that the number of fractional
elements will be smaller than the number of clusters, because
each element will not be fragmented unless the cluster it is
assigned to reaches its maximum capacity; after that instant,
the cluster will take no additional data points. As a result,
no other data points will get fragmented on that cluster, and
therefore, the number of fractional data points will be less
than the number of clusters. Assuming that n � k, i.e., the
number of data points is significantly greater than the number
of clusters, we expect that this greedy rounding scheme will
have only relatively small negative impact.



Fig. 2. MCF view of clustering assignment subproblem

D. Partitioning Refinement

In order to improve upon the partition obtained by the
Constrained-k-means algorithm, we employ a greedy re-
finement (GR) method that employs simulated annealing
(SA). The GR algorithm is inspired by an algorithm pro-
posed in [15], which improves the Kernighan-Lin (KL) al-
gorithm [18] to refine the bisection of a graph by iteratively
swapping the pair of vertices that would most significantly
reduce the edge cut until a local minimum is reached. The
GR algorithm extends the KL algorithm so as to handle vertex
weights, refines the multi-way partitioning and improves the
running time.

Algorithm 3 Greedy Refinement Algorithm
Input:

k: Number of clusters
Initial assignment of VNodes to clusters
Rmcap: Remaining capacity of each cluster
Cap: Maximum capacity for each cluster
Res: Resource requirement vector, remaining capacity

Output: Final assignment of VNodes to clusters
1: for v ← random permutation from 1 to n do
2: assume node v ∈ cluster l
3: ED[v]h|h=1,...,k ← 0
4: for u← 1 to n do
5: if node u ∈ cluster h then
6: ED[v]h = ED[v]h + wuv

7: end if
8: end for
9: h = argmax{ED[v]h s.t. Wi[v] +Rh

cap < Caph}
10: move v from cluster l to h
11: update Rmh

Cap

12: end for

For completeness, we present the GR algorithm as Algo-
rithm 3. Given a partition of the virtual nodes into clusters,
the nodes are checked in a random order. Consider node v in
cluster l. Denote ED[v]h as the total traffic between v and its
neighbors that belong to cluster h (where we allow h = l).
The algorithm moves vertex v to the cluster with the highest
value ED[v]h (or keeps it in the same cluster if it happens
that h = l.

We now integrate this GR algorithm within a new point
generation phase of SA: each time we randomly move a small
number of nodes nexc from one cluster l to another h, such that
(1) the node that is moved from l to h should be on the “brink”
(i.e., it should have at least one neighbor in the new cluster h),
and (2) this movement does not violate the capacity constraints
of cluster h. The exchange aims to introduce perturbation
to the current solusion so as to escape local minima. The
procedure to generate new points is detailed in Algorithm 4.
After the exchange is conpleted, we execute several iterations
of the Greedy Refinement algorithm to refine the result.

The GR algorithm constructs a solution that represents a
local optimum. The total outgoing weight of this solution is
considered as the energy function for the SA algorithm. The
SA algorithm will decide whether to accept this point or not.
Since the solution passed to SA is already a local optimum
point obtained by the GR algorithm, the SA moves around the
local optimum points to find the final solution. This operation
is more efficient than the naive implementation of randomly
generating new points and lettting the SA algorithm decide
which solution to take.

Algorithm 4 New Point Generation
Input:

k: Number of clusters
nexc: Number of nodes to exchange
Initial assignment of VNodes to clusters
Res = res1, res2, .., pn: Resource requirement vector
Caph = cap1, cap2, ..., capk: Maximum capacity

Output: P : Final assignment of VNodes to clusters
1: for v ← random permutation from 1 to nexc do
2: node v ∈ cluster l
3: if node v has neighbor ∈ cluster h and

Caph +Req[v] < Caph then
4: move node v from cluster l to h.
5: end if
6: end for
7: for t← 1 to tref do
8: refine the partitioning via Greedy Refinement
9: end for

Running time: The overall algorithm (Algorithm 1) consist
of three steps, namely, computing the eigenvectors of the graph



Fig. 3. Inter-cluster Traffic Ratio for k=3 Fig. 4. Running Time for k=3

Fig. 5. Inter-cluster Traffic Ratio for k=4 Fig. 6. Running Time for k=4

Fig. 7. Inter-cluster Traffic Ratio for k=7 Fig. 8. Running Time for k=7.

Laplacian, constrained k-means, and graph refinement. The
computation of the eigenvectors can be completed in O(n3)
time. For the constrained k-means, the clustering assignment
subproblem can be solved in O(kn log n) time, where k is
the number of clusters, and the cluster update problem can
be solved in O(kn) time. Let tc be the number of iterations
for constrained k-means to converge; then, the total running
time for the constrained k-means is O(ktcnlgn). Using an
adjacency table, each iteration of the refinement phase can
be completed in time O(E). If tr iterations are needed, the
refinement phase takes time O(trE). Overall, this algorithm
runs in O(n3 + ktcn log n+ trE) time.

IV. EXPERIMENTS AND EVALUATION

We now present the results of experiments we have con-
ducted to evaluate the performance of spectral clustering

(SC)-based Algorithms 1. We use two methods to refine the
partitioning: solely based on the GR algorithm (referred to as
SC) as well as the SA-based refinement approach (SC-SA)
we described in the previous section. We compare the results
to those obtained using a Gomory-Hu tree [9], the METIS
algorithm [16], and the ILS method [10].

We use randomly generated topologies to test the perfor-
mance of these algorithms. Each node and link in the network
is assigned a weight to represent the resource and traffic
requirements, respectively, and we also specify the maximum
available capacity for each cluster. For each radomly generated
topology, the vertex weight is uniformly distributed in (1, 2),
the edge weight is uniformly distributed in (20, 60). Our goal
is to partition the network into k = 3, 4, 7 clusters. For each
cluster, we set the maximal capacity to 103% of the average.



For the ILS algorithm, we set the number of iterations to be
5×104. We also set nexc = 15 for new point generation phase
in SA. We use two performance metrics: the inter-cluster traffic
ratio (ITR), i.e., the ratio of the inter-cluster traffic to the total
amount of traffic, and the running time of each algorithms.

Figures 3 and 4 plot the ITR and running time, respectively,
against the number of virtual nodes and for k = 3 clusters. For
the SA algorithm, we set the initial temperature to T = 104

and the maximum number of iterations to 150. We observe
that spectral clustering with SC-SA method is strictly better
than the other algorithms in terms of inter-cluster traffic
minimization. Compared with METIS, it reduces the inter-
cluster traffic by 1-12% percent, with an average improvement
of 5.0%. Compared with Gomory-Hu tree (respectively, ILS),
inter-cluster traffic is reduced by as much as 69% (respectively,
49%), with an average improvement of 57% (respectively,
24%). Also, compared with the SC only, SC-SA based refine-
ment produces an improvement of 4.6% on average. In terms
of running time, the SC and SC-SA algorithms perform similar
to the Gomory-Hu tree method, taking just a few seconds for
virtual requests with 400 nodes. The running time of METIS
is significantly smaller, especially for large problem instances,
while ILS takes about one order of magnitude longer than the
three algorithms above.

The second set of simulation experiments is to partition
the virtal request into k = 4 clusters, and the results are
shown in Figures 5 and 6. We kept the initial temperature
for SA to T = 104 and the maximum number of iterations as
150. The SC algorithm produces clustering solutions that, in
terms of inter-cluster traffic, outperform those produced by the
METIS, Gomory-Hu tree, and ILS schemes by 3.3%, 45%, and
34%, respectively, on avearage. The SC-SA algorithm further
reduces inter-cluster traffic by 2.7% on average, compared to
SC. The running time results are similar to the experiments
with k = 3 above.

Finally, Figures 7 and 8 plot the results of the third set
of simulation experiments where we set k = 7. The initial
temperature for SA was set to T = 105 and the maximum
number of iterations to 250. The results are similar to those of
the first two experiments, in that, on average, the SC algorithm
performs 3.5% better than METIS, 42% better than Gomory-
Hu tree, and 24% better than ILS. Also, compared with SC, the
SC-SA algorithm reduces inter-cluster traffic by a further 4%
on average. In terms of running time, the relative behavior of
the five algorithms is also similar to the last two experiments.

From this set of simulations, we conclude that the spectral
clustering method with SA refinement produces the best
solutions in terms of minimizing the inter-cluster traffic. It also
compares favorably to existing clustering approaches based on
ILS and Gomory-Hu tree, in terms of running time. We also
note that, while METIS is faster than all clustering methods
considered in our study, it partitions a graph into a set of
components of roughly equal weight, while our proposed
scheme is more general.

V. CONCLUSION

We have designed a network-aware virtual request parti-
tioning scheme that produces clusters that minimize the inter-
cluster traffic. We use a constrained k-means algorithm in the
clustering phase of spectral clustering to ensure that cluster
capacity constraints are met. Also, we have developed an
algorithm based on simulating annealing to efficiently refine
the resulting clustering solution. Our algorithm constructs
high-quality solutions within a reasonable amount of time and
compares favorably to existing approaches.

REFERENCES

[1] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

[2] N. Chowdhury and R. Boutaba, “Network virtualization: state of the
art and research challenges,” Communications Magazine, IEEE, vol. 47,
no. 7, pp. 20–26, 2009.

[3] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” Communications Surveys & Tutorials, IEEE, vol. 15, no. 2,
pp. 909–928, 2013.

[4] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” Communications Surveys &
Tutorials, IEEE, vol. 15, no. 4, pp. 1888–1906, 2013.

[5] O. Biran, A. Corradi, M. Fanelli, L. Foschini, A. Nus, D. Raz, and
E. Silvera, “A stable network-aware vm placement for cloud systems,”
in Proceedings of the 2012 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (ccgrid 2012), pp. 498–506, IEEE
Computer Society, 2012.

[6] Y. Xin, I. Baldine, A. Mandal, C. Heermann, J. Chase, and
A. Yumerefendi, “Embedding virtual topologies in networked clouds,”
in Proceedings of the 6th International Conference on Future Internet
Technologies, pp. 26–29, ACM, 2011.

[7] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual network
provisioning across multiple substrate networks,” Computer Networks,
vol. 55, no. 4, pp. 1011–1023, 2011.

[8] P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E. Goncalves,
D. Sadok, J. Kelner, B. Melander, and J.-E. Mångs, “Resource allocation
for distributed cloud: concepts and research challenges,” Network, IEEE,
vol. 25, no. 4, pp. 42–46, 2011.

[9] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

[10] A. Leivadeas, C. Papagianni, and S. Papavassiliou, “Efficient resource
mapping framework over networked clouds via iterated local search-
based request partitioning,” Parallel and Distributed Systems, IEEE
Transactions on, vol. 24, no. 6, pp. 1077–1086, 2013.

[11] D. Wagner and F. Wagner, Between min cut and graph bisection.
Springer, 1993.

[12] U. Von Luxburg, “A tutorial on spectral clustering,” Statistics and
computing, vol. 17, no. 4, pp. 395–416, 2007.

[13] P. Bradley, K. Bennett, and A. Demiriz, “Constrained k-means cluster-
ing,” Microsoft Research, Redmond, pp. 1–8, 2000.

[14] P. S. Bradley, O. L. Mangasarian, and W. N. Street, “Clustering via
concave minimization,” Advances in neural information processing
systems, pp. 368–374, 1997.

[15] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme
for partitioning irregular graphs,” SIAM Journal on scientific Computing,
vol. 20, no. 1, pp. 359–392, 1998.

[16] G. Karypis and V. Kumar, “Metis-unstructured graph partitioning and
sparse matrix ordering system, version 2.0,” 1995.

[17] K. Andreev and H. Racke, “Balanced graph partitioning,” Theory of
Computing Systems, vol. 39, no. 6, pp. 929–939, 2006.

[18] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” Bell system technical journal, vol. 49, no. 2,
pp. 291–307, 1970.

[19] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the fifth Berkeley sympo-
sium on mathematical statistics and probability, vol. 1, pp. 281–297,
Oakland, CA, USA., 1967.


