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Abstract—Elastic optical networks (EONs) are considered as applies centralized control. At the same time, SDN supports
the most promising technology for interconnecting data cen- programmability of network functionalities and protogols
ters. With the rapid growth of inter-datacenter traffic, power | nich provide a high degree of flexibility for the functions

consumption of EONs becomes a significant challenge. In this d . ith lobal Vi Theref t camsi
work, we present a lightpath management algorithm that uses and services with a giobal view. 1hereiore, operators Si

traffic prediction techniques to eliminate unnecessary lightpath the application of SDN techniques to control globally netwo
termination and re-establishment so as to decrease switching and application resources in DCs and EONSs interconnecting
power and enhance the energy efficiency of the network. Our them [5].

algorithm builds upon the centralized control and capabilities The accelerating growth of DC traffic means that the power

of software defined networking (SDN) technology. Numerical . . .
results show that the proposed algorithm is effective in achieving consumption of the inter- and intra-DC networks becomes

substantial savings in power consumption while maintaining a More prominent and a significant fraction of the power con-
bandwidth blocking ratio at levels comparable to those of earlier sumed by servers [6]. In fact, how to effectively reduce the

algorithms. power consumption of EONs is a topic that has received signif
icant attention within the research community recently Fgr
instance, a set of power management primitives for network
elements were introduced in [8]; these primitives are used t
With the proliferation of cloud computing, data centemonitor traffic load conditions and turn off network elengent
(DC) technology and facilities that provide informationrstge (e.g., transponders, etc.) during idle periods. In this mean
and processing, have emerged as the key infrastructure fiower consumption due to elements that are active unneces-
supporting essential Internet functionality and servicBse sarily may be avoided. On the other hand, when a network
rapid growth in Internet users, the explosive increaseaffitr element in the off state receives new work, a long wake-up
demands, and the continuous evolution of service modéiime may be incurred before it returns to fully operational
necessitate an increase in the scale of DC facilities, whiskatus, introducing an undesirable delay in respondingeio n
in turn leads to higher requirements in terms of inter-D@affic demands. Therefore, it may be unwise to keep theeentir
communication to support data backup, data synchronizati@lement in sleep status. To address this issue, a fine-graine
and collaboration between different DCs. The demands glacenergy-efficient consolidation strategy was presented9in [
on inter-DC communication call for appropriate networkitec that applies a sleeping scheme at the level of an element’s
nologies to interconnect DCs effectively and efficiently. components. Specifically, with this strategy, some comptme
Elastic optical networks (EONS) [1], [2] are widely regadde of an element (e.g., transponder) are kept in a working state
as the most promising technology for interconnecting DCwjhile others are kept in sleep mode, so that the transponder
and have been studied extensively. EONs utilize bandwidiith the active part can respond to newly arriving requests i
variable optical transponders (BV-OT) and bandwidth J@éa a timely manner without incurring a wake-up delay. However,
optical cross-connects (BV-OXC) that operate on a set since the capacity of traditional transponders is highanth
spectrally-contiguous frequency slots to set up lightpatithe bandwidth requested by a typical connection, the result
Since these frequency slots occupy a much narrower bamsldower lightpath utilization. The work in [10] introduceal
width than the conventional wavelength channels, EONs caliceable-transponder that can divide a physical trardgon
provision bandwidth adaptively according to actual traffimto multiple sub-transponders, each of which can transmit
demands [3], and hence may meet the requirements of DCreceive an independent elastic lightpath. The flexibitit
traffic. At the same time, the technological heterogeneity atransponder provisioning can be achieved in this way so that
resource diversity between DC and EONs presents a challengean save much power. However, it should be noted that the
In order to control the heterogeneous resources uniformthansponders which can be sliced are generally more exgensi
and implement a common overall network management atithn those that do not have this functionality and using more
control strategy, software defined networking (SDN) endblef them will increase the overall network cost.
by the OpenFlow protocol has been introduced into the dptica At the traditional transponder level, the authors of [119-pr
network [4]. The SDN is a virtualization technology thaposed an algorithm named energy-efficient manycast (EEM)
abstracts heterogeneous resources via a unified interfate #@ minimize the power consumption by jointly considering th
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network elements, including BV-OT, BV-OXC, erbium doped SN § o

fiber amplifier (EDFA) and IP Router. In this study, it was
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! OF-R i
shown that the power savings can be significant when all the . § o 0-0XC
network elements contributing to power consumption areriak /),// ‘,' [ \.‘\\_\ M
into consideration. The authors of [12] proposed an algorit openm/w,/‘,- N UG
named dynamic scheduling and distance adaptive trangmissi A R N ’
(DS+DAT) to exploit the over-provisioning capacity in EONs e /-/ Pl NN o

under SDN architecture. The DS+DAT scheme provisions just
enough transponders and grooms estimated future traffic tos
these transponders; the future traffic is estimated by apply !
an auto-regressive integrated moving average method. As a.
result, both the amount of lightpaths and the number of
transponders is reduced, saving power.

It has been estimated [13] that the amount of power con-
sumed due to frequent establishment of lightpaths corta#buFig- 1. Software defined EONs for DC application
to up to 15% of the average power consumption in realistic
scenarios. Existing power management strategies for EON SDN controller )

including the ones discussed above, do not address thistasp

________

lightpaths are torn down as soon as they become idle, ev Traffic %
if future traffic demands might make use of these lightpath{  ‘anagement prediction algorithm

The premise of our work is that delaying the tearing down @
lightpaths in anticipation of future traffic demands wilat&to
less frequent establishment of lightpaths in the netwoult; ¢
ting down on power consumption. Thus, our work makes thre
contributions. First, we develop a power consumption mod
that takes into consideration power consuming resources
both the EON and DCs, and also accounts for the pow
consumed in setting up lightpaths. Second, we develop )
model for predicting future traffic demands by combining . OF-R ' l OF-OXC l k DC-S }
concepts from back propagation (BP) neural networks a
particle swarm optimization (PSO). Finally, we propose @&,ne - Others -
parameterized, power-aware lightpath management (PALMs <
algorithm that extends the lifetime of idle lightpaths witre . . ,

. . . Fig. 2. The functional modules of controller in software defined
goal of serving future demands and avoiding the establishme-~.< 0 pc application
of new lightpaths. Numerical results to be presented indica
that our approach is successful in achieving significantgsow

savings compared to existing approaches. converge the network state information, as well as respond t

The rest of this paper is organized as follows. Section jiyhtpath provisioning requests in a timely manner acaugdi
describes the network architecture and presents the Coggthe obtained network resource information.

sponding power consumption model. The traffic prediction
model and PALM algorithm are discussed in Section Ill. We )
present numerical results in Section IV, and we conclude the Functional Models of SDN Controller
paper in Section V. In order to achieve our power saving strategy for the
whole network, the functionality of the SDN controller must
be extended as shown in Figure 2. Specifically, the SDN
controller consists of six modules, namely, resource manag
ment, database, topology management, traffic management,
We consider the software-defined EON architecture foraffic prediction and our proposed power-aware lightpath
interconnecting DCs as illustrated in Figure 1. The architee management (PALM) algorithm. The basic responsibilitied a
includes OpenFlow-enabled IP Routers and BV-OXCs, whiéhteractions among the functional modules are as follovhe T
we refer to as OF-R and OF-OXC, respectively. Other elememesource management module can interact with the OF-R mod-
in the architecture, including EDFAs, BV-OTs and the DCale and the DC-S module to collect network resource informa-
with DC servers (DC-S) are also shown in the figure. Wion of the underlying EONs interconnecting the DCs and then
assume that integration of the EON resources (i.e., netwakstract them into a unified resource. The database contains
elements) and DC resources (i.e., servers) is realizedheia teal-time information on the resources of the underlying
SDN controller at the top of the figure. Specifically, the SDMetwork, including optical nodes resources, lightpatioveses
controller communicates with EON and DC elements via thend application resources of DC-S, which can obtained from
OpenFlow protocol, and hence, it may quickly and accuratellye resource management module. Topology management is
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II. NETWORK ARCHITECTURE AND POWER
CONSUMPTIONMODEL



mainly used for the generation of network topology, which
needs to learn the entire network resource information fitwen

TABLE |
NOTATIONS USED IN OURMODEL

database module. The traffic management module is concern@dtation

Meaning

with collecting and storing traffic information of opticabdes P
and lightpaths maintained in the database module, and with Z
monitoring the traffic status of the whole network in realdim S
Historical traffic information stored in the traffic managemh T
module is delivered to the traffic prediction module to estien
demand for lightpaths in the near future. The PALM algorithm p,

module is executed based on the result of the traffic prexdicti PIJ‘;
and current resource information stored in the traffic prtboin PF
and database modules, and generates lightpath provigionin PJ?
decisions. Pa
Py

Py

B. Power Consumption Model Vﬁz‘%
i

Returning to Figure 1, we can see that the underlying Qi
network includes several network elements (i.e., OF-R, OF- %?j
OXC, BV-OT, and EDFA) and application servers (i.e., DC- K.
S). According to [7], the network elements are considered th Mn»
main sources of power consumption. However, since our goal Ig;
is to improve the energy efficiency of the network architeztu xzd
as a whole, the power consumption of the DC-S cannot be yag
ignored. Hence, we take into consideration both the networkp,’ ,
elements and application servers in our model. p}j

As is common in studies of network element energy con- p7

Total power consumption in network

Set of nodes

Set of BV-OTs of a physical node

Set of DC-Ss

Set of traffic node pairs

Total fixed power consumption

Total dynamic power consumption

Total switching power consumption

Total fixed power consumption of EDFAs
Total fixed power consumption of BV-OTs
Total fixed power consumption of OF-Rs
Total fixed power consumption of OF-OXCs
Total fixed power consumption of DC-Ss
Total dynamic power consumption of BV-OTs
Total dynamic power consumption of OF-Rs
Number of EDFAs on lightpattij

Number of BV-OT pairs on lightpath ij
Number of OF-Rs on lightpatky

Binary, equal to 1 if traffic load arrive at node
Binary, equal to 1 if DC-S stays working

Set of add/drop ports of OF-OXC in node
Set of the degree of node

Traffic demand (Gb/s) of node-paitl

Binary, equals 1 if traffic between node-paif uses lightpathj

Binary, equals 1 if lightpathj uses BV-OTsa, b at nodes, j
Power consumption for BV-OTb to set up lightpath;
Holding power of lightpathij

Transmission power for traffic load transverse lightpgth

sumption, we also assume that the power of all network
elements and application servers includes two parts: a fixed
part that is independent of traffic served, and a dynamic part
that is dependent on traffic. The fixed part contributes @orist
power while the element or server is in operation, while th.lea
dynamic part represents variable power consumption that
proportional to the traffic that the element or server hasmdle
In addition, our model accounts for the energy consumed
establishing lightpaths in the network. As explained in][14
turning on network elements for setting up lightpath conssm p, =
a considerable amount of energy which increases lineatly wi
the bandwidth of the served traffic. Importantly, as the wtud
in [13] has shown, energy consumption due to powering on
switching elements for setting up a lightpath, is about four +
times that consumed by the same elements for switching a
traffic serving lightpath. Accordingly, our study consislel|
three components: fixed and dynamic power consumption of  +
network elements and application servers, and switchimgepo
consumption for establishing lightpaths.

In deriving the power model, we will use the notation listed
in Table I. Let us denote the three components aboveas
Py, andP.. Then, following our discussion, the overall power

Now note that the infrastructure network consists mainly
of EDFA, BV-OT, OF-R, OF-OXC and DC-S. According to
ble IlI, all these elements have fixed power consumption
dﬁring network operation. Therefore, the fixed compon@nt
frc1)1ray be obtained as follows:

Pl +PL+PL+ P+ P!

Z Z 110 x Wij + Z Z 120 x OU

iEN jEN:j#i iEN jEN:j#i

Z Z 1329 x Qi

iEN jEN:j#i

S0+ Y 85xd+ Y 50xg | xQ,
neN deD, geEM,,

> 180 x K, 2)
seS

On the other hand, per Table Il, the EDFA, OF-OXC

consumption of the network architecture depicted in Figure@"d DC-S have no dynamic power consumption. Thus, the

may be calculated as:

Pzpf+Pd+Pe (1)

Typical power consumption values for the network elements -

and DC-S are listed in Table Il, and have been taken from the
studies in [15], [16]. For simplicity, in this work we assume

that the conventional IP Router and BV-OXC consume the 4

same power as the OF-R and OF-OXC, respectively.

P, =

dynamic power of the whole network is:

P¢+ Pg
>y (0.18 X > Raa X X;d>
1EN jJEN:j#i sder

DD IS 3) 9l (XED SENPEH) IC

i€EN jJEN:j#i a€EZ bEZ sder



TABLE Il
TypPicAL POWER CONSUMPTION OFNETWORK ELEMENTS AND APPLICATION SERVERS

Network element Fixed power consumption (W) Traffic-depengenter consumption (W/Gb)
EDFA 110 0
BV-OT 120 0.18
OF-R 1329 0.47
OF-OXC 150 4+ 85d + 50g (d: node degreeg: number of add/drop capable ports) 0
DC-S 180 0
Finally, the total switching power for setting up lightpath _ back propagation of error message

in the network may be derived as:

Pe=) 2 DD 4)

iEN jEN:j#iaEZ bEZ

Let p”/ denote the power consumption of an active lightpa
ij. p is composed of holding power (necessary to kee X;
the lightpath on) and transmission power (necessary tese
traffic). Hence, the power consumptigri’ for an active
lightpathij may be written as:

pY =pi +py G " /
In the above expressi‘qm’}j denotes the holding power (anput Hidde,n Output
fixed component) ang’/ denotes the transmission power (ilayer layer layer
dynamic component). The EDFA, BV-OT and OF-R contribut forward propagation of information

to the fixed componem? to keep the lightpath on, while the
dynamic componeryifij is proportional to the amount of traffic
carried by the lightpath. Therefore, we may express the two
components of power consumption for active lightpaths as:

Fig. 3. Configuration of a 3-layer BP network model

sufficient number of lightpaths must be on to carry the traffic
avoiding unnecessary lightpath teardown and setup opesati
may have a significant impact in power consumption across
the network. Our premise is that power-aware management
) of lightpaths in such a network environment may provide

pjﬁ =110 x Wij + 120 x Oy + 1329 x Q; (6)

significant power savings, and in the following we present
our approach to reducing the frequency of power-inefficient

. . o (7)_ lightpath setup operations.
Finally, according to [13], the switching power of setting

up a lightpath is about four times that of the same lightpath
in active mode. Therefore, following the above analysig, th
switching power involved in setting up a lightpath is aé. Traffic Prediction
follows: Consider a lightpath that is about to be terminated. If
we knew, or could predict, that the same lightpath will be
pijab — 4 = 4(10;]’ +p3j) negded again_ a_short_time later, we could exter_1d_ its lifetime
' until new traffic is available to use it, hence avoiding power
= 4(110 x Wij +120 x O + 1329 X Qi consuming operations to tear down and re-establish the same
+ 0.18 x Z deijd lightpath. LetC(¢) denote the traffic load of some lightpath
sder at time¢. Our goal is to use appropriate prediction methods
to obtain an estimate of the lightpath’s traffic load in the
+ > (0-47 Xy RwY;ﬂ)) (8) near future. Note that DC traffic characteristics are ciosel
a€Z bez sder related to user behavior, which in turn is affected by both
Due to the high-bandwidth characteristics of inter-DC-trakubjective and objective factors. Therefore, networKitréf a
fic, the transmission power of lightpaths to serve this taffiDC scenario is nonlinear and exhibits self-similarity aodg-
as shown in expression (7), is substantial. Consequehtty, term correlation, making traditional linear prediction dets
switching power of setting up a lightpath, as expressed)i (&insuitable for estimating accurately future traffic loaB®
is also considerable and represents a significant fractfon neural networks [17], on the other hand, have excellent non-
the overall power in the network. While there is not muchnear and strong self-learning characteristics, and esgmt
one can do with respect to transmission power (after all,promising prediction models for complex DC traffic.

pi =018 x > RaXj'+> > (0'47 * D Rl

sder a€Z beZ sder

IIl. ALGORITHM DESIGN



The learning process of the BP neural network is composexploit a particle swarm optimization (PSO) algorithm in8]1
of forward propagation of information and back propagatibn to improve the BP neural network model. The excellent global
error messages, as shown in Figure 3. In forward propagatioptimization ability of the PSO algorithm make it a natural
the input signal is transferred from the input layer to thgpati candidate for training the BP neural network model so as to
layer through one or more hidden layers. If the output layeptimize its weights for short-term network traffic foretag.
does not obtain the desired result, then the error message iSimilar to the Genetic algorithm, PSO is a population-
returned via back propagation, and the thresholds and wgeighased algorithm with each individual or candidate solution
are adjusted by constant training until the error is reducéeing called a “particle”. The basic PSO model consists
below a specified threshold [17]. In this paper, we use tlod a swarm of particles moving in d-dimensional search
three-layer BP network model depicted in Figure 3 space where a certain quality measure, the fitness, can be
The BP neural network of Figure 3 hasnput layer nodes, calculated. Each particle has a position, represented bytawv
m hidden layer nodes, and one output layer nodeabgti = x; = (241, Zi2, . - ., iq), @nd a velocity, represented by vector
1,...,n,5=1,...,m, denote the weight of the link betweenv; = (v;1,v;2,...,v:4), Wherei is the index of the particle.
input node: and hidden nodg, andw;, be the weight of While exploring the search space for an optimal solutionheac
the link between hidden nodgand output node. Then the particle remembers two variables: the best position thisgia
output of the hidden layer is expressed as: has found so far, denoted by, and the best position found by
. any particle in the swarm, denoted py [18]. As time passes,
- . each particle updates its position and velocity to a newevalu
hy =1 <; Wijte = 9j> J=12m ©) according to expressions (14) and (15).

whered; is the threshold of the hidden layer nodes, &iig is

a nonlinear transfer function. In this paper, we use the sigm vi(t+1) = wwvi(t)+er rand(0,1)(pi — z4(t))
function: . + ¢ rand(0,1)(py — x;i(t)) (14)
fl@) =1 pm

as the transfer function. Thus, the outputs of network may be st +1) =20 +vit+1) i=1,2,....n (15)
obtained as: i i i 3 2y

R In the above expressions, is called the inertial factor and
) = ;hjwj" -0 (10 is described by the following equation:
whered is the threshold of the output layer node. W= Wiy — max — Wmin 4. (16)
Given the desired actual outpat(¢) and neural network Trnax
outputC'(t), the network erroe is calculated as: where T .. IS the number of iterative generations,is the
1 ) 2 present iterative generation; and ¢, are positive constants
e=3 (C(t) —C(t)) (11) referred to as acceleration constants, amchd(0,1) is a

In the training process, the weights and thresholds arrandom number uniformly distributed in the range1]. In

. 2 e i ggneral, the value of each componentvjinmay be clamped
adjusted to mlnlmlz.e the errer. Specifically, the weights are {0 the raNgE —vpmax, +vmas] t0 CONtrol excessive roaming of
updated as follows:

particles outside the search space. The particle movesdewa
a new position according to expressions (14) and (15). This

- . rocess is repeated until a user-defined stopping critasion
wij = wij +nhi(1—hj); ijo e ,i=1,2...,n Feached. P bPiNg

j=1 . . L. .
Wi = wyetnhye j=1,2,....m (12) We use the PSO algorithm to train the initial weights (

andwj,) and thresholdsf; andd) of the BP neural network.
wheren is the learning rate, a positive constant less than The optimized weights and thresholds are then used to carry
The threshold is also updated as: out the BP algorithm only if the error trends to a certain ktab
value. The improved algorithm has the advantage of faster
convergence and more accurate prediction.

9j = 9j+77hj(1—hj)2wjoe 7=12,....m
j=1

B. Proposed Algorithm
0 = 0O+e (23)

The objective of the proposed power-aware lightpath man-
The BP neural network model is the most widely usedgement (PALM) algorithm is to avoid unnecessarily tearing
prediction model, as it has the advantages of simple stridown a lightpath between a source-destination pair if there
ture, strong plasticity, and excellent ability of approgiting is a reasonable expectation that there will be a request for
nonlinear mapping. But there are two obvious disadvantagestting up a lightpath between the same pair of nodes in the
in this model: first, the model may often get trapped in aear future. By keeping the lightpath about to be teared down
local minimum value, and second, it converges slowly. Tactive, the switching power involved in the establishmeint o

overcome these drawbacks of BP network, in this work wee future lightpath can be avoided; as a result, the tétm



in expression (1) will be reduced. More specifically, once thAlgorithm 1 Power-Aware Lightpath Management (PALM)
SDN controller detects an idle lightpath (the lightpath ® binput: An idle lightpathl; to be teared down, initial network
removed) from the database module, it uses the prediction topology G,;

algorithm based on PSO-BP that we discussed in the previddgtput: The holding timet,, for idle lightpath, total power
subsection, to determine lelding timet;, for the lightpath. consumptionpP;

The maximum holding timet,,., of the idle lightpath may 1: for VC do

be obtained from expression (17): 2. C(t) < PSO-BP(s,t < tmax,d);
3: end for
pgab xT = p}J X tmax a7) 4 for VI; do
where T is the time it takes to set up a lightpath within the 2: % :__0('8 d);
SDN architecture. In [19], the authors have estimated that t 7 ifnCl.(t) ’> 0 then
control plane latency for setting up a lightpath is arounthg3 o th"{_ +
i.e., T = 23ms, and this is the figure we use in this work. 9: break',
Combining the above with expressions (5) and (17), we obta'r&': end if '
bmax 8S: ) o 1. if Cp, +Cp, (t) > MY% then
Pl xT A7 +p) x T 122 if P,(Cp,.(t)) < Pr,.(Cr,.(t) then
tmax = - ij = ij (18) 13: l; — Cme (t);
Py Ps 14: ty «— 1t
We now focus on estimating accurately the holding times. Gy, — Cy, +Cp, (t);
t, of an idle lightpath. To this end, we use the predictiong. UpdateG,;
algorithm based on PSO-BP, that we described above. Spegi- else
ically, we decide to keep an idle lightpath on (i.eald it in  1g. Gy —li;
active status) for a value of time equaltfQ ¢, < t,,44, if the 19 UpdateG,;
prediction results indicate one of two possibilities: 20: end if

o Case 1: A traffic demand that will request the idle 21: end if
lightpath is expected to arrive at tintg in the future. 22: end for

« Case 2:Atraffic request for a lightpath between the sames: P = Py + P, + P, ty;
source-destination pair as that of the idle lightpath, lbut o
a different physical path, is expected to arrive at titpe

In this case, we reroute the new traffic request to the idige |ightpathsL,, (i.c., L,..) at timet leads to a total traffic
lightpath only if (1) the new traffic would lead the uti-|oaq ahoutr,,, beyond the pre-established threshold value,
lization of its original lightpath above a certain threshol ,; anq the power consumption of the traffi, _(¢) on the
MY, and (2) transmission on the idle lightpathresults e |ightpath; is lower or equal than the power of the traffic
in power consumption no greater than transmission on (1 on its original lightpathi.,.,, thenC';_(¢) is rerouted
original lightpathL,,,.: Fi,(C(t)) < Pr,, (C(¢)). Finally, 5 the idle lightpathi;, the holding timet, is changed ta,
we note that the lightpath spectrum must satisfy the,q the 10ad onl; as well as the network topolog#, are
spectrum continuity and spectrum contiguity constrainffyqjated (Lines 11-16). Note that if the sum of bandwidth
when the routing is carried out [1], [20]. of the rerouted traffic achieves the highest capacity of the
A pseudocode description of the PALM algorithm is prople lightpath, the rerouting process is terminated. THe id
vided as Algorithm 1. The traffic prediction module firstlyightpathi; will be torn down if the power consumption of the
run the prediction algorithm based on the PSO-BP neutghffic C;, () on the idle lightpath, is higher than the power
network to predict the traffic load for every lightpath withi of the trafficC,,_(¢) on its original lightpathL,,, at timet,
the nextt,,., time units, and the valu€'(¢) of traffic for every  after whichG,, is updated (Lines 17-20). Then the algorithm
lightpath at timet(t < tmax) is estimated and stored in thereturns the holding time and the power consumption of whole

module (Lines 1-3). network based on expression (1) (Line 23).
For each idle lightpatth; between a source destination pair
(s,d) to be torn down, the,, for the /; is initialized to zero. IV. NUMERICAL RESULTS

And then the traffic management module searches all othe
lightpaths L,, between(s,d) (Lines 4-6). Then the PALM
module checks every lightpath’s traffic load at time’(t))
stored in the traffic prediction module. If it finds a traffic ) )

request will arrive to the idle lightpath, i.e., there is a traffic A- Simulation Setup

load Cy, (t) to be carried on lightpatly, thet will be this idle To assess the benefits of the proposed algorithm, we
lightpath’s holding timef;, (Lines 7-8).Then it break the loop leverage the Mininet+Floodlight and Python simulationltoo
to returns the idle lightpath’s holding timg and the power building test platform. For the experiments, we use the 24-
consumption of whole network based on expression (1) (Limede, 43-link USNET network topology shown in Figure 4,
23). Otherwise, if the newly arriving traffic’;,, _ (¢) to one of with DCs at nodes 6, 8, 9, 15, 18, and 22 [7]. We assume that

We now present a set of simulation results to evaluate the
performance of the proposed PALM algorithm.
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Fig. 4. USNET topology

Total Power Consumption(TPC,normalized)
w
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there is one pair of bi-directional fiber on each link, and the 10 15 20 25 30 35 40 45 50
available spectrum width of each fiber is set to 4000GHz with Aggregate Monthly Traffic(exabytes)
a slot width of 12.5GHz. In our simulation, we set the capacit
of each transponder to 100Gb/s, the modulation format f§: 5 Algorithm comparison with respect to TPC (normalized)
4-QAM, and the traffic demand is the aggregate monthly
traffic from [12]. The power consumption values for each
element and application server in the network are thosedlist™ )
in Table II. We further assume that flow requests to DC nodes® Total power consumption (TPC) across the EON and
arrive following a Poisson process, and their bandwidth is DCs. . _
randomly and uniformly distributed between 12.5 Gbps to 100 The number of new lightpaths established (NNLE).
Gbps. The traffic holding time of each request is expondytial * The percentage of power saving (PPS) of the PALM
distributed with unit (normalized) mean [21]. variants relative to EEM and DS+DAT.
In the experiments, we compare three algorithms: « The bandwidth blocking ratio (BBR), i.e., the percentage
1) The energy-efficient manycast (EEM) algorithm of [11]. of the _amount of blocked traffic in relation to the total
The EEM algorithm considers all the network elements bandwidth requested.
contributing significantly to power consumption and
turns them off during idle periods. B. Simulation Results
2) The dynamic scheduling and distance-adaptive trans- et us first consider the total power consumption (TPC)
mission (DS+DAT) algorithm proposed in [12]. Themetric. Figure 5 plots the average TPC achieved by the variou
DS+DAT algorithm employs a power saving strategglgorithms listed above, as a function of the monthly agaieg
that dynamically adjusts the transponder capacity amffic load. As expected, power consumption increases with
the distance adaptive transmission. the amount of traffic carried by the network. Importantly, we
3) Our proposed PALM algorithm described in the previoushserve that all variants of the new PALM algorithm achieve
section. We use four different values for the thresholdwer consumption compared to the EEM and DS+DAT
M that denotes the utilization of the lightpath/ = algorithms for the same monthly aggregate traffic volume.
60, 70,80, 90%, hence we refer to the various variants oAlthough the PALM variants keep idle lightpaths on (i.e.,
PALM as PALM-60, PALM-70, PALM-80, and PALM- even when they do not carry traffic), the power savings from
90, respectively. Note that the smaller the valueldf not having to tear lightpaths down only to activate them
the greater the number of attempts of rerouting theyain a short time later when a new traffic request arrives,
lightpath. more than compensates for the power needed to maintain the
All the data for the PSO-BP prediction algorithm argdle lightpaths. This result indicates that a reduction lie t
taken from the web site http:/noc.net.internet2.edutequency of setting up lightpaths indeed leads to lower TPC
Also, the parameters of the PSO-BP model are set @ the whole network. We also note that the network expends
follows. The BP neural network is a three-layer structuri¢iore power under PALM variants with higher threshdifl
of n = 6 input layer nodesyn = 13 hidden layer which denotes the utilization of the lightpath. Recall that
nodes, and one output node; the training time is 108maller values of\/ imply higher probability of rerouting,
the training target is 0.00001; and the learning rate ind hence a higher probability of keeping an idle lightpath o
0.01. The PSO algorithm parameters are set to [22]: tgnich in turn decreases the switching power of the network.
species scale is 30; the evolution algebra is 100 times;Figure 6 provides a different perspective of the power sav-
the accelerating constants are = c; = 1.49445; and ings possible by deploying our PALM algorithm. Specifically
the particle position and velocity value intervals are [-%he figure plots the average percent power savings (PPS)
5] and [-1, 1], respectively. achieved by the PALM-80 algorithm (i.e., PALM with thresh-
We compare the various algorithms with respect to fowld M = 80%), relative to the EEM and DS+DAT algorithms.
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Fig. 6. Algorithm comparison with respect to PPS

As we can see, PALM-80 reduces power consumption between
31-36% compared to EEM, and between 11-16% compared o.1
to DS+DAT. Importantly, PPS increases with traffic load: asg
expected, the higher the traffic load, the more opportumitieéﬁ

to hold an idle lightpath on, as it is likely that a new traffic %
request may arrive soon. Nevertheless, the PALM algorithm iﬁé
successful in providing meaningful power savings across th-g 1E-3
traffic loads that were considered in our experiments. THg PP3
values for other PALM variants are similar, as can be deduced .,
from Figure 5. : :

Figure 7 plots the average number of new lightpaths estabs
lished (NNLE metric) for the various algorithms considered® 185
in our study. Since the PALM algorithm is explicitly desighe
to avoid the tearing down (and, hence, later activation) of 1E6 1 1 1 1 1 1 1 1
lightpaths, it is no surprise that all PALM variants lead to ° B _ %40 %0
a reduction in the NNLE at the same traffic load, compared to Aggregate Monthly Traffic(exabytes)
the EEM and DS+DAT algorithms. Establishing a lightpath. _ _ _

. . . . Fig. 8. Algorithm comparison with respect to BBR
contributes directly to power consumption in the network,
mainly through the activation of BV-OTs. Therefore, this
dec_rease In NNLE is a major factor thaF the PALM vaniantg e 3694 and 16% respectively, we believe that this is a cost-
achieve the power savings illustrated in the previous MWGtactive tradeoft.
figures. The relative performance among the PALM variants
is similar to the one observed in Figure 5, and may explained
using similar arguments.

Finally, Figure 8 plots the bandwidth blocking ration (BBR) With this study, we demonstrate the benefits of managing
for the algorithms we considered in this study. It can be sede lifetime of lightpaths in an EON interconnecting DCs, so
that the BBR of the proposed PALM algorithm is slightlyas to improve the energy efficiency of the network. Specifi-
larger than that of the EEM and DS+DAT algorithms undezally, we introduced a parameterized algorithm, referceds
the same traffic load. For the EEM and DS+DAT, the reroutingALM, which uses traffic prediction to avoid tearing down a
or blocking are performed in case the bandwidth of a lightpalightpath that becomes idle with the goal of decreasing the
is fully used, while PALM takes these actions when thswitching power involved in setting up the lightpath again a
bandwidth of a lightpath exceeds the threshdld Therefore, short time later. We also introduced a PSO-BP neutral nétwor
PALM may slightly increase the probability of bandwidthmodel to aid the PALM algorithm in accurately predicting
blocking, and consequently, the BBR decreases with theevaluture traffic demands. The PALM algorithm leads to lower
of M, as shown in the figure. For instance, wh&h = 80, frequency of new lightpath establishment in the network,
the increase in BBR compared to EEM and DS+DAT is abouthich in turn reduces power consumption significantly com-
2% and 4%, respectively. Considering that the power savingared to algorithms that do not manage the lightpath lifesm

dteB

dwi

V. CONCLUDING REMARKS
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