
Service-Concatenation Routing with
Applications to Network Functions Virtualization

Shireesh Bhat, George N. Rouskas
Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Abstract—Interest in network functions virtualization (NFV)
continues to grow due to its perceived benefits to both service
providers and users. One of the main challenges in realizing
NFV has to do with orchestration of virtual functions deployed
in various locations across the network. In this work, we consider
the service-concatenation routing problem, where the objective
is to construct a path of minimum cost that visits a set of nodes
where virtual services are to be applied to the user’s traffic in a
specific order. We first show that this problem can be modeled
as the shortest path tour problem (SPTP) that has been studied
in different contexts. We then review and implement a suite of
algorithms that use a variety of solution approaches for tackling
SPTP, and we also develop a new algorithm. Finally, we carry
out a comprehensive experimental evaluation of all algorithms
and demonstrate that our algorithm scales well to large problem
instances and is suitable for real-time operation as part of the
orchestration process in NFV environments.

I. I NTRODUCTION

Network functions virtualization (NFV) [1] decouples the
network service functionality from the underlying network,
compute, and storage resources, and allows communication
services to be composed by stitching together functional
building blocks that may not be co-located and may be offered
by different providers. Interest in NFV has grown dramatically
over the past few years due to its perceived benefits to both
service providers and the users of these services. One of
the main challenges in realizing the potential of NFV relates
to orchestration [1], i.e., the process of arrangement and
coordination of multiple network services so as to deliver a
desired functionality. The role of orchestration in the NFV
architecture has been highlighted in previous works [2], [3]
that have mostly focused on service abstraction, semantics,
and the standardization of the APIs.

Whenever the NFV architecture spans networks operated
by multiple distinct/competing network providers and en-
compasses service components that are geographically apart,
orchestration requires (a) a marketplace of services, and (b)
specialized routing algorithms. A marketplace [4], [5] acts as a
“service commons,” a meeting ground where providers publish
and advertise the services they offer, and users acquire services
based on their requirements and have them instantiated on
demand. The concept of a marketplace was also highlighted in
our own ChoiceNet project [4] where we envisioned a broader
set of network services but focused on introducing a network
“economy plane” so as to boost competition among service

This work was supported by the National Science Foundation under Grant
CNS-1111088

providers. The marketplace is an essential component in open-
ing up the network infrastructure [2] so as to develop value
added services including service composition, fault-tolerance,
load balancing, energy minimization, etc., by building upon
more primitive virtual network function blocks.

Once the virtual services required by the user have been
determined, user traffic must be steered along a path that starts
at the source and visits the nodes where the virtual services
are implemented, in the order in which they must be applied,
before reaching the destination1. One variant of this routing
problem, referred to as the “node-constrained service chain
routing problem” was studied in [6], and was solved by using a
layered graph model on which conventional routing algorithms
may be applied. Another variant, “service function chaining,”
was considered in [7], and an algorithm that balances the
length of the service function path and the load of service
function instances was presented.

In this paper, we consider a general version of the service-
concatenation routing problem in NFV environments where
the objective is to construct a path that visits a set of nodes
where virtual services are to be performed in a specific order.
Specifically, our work makes the following contributions:

• We show that the service-concatenation routing problem
in NFV may be modeled as a shortest path tour problem
(SPTP), a problem that was first studied more than forty
years ago in a different context [8], [9].

• We implement all existing algorithms for SPTP that
we were able to find in the literature; some of these
were originally developed for SPTP, whereas others were
developed for related problems and we have modified or
extended them to solve SPTP.

• We develop a new algorithm for solving SPTP that
outperforms all SPTP algorithms that we are aware of.

• We carry out a comprehensive experimental study to
evaluate the performance of all SPTP algorithms and
identify their relative merits.

Following the introduction, in Section II we present a model
of the NFV marketplace and introduce the general service-
concatenation routing problem. In Section III, we define the
shortest path tour problem (SPTP) as a model for the service
routing problem, and discuss related work. We present and
classify existing algorithms for SPTP in Section IV, and we
also develop a new algorithm for this problem. We present

1In this paper we consider point-to-point communication only;multipoint
communication will be the subject of future research.

the results of our experimental study in Section V, and we
conclude the paper in Section VI.

II. SYSTEM MODEL

We consider an NFV environment spanning multiple net-
work domains, possibly administered by distinct network
providers. We assume that the NFV environment is shared
by a set of service providers who compete against each
other to offer network services to users. The network services
may include path/routing, data storage, data modification,data
analysis, and computation services. This is not an exhaustive
list and may potentially be expanded to include services that
do not fit into any of these categories, or services that will be
developed to satisfy future demands. Service providers utilize
NFV abstractions and APIs to deploy multiple instances of
each service at strategic points in the network so as to better
serve a geographically diverse population of users.

We further assume that the NFV architecture includes a mar-
ketplace [4], [5] as an integral component. The marketplace
may be thought of as a repository of services and network
functions that are available to users. The repository provides
APIs for providers to publish (advertise) the services they
offer, and for users (or agents acting on their behalf) to obtain
lists of service offerings that are relevant to their requirements.
To aid users in selecting network services that best match their
needs, the orchestration module of NFV uses a planner [10],
[11]. In a travel industry analogy, service providers include
the airlines, hotels, and rental car companies, whereas travel
sites such as Expedia or Travelocity manage marketplaces that
include planning and orchestration functions. These functions
construct itineraries based on traveler (user) requirements
and ensure that users may access seamlessly all the services
acquired across the various flight, accommodation, and car
rental providers.

An NFV marketplace planner has two main tasks [10], [11]:
• it determines the set of services/virtual functions to meeta

user’s requirements, and the order in which these services
are to be applied to the user’s traffic, and

• it constructs a path from source to destination that visits
virtual nodes where instances of these services/virtual
functions have been deployed.

Some of our earlier work [12], [13] demonstrates a complete
lifecycle of the network services on a GENI slice [14], starting
with how the network services are described using a semantics
language and advertised in a marketplace, followed by how the
services are purchased/acquired leading up to their instantia-
tion, and finally how the services are used by the user. In this
work, we focus on the second task above, where the objective
is to direct user traffic to virtual instances of the service
functions that must be applied. Note that it is the concatenation
of the services in the order specified that accomplishes the
functionality that meets the user’s requirements. Therefore, we
refer to this problem as “service-concatenation routing,”and
we define it as:

Given an ordering of a set of services, construct a
path of minimum cost from source to destination,

that traverses nodes where virtual instances of these
services reside and may be applied in the specified
order.

The services repository of the NFV marketplace may use
any convenient format or data structure to represent the
services offered by the various providers. Nevertheless, we
assume that the service information stored in the marketplace
may be represented in a graph format that makes it possible
to apply graph algorithms to solve the service-concatenation
routing problem. This graph representation may be maintained
internally by the marketplace itself and made available to the
planner. Alternatively, the marketplace may provide appro-
priate APIs that allow external services to repeatedly query
the repository so as to construct the graph of services, as we
consider in [10]. In the latter case, planners may be offered
as competing services external to the marketplace. Either way,
we expect that the graph will be highly dynamic in that it will
have to be updated every time users acquire new services, or
release services they no longer need.

Note that the planner of a travel site takes into consideration
flights from multiple airlines, many of which offer competing
flights between the same pairs of cities, as well as multiple
hotels or rental car facilities within a given city. Similarly,
the planner of an NFV marketplace must consider virtual
services/functions from multiple providers, including virtual
operators who may lease capacity from the same physical
infrastructure. Consequently, the planner takes as input a
topology that is a superset of the topologies representing
the underlying networks. In particular, nodes and edges in
the topology represent virtual entities rather than physical
ones. For instance, a physical node may include multiple
virtual nodes, each virtual node operated by a different service
provider deploying a variety of virtual function instances. The
graph may also include parallel edges between nodes that
represent competing path services. Such a topology is expected
to be significantly larger than the underlying physical network
topology, hence path finding algorithms must scale to large
graph sizes.

As a final note, we assume that the planner has knowledge
of the complete topology (graph) of virtual nodes and services,
and uses it to solve the service-concatenation routing problem
by applying a path finding algorithm. If the NFV architecture
is deployed in a software defined networking (SDN) environ-
ment, the planner may be implemented as an application of the
SDN controller and use the latter’s capabilities to construct and
maintain this topology. However, our work does not require
an SDN environment and applies to any architecture in which
the planner has the means to discover and update the complete
topology graph.

III. T HE SHORTESTPATH TOUR PROBLEM (SPTP)

Consider the SPTP problem first studied in [8], [9]:
Problem 1 (SPTP):Given
• a graphG = {N , E} whereN is the set of nodes andE

is the set of edges,
• a source nodes and a destination noded, s, d ∈ N , and

• K non-empty ordered node setsS1, S2, . . . , SK , such that
Si ⊂ N , i = 1, . . . ,K,

find the shortest path froms to d under the constraint that the
path visit one nodeni ∈ Si of every setSi, i = 1, . . . ,K, in
the given order, i.e.,n1, n2, . . . , nK .

We note that whenever each setSi is a singleton (i.e.,
Si = {ni}, i = 1, . . . ,K), SPTP reduces to loose source rout-
ing as originally specified by the IP protocol [15]. Similarly,
whenever there is exactly one node set (i.e.,K = 1), SPTP
becomes similar to anycasting [16].

Recall now the service routing problem we introduced in
the previous section, and letK denote the number of virtual
services that must be applied to the user’s traffic. Without
loss of generality, assume that the virtual services are labeled
1, 2, . . . ,K, in the order in which they must be applied.
Finally, let Si, i = 1, . . . ,K, denote the set of nodes where
instances of virtual servicei reside. Since a path that solves
SPTP visits a node for each virtual service, and in the order
in which services must be applied, and is the minimum-cost
one among all such paths, then it is also a solution to the
service-concatenation routing problem defined in the previous
section.

Several variants of SPTP have been studied in the literature.
The constrained shortest path tour problem (CSPTP) [17]
is defined as SPTP with the additional constraint that the
path not include repeated edges; whereas SPTP is solvable in
polynomial time, this constraints makes the problem NP-Hard.
Another variant arises in travel planning applications [18],
whereby there exist additional constraints related to the min-
imum amount of time that a traveler must stay at each node
(city). The introduction of such constraints to SPTP con-
verts the problem from polynomial time solvable to pseudo-
polynomial [19]. A related problem whose objective is to find
the shortest elementary path that visits all nodes in a setS
in an arbitrary order (i.e., the input does not include a fixed
order on the nodes to be visited) is NP-Complete (NPC) [20].
Relaxing the previous problem to include paths which are
not elementary still places the problem in class NPC [20].
Variants of SPTP have also been defined under the class of
vertex constrained shortest path (VCSP) problems [21].

IV. A LGORITHMS FORSPTP

We now consider the basic SPTP problem we defined in
the previous section, and we review and classify all existing
algorithms for the problem that we were able to find in the
literature. We also present a new algorithm for SPTP that, as
we will show later, outperforms earlier algorithms.

A. Path Tour Decomposition

Let us defineS0 = {s} and SK+1 = {d}. It has been
observed that SPTP may be decomposed intoK + 1 sub-
problems, such that thek-th sub-problem,k = 0, . . . ,K,
consists of constructing shortest paths from each node inSk

to each node inSk+1.
When SPTP first appeared in the literature [8], [9], it was

applied to telephone and transportation networks with large,

sparse topologies. Consequently, single source shortest path
(SSSP) algorithms were used to solve the SPTP sub-problems.
More recently, SPTP has found applications in warehouse
management and control of robot motions [22], [23], where
the graphs are small but dense. Therefore, researchers and de-
velopers have adopted all pair shortest path (APSP) algorithms
to solve the sub-problems of SPTP, as these are more efficient
for this type of graphs.

A third option for solving each subproblem of SPTP
is to apply algorithms for the multiple pairs shortest path
(MPSP) problem. MPSP [24]–[26] has a range of applications,
from multicommodity network problems to airline network
problems, and is concerned with computing shortest paths
for a subset of all node pairs in the network. By using
algebraic shortest path algorithms [24]–[26], it is possible to
reduce significantly unnecessary computations of either APSP
algorithms (which construct paths for all node pairs) or SSSP
algorithms (which must be executed multiple times, once with
each node as the source node).

Therefore, we have three types of decomposition (DC)
algorithms for SPTP:

• DC-APSP:The algorithm presented in [23] uses APSP
to solve each subproblem of SPTP.

• DC-MPSP:Although to the best of our knowledge there
has been no algorithm for SPTP that uses MPSP for the
subproblems, based on our observations above, we have
implemented two such algorithms:

– DC-MPSP-1:This implementation uses the MPSP
algorithm in [24] to compute each sub-path of the
shortest tour between the source and destination
nodes.

– DC-MPSP-2: In this version, we apply the MPSP
algorithm in [25] at each intermediate stage2.

• DC-SSSP:We have implemented two algorithms that use
SSSP:

– DC-SSSP-1:This is a straightforward application of
Dijkstra’s algorithm to find shortest paths from every
node ofSk to every node ofSk+1. This algorithm
is similar to the one employed in [7] in the context
of virtual network function deployment across data-
centers, and has also been discussed in [24].

– DC-SSSP-2:The algorithm in [9] also uses SSSP
at each stage. It differs from the straightforward
algorithm DC-SSSP-1 in that it considers a virtual
nodev that connects to each node inSk with zero-
cost edges, and applies Dijkstra’s algorithm to find
the shortest paths fromv to each node inSk+1.
Hence, it is more efficient since it makes only one
call to Dijkstra’s algorithm in each stage.

Let T [] be a(K + 2) × N array such thatT [k, n] denotes
the cost of the shortest path tour from the source nodes
to a node n ∈ Sk; this quantity is equal to infinity if

2We have also implemented the MPSP algorithm in [26] for the SPTP, but
it is significantly less efficient than DC-MPSP-2 and hence wedo not consider
it in this study.

n 6∈ Sk. Also, let D(i, j) denote the cost of the shortest
path from nodei to nodej in the network graph. Then, the
dynamic programming pseudocode of Algorithm 1 describes
the operation of a generic decomposition algorithm for the
SPTP problem; the only algorithm-specific operation is the
computation of the costD(i, j) of the shortest path between
nodesi and j, which may be based on the APSP, MPSP, or
SSSP algorithms.

Initialization:
T [k, n] = ∞, k = 0, . . . ,K + 1, ∀ n 6= s
T [0, s] = 0
for k = 0, . . . ,K + 1 do

for i ∈ Sk do
for j ∈ Sk+1 do

D(i, j) = cost of shortest path fromi to j
using APSP, MPSP, or SSSP algorithms

T [k+1, j] = min{T [k, i]+D(i, j), T [k+1, j]}
end

end
end

Algorithm 1: Generic decomposition algorithm for SPTP

B. Layered Graph Model

A different approach that has been used in the literature
for tackling SPTP is to augment the network graph in a
way that makes it possible to apply conventional shortest
path algorithms to construct the path tour of minimum cost
between the source and destination nodes. Specifically, the
studies in [6], [22] create a layered graph ofK + 1 layers,
each layer consisting of an exact copy of the original network
topology. Nodes in adjacent layers are connected with new
edges such that any path from the source node (at the lowest
layer) to the destination node (at the highest layer) satisfies
the path tour constraints. Then, an application of Dijkstra’s
algorithm is sufficient to determine the minimum-cost path
tour.

We have, therefore, implemented this algorithm:

• LG: The algorithm described in [22] to solve SPTP on
a layered graph; a similar layer graph model is also
discussed in [6], although an algorithmic description is
not provided.

C. Depth First Tour Search: A New Algorithm for SPTP

We now present a new algorithm for the SPTP problem
that eliminates the exploration of nodes in the graph (with
respect to computing shortest path to them), whenever such
exploration is determined that it will not lead to a better path
tour. As a result, our algorithm is quite efficient, and we will
present simulation results to demonstrate that it outperforms
the algorithms discussed above.

Our algorithm operates similar to Dijkstra’s algorithm, but
with important enhancements and modifications to make it
more efficient and ensure that the SPTP constraints on the
path tour are satisfied. The algorithm does not decompose

SPTP in subproblems, nor does it employ a layered graph;
it operates on the given network graph without modifying
it. Specifically, it starts with the source nodes and explores
nodes using the same criteria as Dijkstra’s algorithm, until it
reaches the destination node; at that time, the algorithm is
guaranteed to have found the shortest path tour that solves
the given instance of SPTP. Unlike Dijkstra’s algorithm that
maintains a single set of encountered nodes (i.e., nodes for
which the shortest path from the source has been determined
and will not change in the future), our algorithm maintains
K + 1 setsFi, i = 1, . . . ,K + 1, of encountered nodes: the
first K sets Fi, i = 1, . . . ,K are associated with reaching
nodes in theK setsSi, respectively, and the last set is for
reaching the destination noded. Therefore, a nodex may be
in one or more setsFi depending on which part of the tour it
has been encountered; for instance,x may be encountered as
part of one tour froms to the first setS1, but it may also be
encountered as part of the same or another tour fromS1 to 2.

The operation of the algorithm may be summarized as
follows:

1) Initially, all the encountered sets are initialized to∅
exceptF1 which is initialized to contain the source node,
i.e., F1 = {s}, Fi = ∅, i = 2, . . . ,K + 1.

2) At each iterationl of the algorithm, the nodex with the
minimum cost is selected. Unlike Dijkstra’s algorithm,
nodex is selected among all the nodes that have not been
encountered as part of at least one setFi. This operation
is implemented efficiently by maintainingK + 1 heaps,
each associated with one of the tour stages, and then
selecting the minimum cost node among all the heaps.
Also note that this feature allows the algorithm to make
forward progress towards the destination by continuing
towards node setSi+1 without waiting for all nodes in
node setSi to be explored first.

3) Our implementation keeps track of which part of the
tour nodex has been encountered, such that if it is part
of the tour from setSi to setSi+1, then nodex will now
be included in setFi+1. Also, the cost of each neighbor
y of x is updated appropriately (i.e., as in Dijkstra’s
algorithm), as long asy has not been encountered as
part of at least one setFi.

4) If nodex is the last node of some setSi to be explored
(i.e., partial tours that reach all nodes inSi have now
been constructed), then we disregard any partial tours
that have only reached nodes in setsSi−1, . . . , S1. Any
such partial tours will have higher cost once extended
to reach nodes inSi, hence they cannot be part of the
shortest path tour.

5) The algorithm iterates from Step 2 above, until the
destination noded has been reached.

Since this algorithm makes progress towards the destination
beyond a setSi without waiting until all nodes of that set
have been explored, it bears some similarities with depth first
search; hence, we will call our algorithm depth first tour search

(DFTS)3.
Let T [] be a(K + 1) × N array such thatT [k, n] denotes

the cost of the shortest path tour from the source nodes to a
noden ∈ N . Let Cxy be the cost of the directed edge from
x to y, wherex, y ∈ N . Algorithm 2 provides a pseudocode
description of the DFTS algorithm.

Initialization:
F1 = {s}
Fk = ∅, k = 2, ...,K + 1
T [k, n] = ∞, k = 1, ...,K + 1
T [1, s] = 0
I = 1
while d /∈ FK+1 do

T [i, w] = min{T [i, v] + Cvw} s.t.
v ∈ Fi, w /∈ Fi, v /∈ Si, i = I, ...,K + 1

if w /∈ Si then
Fi = Fi ∪ {w}

else
Fi = Fi ∪ {w}
Fi+1 = Fi+1 ∪ {w}

end
if Fi ∩ Si = Si then

I = i + 1
end

end
Algorithm 2: The DFTS algorithm for SPTP

We have the following result regarding the correctness of
DFTS.

Theorem 1:For every connected directed graph with non-
negative edge costs, DFTS correctly constructs the shortest
path tour from the sources to the destinationd.
Proof.Let L[k, n] be the true shortest path tour from the source
nodes to a noden ∈ N . The proof is by induction and follows
the proof of correctness of Dijkstra’s algorithm.

Base Case:T [1, s] = L[1, s] = 0.
Inductive Hypothesis:All previous found shortest path tours

are correct, i.e.,∀ n ∈ N r : T [k, n] = L[k, n].
Current Iteration: We pick an edge (v∗, w∗) which is the

minimum cost edge such thatv∗ ∈ Fi but v∗ /∈ Si andw∗ /∈
Fi, and we let:

T [k,w∗] = T [k, v∗] + Cv∗w∗ = L[k,w∗] + Cv∗w∗

We distinguish two cases.
Case 1: Ifw∗ ∈ Si we addw∗ to bothFi andFi+1. Since

w∗ is present inSi we are now crossing the frontier ofSi and
we need to start exploring nodes inSi+1, so we addw∗ to
Fi+1.

Case 2: Ifw∗ /∈ Si we addw∗ to Fi. Sincew∗ is not present
in Si we are not yet crossing the frontier ofSi corresponding
to this node and we need to continue exploring nodes inSi,
so we addw∗ to Fi.

3Note also that the decomposition algorithms are akin to breadth first search,
since they explore all nodes of a setSi before proceeding to explore nodes
in setSi+1

TABLE I
TIME COMPLEXITY

Algorithm Complexity

DC-APSP [23] O(N3) + O(KM2)
DC-MPSP-1 [24] O(N3) + O(KM2)
DC-MPSP-2 [25] O(N3) + O(KM2)

LG [22] O(KN2) + O(KElog(KN))
DC-SSSP-1 [7] O(2ElogN) + O((K − 1)MElogN)
DC-SSSP-2 [9] O((K + 1)ElogN)

DFTS (this work) O((K + 1)ElogN) + O((K + 1)N)

We now note that every path tour froms to w∗ must have
cost ≥ L[k,w∗] + Cv∗w∗ , therefore this is the cost of any
shortest path tour. To show this, let us assume that there
is a tour P which has cost< L[k,w∗] + Cv∗w∗ . This tour
has to cross from some node explored inFi to nodes not
explored in Fi or nodes not explored inFi+1. If it does,
then the edge of costCv∗w∗ selected by the algorithm at
this iteration is not the minimum-cost edge, a contradiction.

D. Algorithm Complexity

In Table I, we summarize the running time complexity
of the seven algorithms we described earlier in this section;
we evaluate experimentally the algorithms in the following
section.

The DC-APSP [23], DC-MPSP-1 [24], and DC-MPSP-
2 [25] algorithms internally use three nestedfor loops to
calculate the costD(i, j) of shortest paths between nodes in
adjacent node sets; this computation takes timeO(N3), where
N is the number of nodes in the graph, and is shown as the
first term of the complexity expression in the top three rows
of Table I. The second term in these complexity expressions
corresponds to the time it takes to carry out the dynamic
programming Algorithm 1. Therefore, APSP and MPSP are
efficient when the graph size is not very large, the node sets
Si are large such that it is necessary to compute paths for a
substantial fraction of source-destination pairs, and thegraph
is strongly connected.

The LG [22] approach first constructs a modified layered
graph which hasKN nodes andKE edges; this takes time
O(KN2), whereK is the number of layers (node sets). It then
applies Dijkstra’s algorithm just once on this graph, and the
time for this computation is represented by the second term
in the appropriate row of Table I.

For the DC-SSSP-1 algorithm, the first expression in the
table denotes the use of Dijkstra’s algorithm once froms to
reach the nodes inS1, and a second time fromd to reach
the nodes inSK , if we reverse the direction the edges. The
second expression corresponds to the application of Dijkstra’s
algorithm a further(K − 1) × M times to find the short-
est cost distance from every node inSi to every node in
Si+1, i = 1, . . . ,K−1, whereM = max{|Si|}. This approach
works well for problem instances in which each node setSi

is relatively small compared to the whole graph. DC-SSSP-

2 applies Dijkstra’s algorithm(K + 1) times for finding the
shortest cost path from any node inSi to every node in
Si+1, i = 0, . . . ,K + 1. DFTS applies Dijkstra’s algorithm
just once, but every edge may potentially be traversed(K +1)
times (first term in the table), and at each iteration it selects
the shortest cost edge among(K + 1) sets (second term). To
fairly compare the last four algorithms, we have implemented
them using binary min-heaps, hence the logarithmic terms in
the expressions shown in Table I.

V. EXPERIMENTAL STUDY AND RESULTS

We now present simulation results to evaluate the seven
algorithms we described in Section IV, namely, DC-APSP,
DC-MPSP-1, DC-MPSP-2, DC-SSSP-1, DC-SSSP-2, LG, and
DFTS. We evaluate the algorithms on random graphs gen-
erated using BRITE [27], a universal topology generator.
We obtained undirected graphs by configuring BRITE to
generate AS-Level Barabasi models; we then converted these
graphs into directed ones that we used in our experiments.
In generating random instances for the SPTP problem, we
considered the following parameters and varied their values
as described below:

• The numberN of nodes in the graph was varied from
1000 to 5000 in increments of 1000.

• The average nodal degree∆ of the graph was set to an
integer in the range[2, 5].

• The numberK of node sets in the tour took integer
values in the interval[1, 4]; recall that in the service
routing problem,K represents the number of services
to be applied to the user’s traffic.

• The numberM of nodes in each node set was varied
from 5 to 25 in increments of 5.

Since all algorithms produce the same solution to any
instance of SPTP, our evaluation focuses on one metric,
running time. We note that the orchestration process in an
NFV environment must operate in real time and scale to large
network topologies with many services and multiple virtual
instances of each service. Hence, the various figures in this
section explore the running time of the algorithms as a function
of the various parameters listed above. With two exceptions
that we discuss shortly, each data point in these figures is the
average running time over 10,000 problem instances generated
from the stated values of the parameters. All experiments were
performed on a HPC cluster that included three processor
families, Intel Xeon E5520 (2.27GHz), E5620 (2.40GHz) and
E5540 (2.53GHz), all with four cores, each core having 4GB
of DRAM and 8KB of cache.

A. Overall Comparison

Figures 1 and 2 plot the running time of the seven algo-
rithms as a function of the numberN of nodes in the network.
For the problem instances used in these figures, the nodal
degree was set to∆ = 3, the number of node sets wasK = 2,
and the number of nodes in each node set wasM = 5. Our
first observation is that the four algorithms (DFTS, LG, and
the two DC-SSSP algorithms) shown in Figure 1 take less

 0

 0.5

 1

 1.5

 2

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DFTS
DC-SSSP-2
DC-SSSP-1

LG

Fig. 1. Running time comparison, most efficient algorithms,∆ = 3, K =
2, M = 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DC-MPSP-1
DC-APSP

DC-MPSP-2

Fig. 2. Running time comparison, least efficient algorithms,∆ = 3, K =
2, M = 5

than two seconds on average to solve these problem instances,
whereas the other three (DC-APSP and the two DC-MPSP
algorithms), shown in Figure 2 are two-to-three orders of
magnitude slower - hence, it was necessary to separate them in
a different figure. Furthermore, each data point in Figure 2,as
well as in the similar Figure 4 discussed shortly, represents the
average of only 50 problem instances, rather than the 10,000
that we used for all other figures. This value was selected
as it allowed us to obtain each data point in no more than
24 hours for the largest problem instance considered in these
two figures. Another interesting observation from Figure 1
is that no data points are shown for the LG algorithm and
networks with more thanN = 3000 nodes. Recall that the
LG algorithm constructs a graph ofK layers of the original
network topology. Consequently, as the network size grows,it
is memory, not running time, that becomes the limiting factor,
and we were not able to solve larger instances with the LG
algorithm in the HPC cluster available to us.

Figures 3 and 4 are similar to the ones above but present
results for instances generated with∆ = 5, K = 4, andM =
25. Since the problem instances are larger in this case, the
running times are higher than the corresponding algorithms
in the previous two figures. Similarly, in both sets of figures,

 0

 5

 10

 15

 20

 25

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DFTS
DC-SSSP-2
DC-SSSP-1

LG

Fig. 3. Running time comparison, most efficient algorithms,∆ = 5, K =
4, M = 25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1000 2000 3000 4000 5000

T
im

e
 (

s
e
c
)

N

DC-MPSP-1
DC-APSP

DC-MPSP-2

Fig. 4. Running time comparison, least efficient algorithms,∆ = 5, K =
4, M = 25

the running time of a particular algorithm increases with the
network sizeN .

From the four figures, it is clear that the three least ef-
ficient algorithms (DC-APSP, DC-MPSP-1, DC-MPSP-2) do
not scale well and are not appropriate for real-time operation.
Also, since LG replicates the network topologyK times, its
memory requirements become a challenge for larger problem
instances. Finally, as Figure 3 illustrates, the DC-SSSP-1
algorithm, which applies Dijkstra’s algorithm multiple times
at each stage, becomes one order of magnitude slower than the
two best algorithms, DFTS and DC-SSSP-2, at larger problem
instances considered here.

We have observed the relative behavior illustrated in the four
figures above across a wide range of experiments. Therefore,
in the remainder of this section we will explore further onlythe
behavior of the two best algorithms, the DC-SSSP-2 algorithm
of [9], and the new algorithm we developed, DFTS.

B. Comparison of DC-SSSP-2 and DFTS

Let us now investigate the performance of the two al-
gorithms as a function of the parameters∆,K, and M .
Figures 5 and 6 plot the running time of the DC-SSSP-2
and DFTS algorithms by varying the nodal degree∆ of the

 0

 0.02

 1 2 3 4 5 6
Nodal Degree

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.1

 0.3

 0.5

 0.7 DFTS, N=5000
DC-SSSP-2, N=5000

Fig. 5. Running time vs nodal degree,K = 1, M = 5

 0

 0.025

 0.05

 0.075

 1 2 3 4 5
Nodal Degree

T
im

e
 (

s
e
c
)
DFTS, N=1000

DC-SSSP-2, N=1000

 0.5

 1

 1.5
DFTS, N=5000

DC-SSSP-2, N=5000

Fig. 6. Running time vs nodal degree,K = 4, M = 25

graph and keeping the values of the other parameters fixed.
Each figure includes two sets of plots, one for networks with
N = 1000 nodes and one withN = 5000. In the problem
instances of Figure 5, the path tour must visit a node from
just one set (K = 1) that includes five nodes (M = 5);
whereas for Figure 6 the problem instances were generated
with K = 4,M = 25.

As the average nodal degree∆ increases, the size of the
network (in terms of the number of edges) grows, hence the
running of the two algorithms also increases; however, as we
can observe from the two figures, this increase in running
time is rather moderate. Similarly, the running time curves
for the larger network (N = 5000) sit higher than those for
the smaller network (N = 1000) in the same figure (i.e.,
for the same values of the other parameters); this behavior
is also expected and is due to the increase in network size and
consistent with the complexity results in Table I. Also, asK
andM increase, the path tour must traverse a larger number
of node sets, and there are more options (in terms of number
of nodes,M) to be explored, hence the running time values
in Figure 6 are higher than for the corresponding curves in
Figure 5.

Finally, we make two important observations. First, the
running time of either algorithm does not exceed one second

 0

 0.025

 0.05

 0.075

 0 1 2 3 4 5
Number of Sets

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.2

 0.4

 0.6

 0.8

 1

 1.2
DFTS, N=5000

DC-SSSP-2, N=5000

Fig. 7. Running time vs number of sets,∆ = 3, M = 15

 0

 0.025

 0.05

 0.075

 0 1 2 3 4 5
Number of Sets

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.2

 0.6

 1

 1.4 DFTS, N=5000
DC-SSSP-2, N=5000

Fig. 8. Running time vs number of sets,∆ = 5, M = 15

even for the largest of the problem instances we present in the
above two figures (i.e., instances withN = 5000 nodes, nodal
degree∆ = 5, K = 5 node sets, andM = 25 nodes per set).
Therefore, we conclude that these two algorithms scale well
and are suitable for real-time applications. Furthermore,our
new algorithm, DFTS, consistently outperforms the next best
algorithm, DC-SSSP-2, across the range of parameter values
that we investigated.

The next two figures, 7 and 8, are similar to the ones we
just discussed but plot the running time of the DFTS and DC-
SSSP-2 algorithms by varying the numberK of sets in a tour
while keeping the other parameters fixed. With a larger number
of sets, the path tour must traverse more nodes, hence it takes
longer time to explore all the options to construct the tour;
this intuition is confirmed by the results in the two figures. As
before, we also observe that our DFTS algorithm outperforms
DC-SSSP-2, and that its running time does not exceed one
second, even for the largest instances.

The last pair of figures, 9 and 10, compare the running
time of the two algorithms as a function of the number of
set elements in a set, with all other parameters fixed. All
our observations above regarding the relative and absolute
performance of the algorithms are also valid for these sets
of results. However, we also observe that the running time of

 0

 0.025

 0.05

 0.075

 0 5 10 15 20 25 30
Number of Set Elements

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.6

 0.8

 1

 1.2
DFTS, N=5000

DC-SSSP-2, N=5000

Fig. 9. Running time vs number of set elements,∆ = 3, K = 4

 0

 0.025

 0.05

 0.075

 0 5 10 15 20 25 30
Number of Set Elements

T
im

e
 (

s
e
c
)

DFTS, N=1000
DC-SSSP-2, N=1000

 0.2

���

 0.6

 0.8
DFTS, N=5000

DC-SSSP-2, N=5000

Fig. 10. Running time vs number of set elements,∆ = 5, K = 1

either algorithm is largely insensitive to the sizeM of the node
sets. This is mainly due to the way the two algorithms operate.
As we mentioned in Section IV, DC-SSSP-1 applies Dijkstra’s
algorithm once to find the shortest path from any node in set
Si to any node in setSi+1; as a result, the running time is
not affected much by the size of the node sets. Similarly, our
DFTS algorithm does not wait until all nodes in a set have been
explored, hence, its performance is relatively independent of
the set size.

There are 400 unique combinations of the values of param-
etersN,∆,K, andM that we considered in our experiments
(refer to the top of this section). In Table II, we list the
improvement in running time of our DFTS algorithm over the
next best algorithm, DC-SSSP-2, for problem instances gen-
erated with each of these 400 parameter value combinations.
As we can see, our algorithm runs faster than DC-SSSP-2 in
all but 10 combinations which are highlighted in bold in the
table. Across all problem instances, our algorithm achieves an
improvement in running time averaging 13.62%. Overall, these
results demonstrate that the new DFTS algorithm exhibits su-
perior performance compared to existing algorithms, it scales
well and is suitable for real-time applications.

TABLE II
RUNNING TIME IMPROVEMENT (IN %) OF DFTS RELATIVE TO DC-SSSP-2

K = 1 K = 2 K = 3 K = 4

N ∆ M = 5 M = 10 M = 15 M = 20 M = 25 M = 5 M = 10 M = 15 M = 20 M = 25 M = 5 M = 10 M = 15 M = 20 M = 25 M = 5 M = 10 M = 15 M = 20 M = 25

1000 2 26.51 23.83 28.70 31.73 30.56 25.37 19.48 20.74 24.23 20.91 23.00 20.14 18.45 100.00 16.23 16.33 14.46 -1.16 14.13 11.51
3 21.85 24.77 24.19 25.16 25.56 19.77 13.38 19.89 8.75 9.38 17.57 16.71 15.82 15.94 19.10 14.70 6.68 17.01 14.30 11.20
4 22.03 15.69 20.84 13.91 18.73 11.79 8.30 8.43 13.58 8.97 9.51 -0.13 9.29 9.90 9.92 -5.41 2.86 -10.65 -8.03 3.11
5 17.51 18.58 16.87 19.77 19.38 13.94 7.42 15.45 6.03 10.21 11.72 7.78 10.62 7.53 7.06 7.56 6.50 6.04 5.90 5.04

2000 2 24.87 26.03 29.13 27.82 29.09 19.63 23.31 19.02 24.36 20.83 16.01 15.63 14.10 16.02 15.94 14.25 11.36 13.07 11.67 14.21
3 18.65 20.32 9.57 15.60 18.02 14.10 11.90 12.01 12.87 12.50 12.40 14.22 10.72 8.98 9.34 10.22 7.42 5.41 6.13 6.27
4 17.54 19.41 6.00 15.43 16.43 8.67 10.89 12.44 12.22 12.51 10.87 8.41 8.97 8.47 -0.76 9.95 6.52 10.39 5.36 5.91
5 15.69 14.98 8.54 16.75 17.56 1.76 12.07 10.95 11.61 12.08 14.10 12.37 6.81 8.90 9.24 7.83 5.17 6.76 -5.60 -3.17

3000 2 18.35 20.83 19.72 20.10 20.72 7.49 14.93 11.72 14.73 15.55 14.96 11.06 10.60 11.72 11.30 12.98 9.59 8.94 8.21 21.75
3 20.49 17.35 17.24 25.33 18.74 4.67 26.96 11.08 11.44 16.87 10.77 9.37 8.29 8.51 8.61 10.04 6.73 6.55 6.73 4.43
4 15.48 15.43 15.42 14.83 14.98 3.44 9.69 10.48 8.61 9.72 0.37 7.49 7.81 7.47 10.65 8.55 5.92 10.09 5.30 5.21
5 16.20 15.08 15.06 20.35 17.05 11.14 10.39 7.08 14.00 14.52 14.21 11.39 10.98 10.39 5.91 21.84 -5.53 3.66 -4.29 4.09

4000 2 21.25 20.17 14.16 19.16 23.08 21.27 15.02 14.07 16.62 16.40 14.15 11.72 10.44 11.76 12.63 13.20 10.40 7.30 12.23 8.03
3 17.86 17.81 17.10 8.56 17.61 12.88 12.30 11.71 10.61 11.97 12.07 7.87 8.27 8.37 0.49 9.91 6.88 6.66 6.45 10.68
4 23.93 18.24 21.14 21.59 21.13 15.20 15.37 14.10 15.36 10.70 9.18 10.67 11.65 15.33 12.89 10.63 10.96 21.37 9.29 14.22
5 18.70 12.95 14.80 13.55 14.50 14.01 8.73 6.87 9.42 9.47 7.79 19.59 19.75 4.23 6.42 5.24 5.09 8.95 4.86 4.38

5000 2 21.44 21.83 23.67 24.06 24.58 18.38 18.02 18.51 18.95 18.42 15.14 13.71 8.31 15.52 14.16 14.14 12.19 12.24 12.15 8.32
3 17.39 14.04 15.66 16.15 16.88 12.16 10.72 10.97 9.74 10.66 10.73 8.26 8.16 7.70 7.34 9.50 7.06 6.14 5.87 6.23
4 22.16 21.45 22.13 22.43 22.87 17.62 13.77 14.53 16.05 16.01 14.00 11.13 11.80 11.27 11.02 13.54 9.01 8.93 8.57 8.45
5 19.58 24.37 20.19 20.89 21.06 15.95 15.97 16.45 16.96 16.26 13.31 12.41 12.98 14.69 14.08 11.53 9.69 11.33 10.85 11.37

VI. CONCLUDING REMARKS

The service-concatenation routing problem arises as an inte-
gral part of the orchestration process in NFV architectures. We
have shown that service-concatenation routing is equivalent to
the shortest path tour problem (SPTP). Most existing algorith-
mic approaches to SPTP work well only for specific classes of
problem instances, and do not scale well to the large instances
that arise in NFV applications. We have developed a new
algorithm that applies several novel modifications to Dijkstra’s
algorithm to construct the shortest path tour efficiently. Our
experimental study has demonstrated that our algorithm scales
well to large instances and is appropriate for real-time NFV
applications across a wide range of graphs.

REFERENCES

[1] SDN and OpenFlow World Congress. Network Function Virtualization,
updated white paper. https: //portal.etsi.org/nfv/nfvwhite paper2.pdf.
October 2013.

[2] S. Palkaret al. E2: A framework for nfv applications. InProceedings of
the 25th Symposium on Operating Systems Principles, SOSP ’15, pages
121–136, New York, NY, USA, 2015. ACM.

[3] A. Gember et al. Stratos: A network-aware orchestration layer for
middleboxes in the cloud.CoRR, abs/1305.0209, 2013.

[4] T. Wolf et al. Choicenet: Toward an economy plane for the internet.
SIGCOMM Comput. Commun. Rev., 44(3):58–65, July 2014.

[5] G. Xilouris et al. T-nova: A marketplace for virtualized network
functions. Proc. EuCNC 2014, June 2014.

[6] A. Dwaraki and T. Wolf. Adaptive service-chain routing for virtual
network functions in software-defined networks.Proc. of ACM Hot-
MIddlebox 2016, pages 32–37, New York, NY, USA.

[7] A. M. Medhat et al. Near optimal service function path instantiation in
a multi-datacenter environment.Proc. CNSM 2015, pp. 336–341, 2015.

[8] C. P. Bajaj. Some constrained shortest-route problems.Un-
ternehmensforschung, 15(1):287–301, 1971.

[9] A. Kershenbaumet al. Constrained routing in large sparse networks.
Proc. IEEE ICC,” pp. 38.14-38.18, Philadelphia, PA, 1976.

[10] S. Bhat and G. N. Rouskas. On Routing Algorithms for Open
Marketplaces of Path Services.Proc. of IEEE ICC 2016, May 2016.

[11] X. Huanget al. Automated service composition and routing in networks
with data-path services.Proc. of ICCCN 2010Aug 2010.

[12] S. Bhat, R. Udechukwu, R. Dutta, and G. N. Rouskas. Inception to
Application: A GENI based prototype of an Open Marketplace for
Network Services.IEEE Infocom Workshops, April 2016.

[13] R. Udechukwu, S. Bhat, R. Dutta, and G. N. Rouskas. Language of
choice: On embedding choice-related semantics in a realizable protocol.
Proc. of 37th IEEE Sarnoff Symposium, Sep 2016.

[14] M. Berman et al. Geni: A federated testbed for innovative network
experiments.Computer Networks, 61(0):5 – 23, 2014. Special issue on
Future Internet Testbeds Part I.

[15] Internet Engineering Task Force.RFC 791 Internet Protocol - DARPA
Inernet Programm, Protocol Specification, September 1981.

[16] Internet Engineering Task Force.RFC 1546 – Host Anycasting Service,
November 1993.

[17] D. Feroneet al. The constrained shortest path tour problem.Computers
& Operations Research, 74:64 – 77, 2016.

[18] J-F. Brub, J-Y. Potvin, and J. Vaucher. Time-dependent shortest paths
through a fixed sequence of nodes: application to a travel planning
problem.Computers and Operations Research, 33(6):1838 – 1856, 2006.

[19] S. Irnich and G. Desaulniers.Shortest Path Problems with Resource
Constraints, pages 33–65. Springer US, Boston, MA, 2005.

[20] T. Ibaraki. Algorithms for obtaining shortest paths visiting specified
nodes.SIAM Review, 15(2):309–317, 1973.

[21] J. E. Beasley and N. Christofides. An algorithm for the resource
constrained shortest path problem.Networks, 19(4):379–394, 1989.

[22] P. Festa. Complexity analysis and optimization of the shortest path tour
problem. Optimization Letters, 6(1):163–175, 2012.

[23] P. Festaet al. Solving the shortest path tour problem.European Journal
of Operational Research, 230(3):464 – 474, 2013.

[24] I-L. Wang, E. L. Johnson, and J. S. Sokol. A multiple pairsshortest
path algorithm.Transportation Science, 39(4):465–476, 2005.

[25] B. A. Carre. A matrix factorization method for finding optimal paths
through networks.Computer Aided Design, 51(4):388–397, 1969.

[26] B. A. Carre. An elimination method for minimal-cost networkflow
problems.J.K.Reid (Ed.), Large sparse sets of linear equations (Proc.
I.M.A. Conf., Oxford, 1970). Academic Press: London, 1971.

[27] A. Medina, I. Matta, and J. Byers. Brite: A flexible generator of internet
topologies. Tech. report, Boston University, Boston, MA, USA, 2000.

