Service-Concatenation Routing with
Applications to Network Functions Virtualization

Shireesh Bhat, George N. Rouskas
Department of Computer Science, North Carolina State Usitye Raleigh, NC, USA

Abstract—Interest in network functions virtualization (NFV) providers. The marketplace is an essential component in-ope
continues to grow due to its perceived benefits to both service ing up the network infrastructure [2] so as to develop value
providers and users. One of the main challenges in realizing added services including service composition, faultreoiee,

NFV has to do with orchestration of virtual functions deployed load bal . inimizati tc.. by buildi
in various locations across the network. In this work, we consider oad balancing, energy minimizaton, etc., by bullding apo

the service-concatenation routing problem, where the objecty More primitive virtual network function blocks.
is to construct a path of minimum cost that visits a set of nodes Once the virtual services required by the user have been

where virtual services are to be applied to the user’s traffic in a determined, user traffic must be steered along a path thiég sta
specific order. We first show that this problem can be modeled o e source and visits the nodes where the virtual services

as the shortest path tour problem (SPTP) that has been studied imol d in th der i hich th b lied
in different contexts. We then review and implement a suite of &€ Implemented, in the order in which they must be applied,

algorithms that use a variety of solution approaches for tackling before reaching the destinatforOne variant of this routing
SPTP, and we also develop a new algorithm. Finally, we carry problem, referred to as the “node-constrained servicenchai
out a comprehensive experimental evaluation of all algorithms routing problem” was studied in [6], and was solved by using a
and demonstrate that our algorithm scales well to large problem |,yq 104 graph model on which conventional routing alganih
instances and is suitable for real-time operation as part of the b lied. Anoth . u ice f . hadri
orchestration process in NFV environments. may be aPp led.] nother variant, ser\{lce unction chagiin
was considered in [7], and an algorithm that balances the
I. INTRODUCTION length of the service function path and the load of service
Network functions virtualization (NFV) [1] decouples thefuncno_n nstances was presented. . .
In this paper, we consider a general version of the service-

network service functionality from the underlying netwprk catenation routina problem in NFV environments where
compute, and storage resources, and allows communicatfgn o enaton 9p .
the objective is to construct a path that visits a set of nodes

services to be composed by stitching together function : : : .
building blocks that may not be co-located and may be oﬁer%’ ere virtual services are to be performed in a specific order

by different providers. Interest in NFV has grown dramdijca pecifically, our work makes the following contributions:

over the past few years due to its perceived benefits to botre We show that the service-concatenation routing problem
service providers and the users of these services. One of in NFV may be modeled as a shortest path tour problem
the main challenges in realizing the potential of NFV redate ~ (SPTP), a problem that was first studied more than forty
to orchestration [1], i.e., the process of arrangement and Years ago in a different context [8], [9].

coordination of multiple network services so as to deliver a « We implement all existing algorithms for SPTP that

desired functionality. The role of orchestration in the NFv ~ We were able to find in the literature; some of these
architecture has been highlighted in previous works [2], [3 Were originally developed for SPTP, whereas others were
that have mostly focused on service abstraction, semantics developed for related problems and we have modified or
and the standardization of the APIs. extended them to solve SPTP. _

Whenever the NFV architecture spans networks operatect We develop a new algorithm for solving SPTP that
by multiple distinct/competing network providers and en- Outperforms all SPTP algorithms that we are aware of.
compasses service components that are geographically apae We carry out a comprehensive experimental study to
orchestration requires (a) a marketplace of services, bpd (evaluate the performance of all SPTP algorithms and
specialized routing algorithms. A marketplace [4], [5]saas a identify their relative merits.

“service commons,” a meeting ground where providers phblis Following the introduction, in Section Il we present a model
and advertise the services they offer, and users acquiriessr of the NFV marketplace and introduce the general service-
based on their requirements and have them instantiated a@mcatenation routing problem. In Section Ill, we define the
demand. The concept of a marketplace was also highlightedsimortest path tour problem (SPTP) as a model for the service
our own ChoiceNet project [4] where we envisioned a broadeguting problem, and discuss related work. We present and
set of network services but focused on introducing a netwogkassify existing algorithms for SPTP in Section 1V, and we
“economy plane” so as to boost competition among servieéso develop a new algorithm for this problem. We present

This work was supported by the National Science FoundatiateuGrant 1in this paper we consider point-to-point communication omhgltipoint
CNS-1111088 communication will be the subject of future research.

the results of our experimental study in Section V, and we that traverses nodes where virtual instances of these

conclude the paper in Section VI. services reside and may be applied in the specified
order.

The services repository of the NFV marketplace may use

ny convenient format or data structure to represent the

rvices offered by the various providers. Nevertheless, w

Il. SYSTEM MODEL

We consider an NFV environment spanning multiple net-
work domains, possibly administered by distinct networ,
Erowders;. V]\c/e assme th‘?; the er]:V enwrort]ment IS fharg sume that the service information stored in the markegpla

y a sel ol service providers who compete against € y be represented in a graph format that makes it possible
other to offer network services to users. The network sesvic

. . - to apply graph algorithms to solve the service-concatenati
may include path/routing, data storage, data modificatiata routing problem. This graph representation may be maiathin

a_maly5|s, and comp_utatlon Services. Th's_ Is not an e)_(h@“'Stfnternally by the marketplace itself and made availableht t
list and may potentially be expand_ed o mclu«_je services g nner. Alternatively, the marketplace may provide appro
do not fit into any of these categories, or SErvices _that. W’”. riate APIs that allow external services to repeatedly yuer
developed to S atisfy future demands. Serwc_e prc_)V|dehsze1t| tI?e repository so as to construct the graph of services, as we
NFV abstractlons and .APIS. to erloy multiple instances onsider in [10]. In the latter case, planners may be offered
each service at st'rateg|c'p0|nts in the network S0 as torbetgg competing services external to the marketplace. Eithgr w
serve a geographically diverse populat_|on of USETS. we expect that the graph will be highly dynamic in that it will

We further assume thf?‘t the NFV architecture includes a Mdkve to be updated every time users acquire new services, or
ketplace [4], [5] as an integral .component. .The marketpla? lease services they no longer need.
fmuzz:/tig(re\sﬂt]r?;?ztreog\?asilsblfggsl;fgs O;sgr;/:;?sifcl)nrs ;;g\i/or Note that the planner of a travel site takes into considemati

' flights from multiple airlines, many of which offer compegin

APIs for providers to publish (advertise) Fhe service; thef}fghts between the same pairs of cities, as well as multiple
offer, and for users (or agents acting on their behal) t@iobt hotels or rental car facilities within a given city. Similgr

l_'rStS %f serwc_e offtlarmtgs thatt arekreleve_mt totr:h?'tr) re?megﬁ'ththe planner of an NFV marketplace must consider virtual
0 ald USers In selecting hetwork services that best ma rvices/functions from multiple providers, includingtual

Flelﬁdslﬁ tgetr(;r\;:;eisr:(rﬁt;?rr; r;r?gllggeyOstrf/\iéeuspizv? dzlrasn?mi;lfléierators who may lease capacity from the same physical
the .airlines hotels, and rental ca,r companies, whereasltr infrastructure. .Consequently, the planner tgkes as lnqu a
) ' "L : ' opology that is a superset of the topologies representing
sites such as Expedia or Travelocity manage marketplaeés e underlying networks. In particular, nodes and edges in

mclu?e ala.?.nmg gnd grcheastratlotn funlctlons. These f(.]::; the topology represent virtual entities rather than phajsic
construct itineraries based on traveler (user) requiréme nes. For instance, a physical node may include multiple

and ensure that users may access seamlessly all the SENfitFal nodes, each virtual node operated by a differentiser
acquired across the various flight, accommodation, and y

rental providers (b%vider deploying a variety of virtual function instanc&e
) . raph may also include parallel edges between nodes that

An. NFV mgrketplace planner has tvyo main ta§ks [10], [11 epresent competing path services. Such a topology is &sghec

o it determmgs the set of serwces/wrtpal fu.nctlons to nazegtto be significantly larger than the underlying physical ratw
user's requirements, and the order in which these serviGggjoqy, hence path finding algorithms must scale to large
are to be applied to the user’s traffic, and raph sizes.

« it constructs a path from source to destination that visi?s As a final note, we assume that the planner has knowledge
V|rtua_1I nodes where instances of these services/Virtyglihe complete topology (graph) of virtual nodes and sesic
functions have been deployed. and uses it to solve the service-concatenation routingl@mob

Some of our earlier work [12], [13] demonstrates a complef; applying a path finding algorithm. If the NFV architecture

lifecycle of the network services on a GENI slice [14], st> s deployed in a software defined networking (SDN) environ-
with how the network services are described USing a Semntriﬁent' the p|anner may be implemented as an app”cation of the
language and advertised in a marketplace, followed by hew t8pN controller and use the latter’s capabilities to coretamd
services are purchased/acquired leading up to their i@tanmaintain this topology. However, our work does not require
tion, and finally how the services are used by the user. In thi§ SDN environment and applies to any architecture in which

work, we focus on the second task above, where the objecti@ planner has the means to discover and update the complete
is to direct user traffic to virtual instances of the servicgypology graph.

functions that must be applied. Note that it is the concdtena
of the services in the order specified that accomplishes the !!l. THE SHORTESTPATH TOUR PROBLEM (SPTP)
functionality that meets the user’s requirements. Theegfae Consider the SPTP problem first studied in [8], [9]:
refer to this problem as “service-concatenation routiramtl Problem 1 (SPTP).Given
we define it as: « agraphG = {N, &} where\ is the set of nodes and
Given an ordering of a set of services, construct a is the set of edges,
path of minimum cost from source to destination, « a source node and a destination nodé s,d € A/, and

« K non-empty ordered node séfs, S, ..., Sk, such that sparse topologies. Consequently, single source shor&kt p
S;cN,i=1,...,K, (SSSP) algorithms were used to solve the SPTP sub-problems.
find the shortest path fromto d under the constraint that theMore recently, SPTP has found applications in warehouse
path visit one node:; € S; of every setS;,i = 1,..., K, in Mmanagement and control of robot motions [22], [23], where
the given order, i.eqy,ns, ..., nk. the graphs are small but dense. Therefore, researchersand d
We note that whenever each s6t is a singleton (i.e., Velopers have adopted all pair shortest path (APSP) alfgosit
S; ={n;},i=1,...,K), SPTP reduces to loose source rouf0 solve the sub-problems of SPTP, as these are more efficient
ing as originally specified by the IP protocol [15]. Simitarl for this type of graphs.
whenever there is exactly one node set (if6.= 1), SPTP A third option for solving each subproblem of SPTP
becomes similar to anycasting [16]. is to apply algorithms for the multiple pairs shortest path
Recall now the service routing problem we introduced i(tMPSP) problem. MPSP [24]-[26] has a range of applications,
the previous section, and léf denote the number of virtual from multicommodity network problems to airline network
services that must be applied to the user's traffic. Witho@foblems, and is concerned with computing shortest paths
loss of generality, assume that the virtual services areléab for a subset of all node pairs in the network. By using
1,2,...,K, in the order in which they must be appliedalgebraic shortest path algorithms [24]-{26], it is pokesito
Finally, let S;,i = 1,..., K, denote the set of nodes wherdeduce significantly unnecessary computations of eithe3/AP
instances of virtual service reside. Since a path that solveglgorithms (which construct paths for all node pairs) or BSS
SPTP visits a node for each virtual service, and in the ord@igorithms (which must be executed multiple times, oncé wit
in which services must be applied, and is the minimum-co&&ch node as the source node).
one among all such paths, then it is also a solution to theTherefore, we have three types of decomposition (DC)
service-concatenation routing problem defined in the previ algorithms for SPTP:
section. o DC-APSP:The algorithm presented in [23] uses APSP
Several variants of SPTP have been studied in the literature to solve each subproblem of SPTP.
The constrained shortest path tour problem (CSPTP) [17]e DC-MPSP:Although to the best of our knowledge there
is defined as SPTP with the additional constraint that the has been no algorithm for SPTP that uses MPSP for the
path not include repeated edges; whereas SPTP is solvable in subproblems, based on our observations above, we have
polynomial time, this constraints makes the problem NPeHar implemented two such algorithms:

Another variant arises in travel planning applications][18 — DC-MPSP-1:This implementation uses the MPSP
whereby there exist additional constraints related to tire m algorithm in [24] to compute each sub-path of the
imum amount of time that a traveler must stay at each node shortest tour between the source and destination
(city). The introduction of such constraints to SPTP con- nodes.

verts the problem from polynomial time solvable to pseudo- — DC-MPSP-2:In this version, we apply the MPSP
polynomial [19]. A related problem whose objective is to find algorithm in [25] at each intermediate stdge

the shortest elementary path that visits all nodes in aSset , pc.sSSPWe have implemented two algorithms that use
in an arbitrary order (i.e., the input does not include a fixed gggp-

order on the nodes to be visited) is NP-Complete (NPC) [20].
Relaxing the previous problem to include paths which are
not elementary still places the problem in class NPC [20].
Variants of SPTP have also been defined under the class of
vertex constrained shortest path (VCSP) problems [21].

— DC-SSSP-1This is a straightforward application of
Dijkstra’s algorithm to find shortest paths from every
node of S, to every node ofSj ;. This algorithm
is similar to the one employed in [7] in the context
of virtual network function deployment across data-

IV. ALGORITHMS FORSPTP centers, and has also been discussed in [24].

— DC-SSSP-2The algorithm in [9] also uses SSSP
at each stage. It differs from the straightforward
algorithm DC-SSSP-1 in that it considers a virtual
nodewv that connects to each node 4 with zero-
cost edges, and applies Dijkstra’s algorithm to find
the shortest paths from to each node inSy,;.

A. Path Tour Decomposition Hence, it is more efficient since it makes only one

Let us defineSy = {s} and Sx.1 = {d}. It has been call to Dijkstra’s algorithm in each stage.
observed that SPTP may be decomposed ifitor 1 sub- Let T[] be a(K +2) x N array such thal'[k,n] denotes
problems, such that thé-th sub-problem,k = 0,...,kK, the cost of the shortest path tour from the source nede

consists of constructing shortest paths from each nods,in to @ noden € Sj; this quantity is equal to infinity if

to each node irSk+1' 2We have also implemented the MPSP algorithm in [26] for the SBUP
When SPTP first appeared in the literature [8], [9], it Wag;s significantly less efficient than DC-MPSP-2 and hencedaeot consider

applied to telephone and transportation networks withelargt in this study.

We now consider the basic SPTP problem we defined in
the previous section, and we review and classify all exgstin
algorithms for the problem that we were able to find in the
literature. We also present a new algorithm for SPTP that, as
we will show later, outperforms earlier algorithms.

n ¢ Sk. Also, let D(i,j) denote the cost of the shortesSPTP in subproblems, nor does it employ a layered graph;
path from nodei to node; in the network graph. Then, theit operates on the given network graph without modifying
dynamic programming pseudocode of Algorithm 1 describés Specifically, it starts with the source nodeand explores

the operation of a generic decomposition algorithm for th@odes using the same criteria as Dijkstra’s algorithm,| unti
SPTP problem; the only algorithm-specific operation is tihreaches the destination node; at that time, the algorithm is
computation of the cosD(i, j) of the shortest path betweenguaranteed to have found the shortest path tour that solves
nodes: and j, which may be based on the APSP, MPSP, dhe given instance of SPTP. Unlike Dijkstra’s algorithmttha
SSSP algorithms. maintains a single set of encountered nodes (i.e., nodes for
which the shortest path from the source has been determined

Initialization: and will not change in the future), our algorithm maintains
Tlk,n]=00,k=0,..., K+1, Vn#s K +1 setsF;,i = 1,..., K + 1, of encountered nodes: the
T[0,s] =0 first K setsF;,i = 1,..., K are associated with reaching
for k=0,...,K+1do nodes in theK sets.S;, respectively, and the last set is for
for i € S, do reaching the destination node Therefore, a node may be

for j € Sgy1 do
D(i,j) = cost of shortest path fromto j
using APSP, MPSP, or SSSP algorithms
Tk+1,j] = min{T[k,i|+D(s,j), T[k+1, 4]}

in one or more set#; depending on which part of the tour it
has been encountered; for instancenay be encountered as
part of one tour froms to the first setS;, but it may also be
encountered as part of the same or another tour fserto ».

end The operation of the algorithm may be summarized as
end follows:
er1d.
Algorithm 1. Generic decomposition algorithm for SPTP 1y |nitially, all the encountered sets are initialized (to

B. Layered Graph Model

A different approach that has been used in the literature
for tackling SPTP is to augment the network graph in a
way that makes it possible to apply conventional shortest
path algorithms to construct the path tour of minimum cost
between the source and destination nodes. Specifically, the
studies in [6], [22] create a layered graph &f+ 1 layers,
each layer consisting of an exact copy of the original networ
topology. Nodes in adjacent layers are connected with new
edges such that any path from the source node (at the lowest
layer) to the destination node (at the highest layer) sasisfi
the path tour constraints. Then, an application of Dijkstra 3)
algorithm is sufficient to determine the minimum-cost path
tour.

We have, therefore, implemented this algorithm:

o LG: The algorithm described in [22] to solve SPTP on

a layered graph; a similar layer graph model is also
discussed in [6], although an algorithmic description is
not provided.

2)

4)

C. Depth First Tour Search: A New Algorithm for SPTP

We now present a new algorithm for the SPTP problem
that eliminates the exploration of nodes in the graph (with
respect to computing shortest path to them), whenever such
exploration is determined that it will not lead to a bettethpa
tour. As a result, our algorithm is quite efficient, and wel wil
present simulation results to demonstrate that it outpergo
the algorithms discussed above.

5)

exceptF; which is initialized to contain the source node,
ie., F1 = {S},FZ = @,i =2,...,K+1.

At each iteratiori of the algorithm, the node with the
minimum cost is selected. Unlike Dijkstra’s algorithm,
nodez is selected among all the nodes that have not been
encountered as part of at least oneBetThis operation

is implemented efficiently by maintaining + 1 heaps,
each associated with one of the tour stages, and then
selecting the minimum cost node among all the heaps.
Also note that this feature allows the algorithm to make
forward progress towards the destination by continuing
towards node se$; . ; without waiting for all nodes in
node setS; to be explored first.

Our implementation keeps track of which part of the
tour nodex has been encountered, such that if it is part
of the tour from sefS; to setS; 1, then noder will now

be included in set;, ;. Also, the cost of each neighbor

y of x is updated appropriately (i.e., as in Dijkstra’s
algorithm), as long ag has not been encountered as
part of at least one sdf;.

If nodez is the last node of some sgf to be explored
(i.e., partial tours that reach all nodes $) have now
been constructed), then we disregard any partial tours
that have only reached nodes in s8tsy,...,S;. Any
such partial tours will have higher cost once extended
to reach nodes ir5;, hence they cannot be part of the
shortest path tour.

The algorithm iterates from Step 2 above, until the
destination node has been reached.

Our algorithm operates similar to Dijkstra’s algorithmtbuSince this algorithm makes progress towards the destmatio
with important enhancements and modifications to makekeyond a setS; without waiting until all nodes of that set
more efficient and ensure that the SPTP constraints on theve been explored, it bears some similarities with depst fir
path tour are satisfied. The algorithm does not decompassarch; hence, we will call our algorithm depth first tourska

TABLE |
(DFTS)E- TIME COMPLEXITY
Let T[] be a(K + 1) x N array such thaf'[k,n] denotes

the cost of the shortest path tour from the source nottea

noden € N. Let C,, be the cost of the directed edge from [Algorithm I Complexity
. . DC-APSP [23] O(N?3) + O(K M?)
z to y, wherez,y € N. Algorithm 2 provides a pseudocode DC-MPSP1 [24] O(N%) + O(KM?)
description of the DFTS algorithm. DC-MPSP-2 [25] O(N3) + O(KM?)
LG [22] O(KN?) + O(KElog(KN))
T DC-SSSP-1[7] || O(2ElogN) + O((K — 1)M ElogN)
Initialization: DC-555P2 [9] O((K T 1)ElogV)
Fy = {s} DFTS (this work) || O((K + 1) ElogN) + O((K T 1)N)
Fk:(Z), :2,...,K+1
Tlk,n) =00, k=1,..,.K+1
T[l,s]=0
I=1 We now note that every path tour fromto w* must have

while d ¢ Fi ;1 do

cost > L[k, w*] + Cy=~, therefore this is the cost of any

Tli,w] = min{T[i,v] + Cpw} S.t. shortest path tour. To show this, let us assume that there

veEF,wé¢Fv¢g S;,i=1,..K+1 is a tour P which has cost< L[k, w*] 4+ Cy«qy+. This tour

if w¢ S; then has to cross from some node explored fip to nodes not

| F,=F,U{w} explored in F; or nodes not explored ifF;4;. If it does,

else then the edge of cost’,-,- selected by the algorithm at
F; = F; U{w} this iteration is not the minimum-cost edge, a contradictil
FH-I = Fi-‘rl U {U)}

end

if F;N.S; =.5; then D. Algorithm Complexity

I I=i+1 In Table I, we summarize the running time complexity

end of the seven algorithms we described earlier in this segtion

end we evaluate experimentally the algorithms in the following

Algorithm 2: The DFTS algorithm for SPTP section.

The DC-APSP [23], DC-MPSP-1 [24], and DC-MPSP-
We have the fO”OWing result regarding the correctness Qf [25] a|gorithms interna”y use three nestéar |Oops to
DFTS. calculate the cosD(i, j) of shortest paths between nodes in
Theorem 1:For every connected directed graph with nongdjacent node sets; this computation takes 1im&/3), where
negative edge costs, DFTS correctly constructs the shortgsis the number of nodes in the graph, and is shown as the
path tour from the source to the destinationi. first term of the complexity expression in the top three rows
Proof.Let L[k, n| be the true shortest path tour from the sourcgs Taple 1. The second term in these complexity expressions
nodes to a noden € . The proof is by induction and follows corresponds to the time it takes to carry out the dynamic
the proof of correctness of Dijkstra’s algorithm. programming Algorithm 1. Therefore, APSP and MPSP are
Base CaseT[1,s] = L[1,s] = 0. efficient when the graph size is not very large, the node sets
Inductive HypothesisAll previous found shortest path toursg; are large such that it is necessary to compute paths for a
are correct, i.ey n € Nr: T'[k,n] = L[k, n]. substantial fraction of source-destination pairs, andgtteph
Current Iteration: We pick an edge(", w*) which is the g strongly connected.
minimum cost edge such that € F; butv* ¢ S; andw” ¢ The LG [22] approach first constructs a modified layered
F;, and we let: graph which hasKk N nodes andK E edges; this takes time
Tk, w*] = T[k,v*] + Cyeu = Lk, "] + Cpr- O(KNQ), whereK’ is the number of layers (node sets). It then
applies Dijkstra’s algorithm just once on this graph, and th
We distinguish two cases. time for this computation is represented by the second term
Case 1. Ifw* € S; we addw* to both F; and F;; ;. Since in the appropriate row of Table I.
w* is present inS; we are now crossing the frontier 6f and For the DC-SSSP-1 algorithm, the first expression in the
we need to start exploring nodes)1, so we addw* to table denotes the use of Dijkstra’s algorithm once froro
Fiyr. reach the nodes i%;, and a second time frornd to reach
Case 2: Ifw* ¢ S; we addw™ to F;. Sincew™ is not present the nodes inSk, if we reverse the direction the edges. The
in S; we are not yet crossing the frontier 5f corresponding second expression corresponds to the application of Bejkst
to this node and we need to continue exploring nodes;in algorithm a further(K — 1) x M times to find the short-
so we addw* to F;. est cost distance from every node f) to every node in
3 o , , . Sit1,%=1,..., K—1, whereM = max{|S;|}. This approach
Note also that the decomposition algorithms are akin to bhefardt search, . . .
since they explore all nodes of a s&f before proceeding to explore nodesWorks well for problem instances in which each node Sgt
in setS; 1 is relatively small compared to the whole graph. DC-SSSP-

2 applies Dijkstra’s algorithn{ K + 1) times for finding the 2 I ——
shortest cost path from any node 8 to every node in DS
Si+1,4 = 0,..., K + 1. DFTS applies Dijkstra’s algorithm sl LG —E— |
just once, but every edge may potentially be traverfgéd-1) A K
times (first term in the table), and at each iteration it dslecg 4
the shortest cost edge amofly + 1) sets (second term). To 3 1+ Ve |
fairly compare the last four algorithms, we have implemdnteE / *
them using binary min-heaps, hence the logarithmic terms in)
the expressions shown in Table |. e r e */ I
v ¥ i
V. EXPERIMENTAL STUDY AND RESULTS . g/'/” ‘ ‘
We now present simulation results to evaluate the seven ° 1000 2000 3000 4000 5000

N

algorithms we described in Section IV, namely, DC-APSP,
DC-MPSP-1, DC-MPSP-2, DC-SSSP-1, DC-SSSP-2, LG, aﬂ%. 1. Running time comparison, most efficient algorithtds= 3, K =
DFTS. We evaluate the algorithms on random graphs gends =5

erated using BRITE [27], a universal topology generator.

We obtained undirected graphs by configuring BRITE t0 1400 : :
generate AS-Level Barabasi models; we then converted these O ey T
graphs into directed ones that we used in our experiments. % [DC-MPSP-2 - |
In generating random instances for the SPTP problem, we 1000 | .
considered the following parameters and varied their &lue,

as described below: 8 sor i

« The numberN of nodes in the graph was varied from§g 6% - 1
1000 to 5000 in increments of 1000. 400 |- i

« The average nodal degrek of the graph was set to an
integer in the rangé2, 5. 200 -]

o The numberK of node sets in the tour took integer 0 *
values in the intervall,4]; recall that in the service 0 1000 2000 3000 4000 5000
routing problem,K represents the number of services N
to be applied to the user’s traffic. Fig. 2. Running time comparison, least efficient algorithifAs= 3, K =

o The numberM of nodes in each node set was varied, M =5
from 5 to 25 in increments of 5.

Since all algorithms produce the same solution to an
instance of SPTP, our evaluation focuses on one metrigan two seconds on average to solve these problem instances
running time. We note that the orchestration process in #ereas the other three (DC-APSP and the two DC-MPSP
NFV environment must operate in real time and scale to largégorithms), shown in Figure 2 are two-to-three orders of
network topologies with many services and multiple virtudnagnitude slower - hence, it was necessary to separate them i
instances of each service. Hence, the various figures in thiglifferent figure. Furthermore, each data point in Figuras2,
section explore the running time of the algorithms as a fonct Well as in the similar Figure 4 discussed shortly, represére
of the various parameters listed above. With two exceptioA¥erage of only 50 problem instances, rather than the 10,000
that we discuss shortly, each data point in these figureseis that we used for all other figures. This value was selected
average running time over 10,000 problem instances getera®S it allowed us to obtain each data point in no more than
from the stated values of the parameters. All experiments we4 hours for the largest problem instance considered irethes
performed on a HPC cluster that included three procesd¥fo figures. Another interesting observation from Figure 1
families, Intel Xeon E5520 (2.27GHz), E5620 (2.40GHz) ani§ that no data points are shown for the LG algorithm and
E5540 (2.53GHz), all with four cores, each core having 4GRetworks with more thanV = 3000 nodes. Recall that the

of DRAM and 8KB of cache. LG algorithm constructs a graph df layers of the original
_ network topology. Consequently, as the network size graws,
A. Overall Comparison is memory, not running time, that becomes the limiting facto

Figures 1 and 2 plot the running time of the seven alg@nd we were not able to solve larger instances with the LG
rithms as a function of the numbé¥ of nodes in the network. algorithm in the HPC cluster available to us.
For the problem instances used in these figures, the nodaFigures 3 and 4 are similar to the ones above but present
degree was set tA = 3, the number of node sets waS= 2, results for instances generated with= 5, K =4, and M =
and the number of nodes in each node set whs= 5. Our 25. Since the problem instances are larger in this case, the
first observation is that the four algorithms (DFTS, LG, andunning times are higher than the corresponding algorithms
the two DC-SSSP algorithms) shown in Figure 1 take less the previous two figures. Similarly, in both sets of figyres

25 T

DFTS —f—
DC-SSSP-2 07| DFTS, N=5000 ——
DC-SSSP-1 e Jfemee : DC-SSSP-2, N=5000
20 |- LG —F}— -
0.5+
3
roT L i 0.3 | 4/4\./"
-
P K 0.1 =
-E 10 - 4 DFTS, N=1000 ——
g DC-SSSP-2, N=1000
£0.02
s e * 8 £
-------- [
......... - a /
0 e - j f
0 1000 2000 3000 4000 5000 0 ! ! ! !
1 2 3 5 6
N Nodal Degree
Fig. 3. Running time comparison, most efficient algorithdss= 5, K = Fig. 5. Running time vs nodal degrek, = 1, M =5
4, M =25
1400 \ T 1.5
DCD|\C/|pA5F|,:S:FL’ — DFTS, N=5000 ——
- DC-SSSP-2, N=5000
1200 - DC-MPSP-2 === |
1L
1000 + e /—/
S 800 - i 05 |-
u
g 0.0757 DFTS, N=1000 ——
£ 600 - 7 g DC-5SSP-2, N=1000
wn
0.05 +
- ()
40 T 2 yommz==z=3(
........... = o=
200- X e 0.025 - "
ol e 1 1 0 L L 1 1
0 1000 2000 3000 4000 5000 1 5 6

3
N Nodal Degree

) . .) -) Fig. 6. Running time vs nodal degrek, = 4, M = 25
Fig. 4. Running time comparison, least efficient algorithiAs= 5, K =

4, M =25

graph and keeping the values of the other parameters fixed.

the running time of a particular algorithm increases with thEach figure includes two sets of plots, one for networks with
network sizeN. N = 1000 nodes and one witliv = 5000. In the problem

From the four figures, it is clear that the three least efastances of Figure 5, the path tour must visit a node from
ficient algorithms (DC-APSP, DC-MPSP-1, DC-MPSP-2) djust one set K = 1) that includes five nodesM = b5);
not scale well and are not appropriate for real-time opemnati whereas for Figure 6 the problem instances were generated
Also, since LG replicates the network topolody times, its with K =4, M = 25.
memory requirements become a challenge for larger problemAs the average nodal degrek increases, the size of the
instances. Finally, as Figure 3 illustrates, the DC-SSSPagtwork (in terms of the number of edges) grows, hence the
algorithm, which applies Dijkstra’s algorithm multiplentes running of the two algorithms also increases; however, as we
at each stage, becomes one order of magnitude slower thandie observe from the two figures, this increase in running
two best algorithms, DFTS and DC-SSSP-2, at larger probleime is rather moderate. Similarly, the running time curves
instances considered here. for the larger network y = 5000) sit higher than those for

We have observed the relative behavior illustrated in tlie fothe smaller network ¥ = 1000) in the same figure (i.e.,
figures above across a wide range of experiments. Therefda, the same values of the other parameters); this behavior
in the remainder of this section we will explore further otllg is also expected and is due to the increase in network size and
behavior of the two best algorithms, the DC-SSSP-2 algwrithconsistent with the complexity results in Table I. Also, /s

of [9], and the new algorithm we developed, DFTS. and M increase, the path tour must traverse a larger number
) of node sets, and there are more options (in terms of number
B. Comparison of DC-SSSP-2 and DFTS of nodes, M) to be explored, hence the running time values

Let us now investigate the performance of the two ain Figure 6 are higher than for the corresponding curves in
gorithms as a function of the parametefs K, and M. Figure 5.
Figures 5 and 6 plot the running time of the DC-SSSP-2 Finally, we make two important observations. First, the
and DFTS algorithms by varying the nodal degr&eof the running time of either algorithm does not exceed one second

1.2 1.2

DFTS, N=5000 —— DFTS, N=5000 ——
1r DC-5SSP-2, N=5000 DC-SSSP-2, N=5000
0.8 ir
0.6 - 0.8 : + + t
0.4 "
0.2 = 0.6 —
0.0757F DFTS, N=1000 —+— 00757 DFTS, N=1000 —+—
g DC-SSSP-2, N=1000 9 DC-SSSP-2, N=1000
w w
20.05 20.05 -
£ £
= [X v
0.025 +// 0.025 — —— —— t
0 1 1 1 1 0 1 1 1 1 1
0 2 4 5 0 5 10 15 20 25 30
Number of Sets Number of Set Elements
Fig. 7. Running time vs number of set8, = 3, M = 15 Fig. 9. Running time vs number of set elements= 3, K =4
14 | DFTS, N=5000 —— 0.8
DC-SSSP-2, N= -
555 5000 DFTS, N=5000 ——
1h DC-SSSP-2, N=5000
0.6 -
0.6 |-
0.4
, . . : ;
0.2 t t t t t
3-075* DFTS, N=1000 —+— 0.2
8 DC-SSSP-2, N=1000 ’9,075/7 DFTS, N=1000 ——
20.05 9 DC-SSSP-2, N=1000
£ /1‘ 2
= 00.05 -
0.025 - / £
=
0.025
0 ‘ ‘ ‘ ‘ f ¥ ¥ t {
0 2 3 4 5 ‘ ‘ ‘ ‘ ‘
Number of Sets 0
0 5 10 15 20 25 30

Number of Set Elements
Fig. 8. Running time vs number of set§, = 5, M = 15
Fig. 10. Running time vs number of set elememis= 5, K = 1

even for the largest of the problem instances we presengin th
above two figures (i.e., instances with= 5000 nodes, nodal
degreeA = 5, K = 5 node sets, and/ = 25 nodes per set). €ither algorithm is largely insensitive to the sieof the node
Therefore, we conclude that these two algorithms scale wefts. This is mainly due to the way the two algorithms operate
and are suitable for real-time applications. Furthermore, AS we mentioned in Section IV, DC-SSSP-1 applies Dijkstra’s
new algorithm, DFTS, consistently outperforms the next bed!gorithm once to find the shortest path from any node in set
algorithm, DC-SSSP-2, across the range of parameter valgesto any node in set;;;; as a result, the running time is
that we investigated. not affected much by the size of the node sets. Similarly, our
The next two figures, 7 and 8, are similar to the ones W TS algorithm dges not wait until gll nodgs in gset have been
just discussed but plot the running time of the DFTS and DEXPlored, hence, its performance is relatively independén
SSSP-2 algorithms by varying the numberof sets in a tour 1€ Set size.
while keeping the other parameters fixed. With a larger numbe There are 400 unique combinations of the values of param-
of sets, the path tour must traverse more nodes, hence & taggers N, A, K, and M that we considered in our experiments
longer time to explore all the options to construct the tougiefer to the top of this section). In Table I, we list the
this intuition is confirmed by the results in the two figures. Aimprovement in running time of our DFTS algorithm over the
before, we also observe that our DFTS algorithm outperformext best algorithm, DC-SSSP-2, for problem instances gen-
DC-SSSP-2, and that its running time does not exceed om@ited with each of these 400 parameter value combinations.
second, even for the largest instances. As we can see, our algorithm runs faster than DC-SSSP-2 in
The last pair of figures, 9 and 10, compare the runnirgl but 10 combinations which are highlighted in bold in the
time of the two algorithms as a function of the number dfble. Across all problem instances, our algorithm achieue
set elements in a set, with all other parameters fixed. Athprovementin running time averaging 13.62%. Overallsthe
our observations above regarding the relative and absolutsults demonstrate that the new DFTS algorithm exhibits su
performance of the algorithms are also valid for these sqisrior performance compared to existing algorithms, itexca
of results. However, we also observe that the running time well and is suitable for real-time applications.

TABLE I

RUNNING TIME IMPROVEMENT (IN %) OF DFTS RELATIVE TO DC-SSSP-2

K=1 [K=2

K=3 K=4

M = SIAI = 10[1\4 = 15|M = 20[1\1 = 25

M = 5/M = 10[1\4 = 15|M = QOIA{ = 25

M =5

M = 10[1% = 15[AI = 20[1\4 = 25||M = 5|M = IOIZM = 15|M = 20[1\4 = 25

100d

26.51) 23.83| 28.70| 31.73| 30.56|25.37] 19.48| 20.74| 24.23| 20.91

23.00 20.14| 18.45|100.0Q 16.23||16.33 14.46| -1.16| 14.13| 11.51

21.85 24.77| 24.19| 25.16| 25.56(|19.77] 13.38| 19.89| 8.75 | 9.38

17.57/16.71| 15.82| 15.94| 19.10({14.70 6.68 | 17.01| 14.30| 11.20

22.03 15.69| 20.84| 13.91| 18.73||11.79 8.30 | 8.43 | 13.58| 8.97

9.51|-0.13| 9.29 | 9.90 | 9.92 ||-5.41| 2.86 |-10.65 -8.03| 3.11

17.51) 18.58| 16.87| 19.77| 19.38|{13.94 7.42 | 15.45| 6.03 | 10.21

11.720 7.78 | 10.62| 7.53 | 7.06 || 7.56| 6.50 | 6.04 | 5.90 | 5.04

200d

24.87) 26.03| 29.13| 27.82| 29.09||19.63 23.31| 19.02| 24.36| 20.83

16.01 15.63| 14.10| 16.02| 15.94(14.25 11.36| 13.07| 11.67| 14.21

18.65 20.32| 9.57 | 15.60| 18.02{{14.10 11.90| 12.01| 12.87| 12.50

12.40 14.22| 10.72| 8.98 | 9.34 ||10.22) 7.42 | 5.41 | 6.13 | 6.27

17.54 19.41| 6.00 | 15.43| 16.43|| 8.67 | 10.89| 12.44| 12.22| 12.51

10.87) 8.41 | 8.97 | 8.47 | -0.76|| 9.95| 6.52 | 10.39| 5.36 | 5.91

15.69 14.98| 8.54 | 16.75| 17.56|| 1.76| 12.07| 10.95| 11.61| 12.08

14.10 12.37| 6.81 | 8.90 | 9.24 || 7.83| 5.17 | 6.76 | -5.60| -3.17

3000

18.35 20.83| 19.72| 20.10| 20.72|| 7.49| 14.93| 11.72| 14.73| 15.55

14.96 11.06| 10.60{ 11.72| 11.30({12.98 9.59 | 8.94 | 8.21 | 21.75

20.49 17.35| 17.24| 25.33| 18.74|| 4.67 | 26.96| 11.08| 11.44| 16.87

10.77 9.37 | 8.29 | 8.51 | 8.61 ||10.04 6.73 | 6.55 | 6.73 | 4.43

15.48 15.43| 15.42| 14.83| 14.98|| 3.44| 9.69 | 10.48| 8.61 | 9.72

0.37| 7.49 | 7.81 | 7.47 | 10.65|| 8.55| 5.92 | 10.09| 5.30 | 5.21

16.20 15.08| 15.06| 20.35| 17.05|{11.14 10.39| 7.08 | 14.00| 14.52

14.21) 11.39| 10.98| 10.39| 5.91 ||21.84 -5.53| 3.66 | -4.29| 4.09

4000

21.25 20.17| 14.16| 19.16| 23.08||21.27| 15.02| 14.07| 16.62| 16.40

14.15 11.72| 10.44| 11.76| 12.63|{13.20 10.40| 7.30 | 12.23| 8.03

17.86 17.81| 17.10| 8.56 | 17.61({12.88 12.30| 11.71| 10.61| 11.97

12.07| 7.87 | 8.27 | 8.37 | 0.49 || 9.91| 6.88 | 6.66 | 6.45 | 10.68

23.93 18.24| 21.14| 21.59| 21.13||15.20 15.37| 14.10| 15.36| 10.70

9.18|10.67| 11.65| 15.33| 12.89(|10.63 10.96| 21.37| 9.29 | 14.22

18.70 12.95| 14.80| 13.55| 14.50({14.01 8.73 | 6.87 | 9.42 | 9.47

7.79119.59|19.75| 4.23 | 6.42 || 5.24| 509 | 8.95| 4.86 | 4.38

5000

21.44 21.83| 23.67| 24.06| 24.58||18.38 18.02| 18.51| 18.95| 18.42

15.14 13.71| 8.31 | 15.52| 14.16|{14.14 12.19| 12.24| 12.15| 8.32

17.39 14.04| 15.66| 16.15| 16.88(|12.16 10.72| 10.97| 9.74 | 10.66

10.73 8.26 | 8.16 | 7.70 | 7.34 || 9.50| 7.06 | 6.14 | 5.87 | 6.23

22.16 21.45| 22.13| 22.43| 22.87||17.62 13.77| 14.53| 16.05| 16.01

14.00 11.13| 11.80| 11.27| 11.02{{13.54 9.01 | 8.93 | 8.57 | 8.45

alhlw| Nl Bl w| || o] B w]| || o] S w| | o] S w| N D

19.58 24.37| 20.19| 20.89| 21.06||15.95 15.97| 16.45| 16.96| 16.26

13.31) 12.41| 12.98| 14.69| 14.08|{11.53 9.69 | 11.33| 10.85| 11.37

VI. CONCLUDING REMARKS [10]

The service-concatenation routing problem arises as an int.1)
gral part of the orchestration process in NFV architectiiéss
have shown that service-concatenation routing is equivate [12]
the shortest path tour problem (SPTP). Most existing allgori
mic approaches to SPTP work well only for specific classes B8]
problem instances, and do not scale well to the large inst&anc
that arise in NFV applications. We have developed a ngw
algorithm that applies several novel modifications to Oiiji's

algorithm to construct the shortest path tour efficientlyar O

[15

—

experimental study has demonstrated that our algorithtesca
well to large instances and is appropriate for real-time NFN6]

applications across a wide range of graphs.

(1]

(2]

(3]
(4]
(5]
(6]

(7]
(8]
El

(17]

REFERENCES [18]
SDN and OpenFlow World Congress. Network Function \Afization,
updated white paper. https: //portal.etsi.org/nfv/mibhite_paper2.pdf.
October 2013.

S. Palkaret al. E2: A framework for nfv applications. IRroceedings of [20]
the 25th Symposium on Operating Systems PrinGijl8&€SP '15, pages
121-136, New York, NY, USA, 2015. ACM. [
A. Gemberet al. Stratos: A network-aware orchestration layer for
middleboxes in the cloudCoRR abs/1305.0209, 2013. [22
T. Wolf et al. Choicenet: Toward an economy plane for the internet.

(29]

SIGCOMM Comput. Commun. Re#4(3):58-65, July 2014. [2
G. Xilouris et al. T-nova: A marketplace for virtualized network
functions. Proc. EUCNC 2014June 2014. [24]

A. Dwaraki and T. Wolf. Adaptive service-chain routingrfvirtual
network functions in software-defined network®roc. of ACM Hot-
Mlddlebox 2016 pages 32—-37, New York, NY, USA.

A. M. Medhatet al. Near optimal service function path instantiation in[26]
a multi-datacenter environmerfroc. CNSM 2015pp. 336—-341, 2015.

C. P. Bajaj. Some constrained shortest-route problemdJn-
ternehmensforschung5(1):287-301, 1971. [27]
A. Kershenbaumet al. Constrained routing in large sparse networks.
Proc. IEEE ICC;" pp. 38.14-38.18, Philadelphia, PA976.

(25]

] J. E. Beasley and N. Christofides.

S. Bhat and G. N. Rouskas. On Routing Algorithms for Open
Marketplaces of Path ServiceBroc. of IEEE ICC 2016May 2016.

X. Huanget al. Automated service composition and routing in networks
with data-path service?roc. of ICCCN 2010Aug 2010.

S. Bhat, R. Udechukwu, R. Dutta, and G. N. Rouskas. Iticepo
Application: A GENI based prototype of an Open Marketplace f
Network ServiceslEEE Infocom Workshop#\pril 2016.

R. Udechukwu, S. Bhat, R. Dutta, and G. N. Rouskas. Lagguof
choice: On embedding choice-related semantics in a readizabtocol.
Proc. of 37th IEEE Sarnoff Symposiu®ep 2016.

M. Bermanet al. Geni: A federated testbed for innovative network
experiments Computer Networks51(0):5 — 23, 2014. Special issue on
Future Internet Testbeds Part I.

Internet Engineering Task Forc®FC 791 Internet Protocol - DARPA
Inernet Programm, Protocol SpecificatioBeptember 1981.

Internet Engineering Task ForcBRFC 1546 — Host Anycasting Service
November 1993.

D. Feroneet al. The constrained shortest path tour problé@emputers

& Operations Researgh74:64 — 77, 2016.

J-F. Brub, J-Y. Potvin, and J. Vaucher. Time-dependéottest paths
through a fixed sequence of nodes: application to a traveinplg
problem.Computers and Operations ReseargB(6):1838 — 1856, 2006.
S. Irnich and G. DesaulniersShortest Path Problems with Resource
Constraints pages 33-65. Springer US, Boston, MA, 2005.

T. Ibaraki. Algorithms for obtaining shortest pathsititey specified
nodes.SIAM Review15(2):309-317, 1973.

An algorithm for theorgce
constrained shortest path probleietworks 19(4):379-394, 1989.

] P. Festa. Complexity analysis and optimization of thert&sb path tour

problem. Optimization Letters6(1):163-175, 2012.

3] P. Festeet al. Solving the shortest path tour proble&uropean Journal

of Operational Resear¢i230(3):464 — 474, 2013.

I-L. Wang, E. L. Johnson, and J. S. Sokol. A multiple patortest
path algorithm.Transportation Science39(4):465-476, 2005.

B. A. Carre. A matrix factorization method for finding aptl paths
through networks Computer Aided Desigrb1(4):388-397, 1969.

B. A. Carre. An elimination method for minimal-cost netwoiliow
problems. J.K.Reid (Ed.), Large sparse sets of linear equations (Proc
I.M.A. Conf., Oxford, 1970). Academic Press: Londaf71.

A. Medina, I. Matta, and J. Byers. Brite: A flexible geatar of internet
topologies. Tech. report, Boston University, Boston, MASAJ 2000.

