
On Routing Algorithms
for Open Marketplaces of Path Services

Shireesh Bhat, George N. Rouskas
Department of Computer Science, North Carolina State Universtiy, Raleigh, NC, USA

Abstract—Open marketplaces of path services are the next
step towards realizing “routing-as-a-service.” Such marketplaces
will enable users to select from a set of path services offered
by multiple competing network providers so as to construct
customized end-to-end paths for their applications. This is anal-
ogous to online travel marketplaces that allow users to explore
travel options and book their travel. We review the requirements
for path planners to assist users in stitching together available
path services. We define the problem of finding multi-criteria
time-constrained paths in this context, and present a dynamic
programming algorithm that constructs Pareto-optimal paths.

I. INTRODUCTION

Routing algorithms are at the core of network design and op-
eration, and their functionality has evolved over the last sixty
years from finding single shortest paths [1] to encompassing
a wide range of considerations, including multiple paths [2],
quality-of-service (QoS) constraints [3], and various modes of
communication beyond point-to-point [4]. Nevertheless, for
the most part, these routing algorithms have been designed
for use by network providers/operators who have complete
control over all aspects of the network. Users of the network
typically have no visibility into the network topology or access
to the routing function, and their traffic usually follows paths
assigned by the network provider – although, using service
level agreements (SLAs) they may request paths that satisfy
certain properties.

Due to the evolving nature of network applications, require-
ments of routing functionality are also likely to evolve over
time. However, at a time when network customers demand
more flexibility in path selection, changes in routing-level
components in the Internet require broad consensus among
a diverse set of stakeholders and, hence, are increasingly
difficult to implement. Accordingly, there has been some work
in providing users with options over the routing path [5]–[7] in
a manner that separates the data plane (the paths that packets
follow) from the control plane (routing decisions) and allows
the two to evolve separately.

A natural next step in realizing “routing-as-a-service”
(RaaS) is the creation of open marketplaces of path services
that will enable customers to select from a set of path services
offered by multiple competing network providers, and stitch
them together to construct customized end-to-end paths for
their applications. This is analogous to online travel mar-
ketplaces, including Travelocity, Orbitz, and Expedia, among

This work was supported by the National Science Foundation under Grant
CNS-1111088

others, that allow users to explore travel options, make plans,
and book their travel.

At a high level, an open marketplace of path services will
consist of the following components [8]–[10]:

1) Service advertisements: the marketplace provides mech-
anisms for service providers to advertize their services
and modify existing advertisements.

2) Service repository: we assume that the repository of path
services is updated in real time, and that users and third
parties may query the repository to retrieve path services
that meet certain criteria.

3) Path planner: the planner takes as input user preferences
and applies them to select and combine existing path
services into a set of end-to-end paths from which the
user will make a final selection.

4) Contracts: the markeplace has mechanisms to establish
and enforce contracts between customers and providers
to ensure that economic exchanges (e.g., payments) are
related to operations within the network (e.g., access to
the path services).

The Choicenet marketplace [8], [9] supports all the above
features. Nevertheless, the primary goal of Choicenet has
been to facilitate the offering of multiple service options
and to enable the establishment of economic relationships
between marketplace entities (i.e., users and physical or virtual
infrastructure and service providers), and hence early proto-
types [10] only included a rudimentary planner.

In this paper, we focus on the planning aspects of an open
marketplace of path services, and in particular, on the require-
ments on routing algorithms that can be used to construct end-
to-end paths by stitching together path segments advertized
by multiple, distinct providers. While our work is inspired by
the Choicenet project, we note that the service advertisement,
path planning, and contract components of a marketplace
are orthogonal in terms of functionality. Therefore, the path
planning algorithms we present in this paper may be deployed
within any marketplace with a clear separation between the
data and control planes.

Following the introduction, we discuss the challenges of the
path planning process, along with related work, in Section II.
We present a model for the marketplace and the graph of path
services that the planner maintains. We define a suite of prob-
lems related to finding multi-criteria time constrained paths,
and develop appropriate algorithmic solutions, in Section IV.
We present numerical results in Section V, and we conclude
the paper in Section VI.

II. PATH PLANNING

The planner allows the users to explore end-to-end path
options for their communication needs. For simplicity, we
assume that the path planning tool is implemented by the
marketplace, but it may also be implemented by the user
or offered as a service by a third party. Similar to online
travel markeplaces, during the planning phase, customers have
the opportunity to review the available options in terms of
cost, quality, or other criteria. No contracts are established
during this phase and no resources are committed by the
network. Note also that for planning to work, providers must
first advertize their path services in the marketplace in a
way that allows the planner to determine which services
can be composed together in a meaningful manner. While
service advertisements, contract establishment, and resource
provisioning are outside the scope of this work, we note
that mechanisms exist for all three functions and have been
implemented in an earlier Choicenet prototype [10].

The main problem involved in planning is to combine
available services into end-to-end paths that meet user require-
ments. From an algorithmic point of view, path planning shares
a number of challenges with online travel planning:
• Large network topologies with parallel edges. Just as the

planner of a travel site takes into consideration flights
from multiple airlines, many of which offer competing
flights between the same pairs of cities, a path planner
must consider advertisements from multiple providers,
including virtual operators who may lease capacity from
the same physical infrastructure. Consequently, the path
planner takes as input a topology that is a superset of
the topologies representing the networks of individual
providers, and that is likely to include parallel edges
between nodes for which there exist competing path
services. Such a topology is expected to be much larger
than each of its constituent individual provider topologies.

• Support for in-advance reservations and time constraints.
Planners must allow users to reserve end-to-end paths
during specific continuous time intervals in the future;
this feature is analogous to booking a hotel for a set of
consecutive days long before travel takes place. On the
other hand, support for time constraints allows users to
explore additional options whenever their communication
plans are flexible, in the same manner that travel planners
allow users to provide a range of acceptable start and end
dates for their travel.

• Multiple alternatives selected using multiple criteria. The
planner must present the user with several options (i.e.,
viable alternative end-to-end paths) that meet multiple
criteria, including price, bandwidth capacity, delay, the in-
clusion or exclusion of sub-paths from certain providers,
etc. We envision that path planning services will differ-
entiate from the competition by deploying sophisticated
and specialized algorithms for selecting paths.

Each of the above considerations significantly complicate
the path finding process. For instance, introducing one ad-

ditional resource constraint (e.g., a delay constraint along
with a cost constraint), makes the shortest path problem NP-
Complete [11, Problem ND30]. Consequently, a wide range
of heuristics and approximation algorithms have been devel-
oped for a diverse set of constrained shortest path problem
variants [12], [13]. Also, while efficient algorithms exist for
constructing k-shortest elementary (i.e., acyclic) [14] and non-
elementary [15] paths, the k-constrained shortest path problem
is significantly harder and has received little attention [16].

In-advance path reservations involve reserving resources
along an end-to-end path for a continuous interval of time
that has a specific duration and starts at a specific instant,
either in the present or in the future. Algorithms for find-
ing and reserving paths with sufficient bandwidth resources
well in advance of the start of communication [17]–[19]
have generally been designed for small, centrally controlled
connection-oriented networks in which only a relatively small
fraction of connections require such advance reservations.
These algorithms may be extended to account for cost and
delay constraints, but do not directly support time constraints.

The general shortest path problem with time constraints
involves finding the least cost path from source to destination
in a graph whose nodes can be visited within a specified time
interval [20]. Similar time-constrained path problems have
been studied in the context of vehicle routing [20], [21] and
travel planning [22]. The problem is NP-Complete regardless
of whether the shortest path is required to be elementary or is
allowed to contain cycles.

III. MARKEPLACE AND GRAPH MODEL

A. The Marketplace

We consider a marketplace that includes a repository of path
services as advertized by network services providers. Each
path service is represented by the tuple:

(Ls, Ld, LID,Lattr, Tstart, Tend), Tstart < Tend
where Ls and Ld are the source and destination nodes,
respectively, of a (physical or virtual) link with unique ID
LID and attributes Lattr, and [Tstart, Tend] is the time interval
during which this path service is valid. For this work, we
assume that the attributes include the available bandwidth,
delay, and cost of the link, whereby the latter is expressed
as price per unit bandwidth or some other appropriate form;
in other words,

Lattr = (Lbw, Ldelay, Lcost).
This representation allows multiple distinct providers, includ-
ing virtual providers who do not own any physical infrastruc-
ture, to advertize path services between the same (Ls, Ld)
pairs, that can be distinguished using the unique link ID field.

Users submit to the path planner requests of the form
(Rs, Rd, Rreq, τe, τl), τe ≤ τl

where Rs and Rd are the source and destination node, respec-
tively, of the requested communication service and Rreq are
user requirements that the service must meet, and [τe, τl] is a
time interval that specifies the earliest and latest start times for
the service; if τe = τl, then the service must start at exactly

(b)

Time

New Path Service

Time Steps

(a)

Time

Time Steps

Fig. 1. The concept of time steps

time τe. We assume that user requirements include a minimum
bandwidth along the path, an acceptable end-to-end delay, the
time duration (length) of the communication, and a maximum
cost that the user is willing to pay, i.e.,

Rreq = (Rbw, Rdelay, Rlen, Rcost).

B. Graph of Path Services

The planner uses the path service descriptions stored in
the marketplace repository to construct a graph G = (V,E),
where V is the set of nodes that are part of at least one
service description, and E is the set of unique links defined
by the service descriptions. As we mentioned earlier, the
graph G will generally include parallel edges representing
competing services or virtual links. Each edge includes all
information associated with the corresponding link, i.e., LID,
link attributes (bandwidth, delay, and cost), and the interval of
time [Tstart, Tend] during which the edge is valid.

We assume that the planner updates the graph of path
services in real time whenever each of these four events takes
place: (a) when a new path service is advertized, a new edge
is added to the graph; (b) when an advertisement updates an
existing path service, the attributes of the corresponding edge
are updated accordingly (or the edge is removed if the update
cancels the service); (c) when a new reservation is established,
the attributes (e.g., available bandwidth) of the path services in
the end-to-end path are updated accordingly; and (d) when an
existing reservation terminates, the attributes of its constituent
path services are also updated.

We define a time step [17] as a continuous period of time
during which the state of the network does not change; in
other words, the graph of path services and their attributes
remain the same throughout a time step. The planner updates
the sequence of time steps whenever an advertisement creates
a new path service or modifies an existing one, and when
reservations are set up or terminate. Consider Figure 1(a),
where three time steps are shown, representing the changes
in network state before the arrival of the new path service. As
seen in the figure, the time duration of the new path service
overlaps with two of the time steps. Therefore the addition of
this path service causes changes in the state of the network
within each of the two time steps, resulting in the five time
steps shown in Figure 1(b). Time steps must be similarly
updated for new and departing reservations.

We have the following two results.
Lemma 1: For any set of path services that have m unique

sets of [Tstart, Tend] time intervals, there can be at most 2m−1
time steps.

Proof: In geometry, it is known that the number of non-
overlapping segments formed by k distinct collinear points is
k − 1. Since m unique sets of [Tstart, Tend] time intervals
include at most 2m distinct time instants at which a path
service starts or ends, the number of non-overlapping time
segments created by these instants is at most 2m− 1. Since a
path service starts or ends at the boundary between two time
segments, the state of the network (graph) does not change
during any of the time segment. Therefore, there are at most
2m− 1 time steps.

Lemma 2: Consider a user request for a communciation
service that may start anywhere in the interval [τe, τl]. If the
time interval [τe, τl] overlaps with n time steps, then, in order
to satisfy this request, it is sufficient to run a path finding
algorithm at most n times, each time with a start time equal
to the beginning of one of the time steps.

Proof: Consider time step x = [t1, t2] that overlaps with
the interval [τe, τl] of the user request. Let P be the set of
paths that a specific path finding algorithm returns under the
assumption that the communication service requested by the
user starts at time t1. Since the state of the network does not
change for the duration of time step x, the same algorithm will
not be able to find better paths than the ones in P for any start
time t of the request such that t1 < t ≤ t2. On the other hand,
the algorithm may find worse paths when t1 < t ≤ t2; this
may occur if the later starting time causes the service to end
within a later time step in which the network state may not
be able to accommodate the quality of features of the paths
in P .

The above two results impose strict bounds on the search
space that the planner has to explore to satisfy a user request.
These bounds make path computations more efficient than the
method used in [17] to divide the search space; the latter
method becomes inefficient even for networks of moderate
size with a relatively small number of path services.

IV. MULTI-CRITERIA TIME CONSTRAINED PATHS

Our objective is to present each user requesting service
with a set of Pareto-optimal time constrained paths that satisfy
multiple user-specified constraints. More formally, the problem
we address is the k-time constrained shortest path (k-TCSP)
problem defined as follows.

Problem 1 (k-TCSP): Let G = (V,E) be a graph with path
services as edges such that each edge e is valid only during
the time interval [T e

start, T
e
end]. Consider the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)
and an integer k. Find k least cost Pareto-optimal paths from
Rs to Rd, such that each path:

1) is a concatenation of one or more path services (edges),
2) has bandwidth at least Rbw,
3) has end-to-end delay at most Rdelay, and
4) is valid throughout the interval [t, t+Rlen], for any t ∈

[τe, τl],
where a path is considered valid in a given time interval if
and only if all path services comprising the path are valid in
the same interval.

We note that k-TCSP is NP-Complete since it reduces to the
NP-Complete k-CSP problem [16] by letting [T e

start, T
e
end] =

[0,∞] for all edges e.

A. Dynamic Programming Algorithm for k-TCSP

Let G = (V,E) be the graph of path services at the time
the user request

(Rs, Rd, Rreq, τe, τl), Rreq = (Rbw, Rdelay, Rlen, Rcost)
arrives. We now present a dynamic programming algorithm
that can be used to find Pareto-optimal paths from node Rs

to node Rd that are valid in the interval [τe, τl +Rlen].
Define F (i, t, Rdelay) as the minimum cost of any path from

source Rs to the node i, i ∈ V , that starts at time t, has
available bandwidth at least equal to Rbw, and its cumulative
delay (i.e., the total delay along the path services from Rs to
i) is at most Rdelay. If no such path exists at time t, then
F (i, t, Rdelay) =∞.
F (i, t, Rdelay) can be calculated using the following recur-

sion:

F (i, t,D) =

{
0, i = Rs and D ≥ 0
∞, D < 0

(1)

F (j, t,D) = min
(i,j)∈E

{
F
(
i, t,D − L(i,j)

delay

)
+ L

(i,j)
cost

}
,

∀(i, j) ∈ E , D ≤ Rdelay, Rbw ≤ L(i,j)
bw (2)

The base case (1) simply states that (i) the cost of getting
from the source node Rs to itself is zero, and (ii) the cost of
going from Rs to any node i with a negative delay is infinity
since no such path exists. The recursive expression (2) can be
explained by noting that the minimum cost of getting from
Rs to node j with a total delay of at most D, is equal to the
minimum cost, over all path services (i, j), i 6= j, of getting
from Rs to node i with a total delay of at most D − L(i,j)

delay,
plus the cost L(i,j)

cost of going from i to j. Note also that the
minimum is taken only over edges (path services) (i, j) that
have sufficient bandwidth for the user request.

The optimal solution at time t, i.e., the minimum cost of
a path that starts at time t and can accommodate the user
request, can be computed as:

F (Rd, t, Rdelay). (3)

Recall now that, according to Lemma 2, it is sufficient to
run the path finding algorithm once for each time step that
overlaps with the interval [τe, τl] that represents the allowable
start times for the user request. Let n be the number of such
time steps and t1, . . . , tn be the time instants when the path
finding algorithm must be run; according to Lemma 2, t1 = τe,
while t2, . . . , tn coincide with the start of the following n− 1
time steps. Therefore, the overall optimal solution, i.e., the
cost of the minimum-cost path for the user request starting
anywhere in [τe, τl], can be obtained as:

min
t1,...,tn

F (Rd, ti, Rdelay). (4)

We note that computing expression (3) may require the
evaluation of an exponential number of paths. Furthermore, the
recursion returns the cost of a minimum-cost, feasible path, if
one exists, but it does not directly provide the path services
(edges) comprising this path. Importantly, this expression does
not compute multiple shortest paths, and hence it does not
provide a solution to k-TCSP.

In the following subsection, we show that it is possible to
maintain labels at the nodes of graph G during the execution
of recursion (2), so as to (i) construct Pareto-optimal paths,
and (ii) speed up the recursion by eliminating paths (i.e.,
terminating the recursion early) that will not lead to Pareto-
optimal solutions.

B. Tracking Pareto-Optimal Paths

Consider an execution of the recursive algorithm (3) for a
given start time t. At each node i visited by the recursion, we
maintain labels to keep track of Pareto-optimal paths passing
through that node. Specifically, for each path through node i,
we maintain the tuple (C,D), where C (respectively, D) is
the cost (respectively, delay) of the path from the source node
Rs to node i1.

Consider two paths through node i with labels (C1, D1) and
(C2, D2), respectively. We say that the first path dominates
the second, denoted by (C1, D1) ≺ (C2, D2), if C1 ≤ C2

and D1 ≤ D2. In other words, the dominating path is better
than the dominated one in terms of both cost and delay. Note
that, all paths entering node i have the exact same options
as path services to continue towards the destination Rd.
Therefore, it is certain that the dominated path will result in
an end-to-end solution that cannot be superior to that resulting
from the dominating path in terms of either cost and delay.
Consequently, we eliminate the dominated path at node i by
terminating the recursion at that point, which also speeds up
the overall running time.

At the end of the recursion (3), we obtain Pareto-optimal
paths that start at time t. We execute the recursion n times,
once for each time step, as indicated in (4), and obtain Pareto-
optimal paths that start in [τe, τl]. We then extract (up to) k
least-cost Pareto-optimal paths from this list, and return them
to the user, allowing the latter to make an informed selection.

C. k-TCSP with No Delay Constraints

Let us now consider the k-TCSP problem variant in which
user requests do not impose any delay constraints. This variant
may be solved in pseudopolynomial time [20] using the
following steps at each of the n time instants ti discussed
in Section IV-A above: (1) remove from the graph all edges
which, at time ti, have available bandwidth less than Rbw;
(2) run Yen’s algorithm [14] to construct the k shortest paths
between Rs and Rd at time ti. These steps will determine up

1The label includes two additional parameters: the previous node j towards
the source Rs and the unique link ID, LID, of the path service that leads from
j to i. These parameters make it possible to reconstruct the path starting at
the destination node, Rd, but are not essential for determining Pareto-optimal
paths.

to nk shortest paths, of which we present the k shortest to
the user. Since Yen’s algorithm is polynomial, assuming that
the number n of time instants is bounded, this algorithm will
produce the k shortest paths starting anywhere in [τe, τl] in
polynomial time.

V. NUMERICAL RESULTS

We now present simulation results to evaluate the dy-
namic programming algorithm for the k-TCSP problem (Sec-
tion IV-A) and the pseudopolynomial algorithm for the k-
TCSP problem with no delay constraints (Section IV-C). We
used BRITE [23] to generate graphs for running the simulation
because it is a universal topology generator and offers more
than just network connectivity at the AS level. We obtained
undirected graphs by configuring BRITE to generate AS-
Level Barabasi models. We set the size of the outer and
inner planes to 1000 and 100 respectively, for placement of
the nodes in a heavy tailed distribution. We set the growth
type of the graph to be incremental in nature, we disabled
the preferential connection property, and we set the average
nodal degree to between 2 and 4. We used a uniform band-
width distribution with a maximum and minimum bandwidth
values of 2500 Mbps and 100 Mbps, respectively, with the
additional restriction that bandwidth values be multiples of
100 Mbps. The delay Ldelay of an edge was set proportional
to the Euclidean distance between the two points in the plane
representing the endpoints of the edge. We model the cost
of using a link as a function of the product of bandwidth
times duration of the connection. Specifically, we let the cost,
Lcost, per unit bandwidth (i.e., 1 Mbps) to $0.06, a value that
is approximately one-tenth of the current market cost [24].
Hence, the price that a user has to pay for a connection can
be expressed as $0.06×Rbw × Rlen. Finally, we let the start
and end times of an edge (path service) to be in the range [0,
15 days].

We generate user requests using the following model:
• The bandwidth Rbw requested is uniformly distributed in

the range [10, 100 Mbps] with probability 0.6, and in the
range (100 Mbps, 500 Mbps] with probability 0.4.

• The duration Rlen of the request is uniformly distributed
in the ranges: [1, 30 min] (probability 0.1), [31 min,
60 min] (probability 0.1), (1 hr, 3 hr] (probability 0.6),
and (3 hr, 12 hr] (probability 0.2).

• The earliest start time τe is between [0, 1 day] with
probability 0.8, and between (1, 15 days] with probability
0.2.

• The latest start time τl is set to either equal to τe (with
probability 0.5) or is uniformly distributed in the range
(τe, τe+ 60 min] (with probability 0.5).

• The end-to-end delay Rdelay is set to
√
2 times the delay

along the Euclidean distance of the diameter in the outer
plane of the topology graph.

We further assume that user requests arrive as a Poisson
process with mean equal to 1 minute.

We have implemented the routing algorithms in C, and we
run the simulation experiments on a Linux cluster, each node

in the cluster consisting of two Xeon processors (representing
a mix of 1, 2, 4, 6, or 8 cores) and 2-4 GB of memory per
core. In the figures we present in this section, each data point
corresponds to the average of 30 randomly generated problem
instances. The figures also plot confidence intervals around the
mean, estimated using the method of batch means.

Figure 2 plots the running time of the dynamic programming
algorithm as a function of the number N of nodes in the
graph; for these experiments, the average nodal degree was
set to 2. For each problem instance, we generated 100 user
requests and, hence, run the algorithm 100 times to find paths
for each request. The running time shown in the figure is
an average over these 100 executions. As we can see, the
running time increases faster than linearly with the size of
the network, but remains reasonable even for large topologies;
for N = 400 nodes, it takes about 7-8 seconds, an amount of
time comparable to what users experience in online travel sites.
For comparison, Figure 3 presents the average running time
of the pseudopolynomial algorithm for the k-TCSP problem
with no delay constraints, as a function of the number k of
shortest paths; for these experiments, we generated 1,000 user
requests and the average was taken over the 1,000 executions
of the algorithm. We can see that the running time increases
linearly with k, and also with the network size, as expected.
Overall, this algorithm runs more than one order of magnitude
faster than the dynamic programming algorithm for the same
network size, implying that relaxing the delay constraints
makes it possible to scale to very large networks.

Finally, Figure 4 compares the number of paths returned
by the two algorithms, as a function of the number k of
shortest paths passed as a parameter to Yen’s algorithm; for
this experiment, we have used topologies with N = 400 nodes
and average nodal degree of 2. As expected, the number of
shortest paths returned by the pseudopolynomial algorithm is
equal to k. However, as shown in the figure, the number of
these shortest paths with a delay below the Rdelay threshold
is slightly fewer than k. Finally, the number of Pareto-optimal
paths constructed by the dynamic programming algorithm is
constant (i.e., independent of k), since this algorithm does
not make use of Yen’s k-shortest path algorithm. The number
of Pareto-optimal paths is smaller than the number of shortest
paths within the delay threshold due to the elimination of dom-
inated paths during the execution of the dynamic programming
algorithm.

VI. CONCLUDING REMARKS

We have introduced a new problem of finding time-
constrained paths that also satisfy bandwidth and delay con-
straints. We have developed a dynamic programming algo-
rithm that constructs Pareto-optimal paths. Our current work
focuses on refining the algorithm to scale to topologies with
thousands of nodes and high average nodal degrees.

REFERENCES

[1] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

Fig. 2. Running time of the dynamic programming algorithm for k-TCSP

Fig. 3. Running time of the pseudopolynomial algorithm for k-TCSP with
no delay constraints

Fig. 4. Comparison of paths returned by the two algorithms

[2] A. W. Brander and M.C. Sinclair. A comparative study of k-shortest path
algorithms. In Proceedings of the 11th UK Performance Engineering
Workshop, September 1995.

[3] S. Chen and K. Nahrstedt. An overview of quality of service routing
for next-generation high speed networks: Problems and solutions. IEEE
Network, 12(6):64–79, November/December 1998.

[4] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast routing for
multimedia communication. IEEE/ACM Transactions on Networking,
1(3):286–292, June 1993.

[5] M. O. Ascigil and K. Calvert. Implications of source routing. In Pro-
ceedings of the 2012 ACM Conference on CoNEXT Student Workshop,
CoNEXT Student ’12, pages 11–12, New York, NY, USA, 2012. ACM.

[6] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica.
Pathlet routing. In Proceedings of the ACM SIGCOMM 2009 Conference
on Data Communication, SIGCOMM ’09, pages 111–122, New York,
NY, USA, 2009. ACM.

[7] Karthik Lakshminarayanan, Ion Stoica, and Scott Shenker. Routing as
a service. Technical Report UCB/CSD-04-1327, EECS Department,
University of California, Berkeley, 2004.

[8] T. Wolf, J. Griffioen, K. L. Calvert, R. Dutta, G. N. Rouskas, I. Baldine,
and A. Nagurney. Choice as a principle in network architecture. In
Proceedings of ACM Annual Conference of the Special Interest Group on
Data Communication (SIGCOMM), pages 105–106, Helsinki, Finland,
August 2012. (Poster).

[9] T. Wolf, J. Griffioen, K. Calvert, R. Dutta, G. N. Rouskas, I. Baldin, and
A. Nagurney. ChoiceNet: Toward an economy plane for the Internet.
ACM SIGCOMM Computer Communication Review, 44(3):58–65, July
2014.

[10] X. Chen, T. Wolf, J. Griffioen, O. Ascigil, R. Dutta, G. N. Rouskas,
S. Bhatt, I. Baldin, and K. Calvert. Design of a protocol to enable
economic transactions for network services. In Proceedings of IEEE
ICC 2015, June 2015.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H.
Freeman and Co., New York, 1979.

[12] M. Ziegelmann. Constrained Shortest Paths and Related Problems. PhD
thesis, Universitaet des Saarlandes, 2001.

[13] Y. Xiao, K. Thulasiraman, G. Xue, and A. Jttner. The constrained
shortest path problem: algorithmic approaches and an algebraic study
with generalization. AKCE International Journal of Graphs and Com-
binatorics, (2):63–86, December 2005.

[14] J. Y. Yen. Finding the k shortest loopless paths in a network.
Management Science, 17(11):712–716, 1971.

[15] D. Eppstein. Finding the k shortest paths. SIAM Journal on Computing,
28(2):652–673, 1998.

[16] N. Shi. k constrained shortest path problem. IEEE Transactions on
Automation Science and Engineering, 7(1):15–23, January 2010.

[17] M. Balman, E. Chaniotakisy, A. Shoshani, and A. Sim. A flexible
reservation algorithm for advance network provisioning. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC 2010), pages 1–11, Nov 2010.

[18] E.-S. Jung, Y. Li, S. Ranka, and S. Sahni. An evaluation of in-advance
bandwidth scheduling algorithms for connection-oriented networks. In
Proceedings of the International Symposium on Parallel Architectures,
Algorithms, and Networks (I-SPAN 2008), pages 133–138, May 2008.

[19] S. Sahni, N. Rao, S. Ranka, Y. Li, E.-S. Jung, and N. Kamath. Bandwidth
scheduling and path computation algorithms for connection-oriented
networks. In Proceedings of the Sixth International Conference on
Networking (ICN 2007), pages 47–47, April 2007.

[20] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and Franois
Soumis. Chapter 2 time constrained routing and scheduling. In
C.L. Monma M.O. Ball, T.L. Magnanti and G.L. Nemhauser, editors,
Network Routing, volume 8 of Handbooks in Operations Research and
Management Science, pages 35 – 139. Elsevier, 1995.

[21] Wei Wu and Qiuqi Ruan. A hierarchical approach for the shortest path
problem with obligatory intermediate nodes. In Signal Processing, 2006
8th International Conference on, volume 4, pages –, Nov 2006.

[22] Jean-Franois Brub, Jean-Yves Potvin, and Jean Vaucher. Time-
dependent shortest paths through a fixed sequence of nodes: application
to a travel planning problem. Computers and Operations Research,
33(6):1838 – 1856, 2006.

[23] A. Medina, I. Matta, and J. Byers. Brite: A flexible generator of internet
topologies. Technical report, Boston, MA, USA, 2000.

[24] William B. Norton. The internet peering playbook : Connecting to the
core of the internet. 2014.

