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Abstract—We consider the virtual topology and traffic routing to carry the traffic demands is usually taken as the metric to
(VTTR) problem, a subproblem of traffic grooming that arises as  minimize [8]. Other cost functions have also been consitiere
a fundamental network design problem in optical networks. The for instance, the electronic switching cost of groomingfica

objective of VTTR is to determine the minimum number of light- bet lightoaths at int diat itch 5
paths so as to satisfy a set of traffic demands, and does not take?€'WEEN lightpaths atl intermediate switches [5] or power

into account physical layer constraints; a routing and wavelength consumption in optical networks [16].
assignment (RWA) algorithm must reconcile the virtual topology One essential concern about the ILP formulations is that

obtained by VTTR with the physical topology. We propose an they are solvable only for small network topologies [16].
efficient algorithms that uses a partial LP relaxation technique For larger topologies representative of realistic netsptke

with lazy constraints to improve substantially the scalability of : . . L
VTTR, and, hence, of traffic grooming. Our approach delivers a ILP formulation cannot be solved to optimality within rea-

desirable tradeoff between running time and quality of solution. Sonable amounts of time (e.g., several hours). Therefbee, t
offline problem has generally been addressed using heuristi

| INTRODUCTION algorithms [1], [18]. Other approaches tackle the problem
’ by manipulating the ILP formulation using decomposition or
To accommodate the exponential growth of demand in CoEsiumn generation techniques.
munications, infr'as'truc'Fure that can support ever iningas | [7], the original ILP is decomposed into two simpler
amounts of traffic is highly needed. Optical networks havgps that are solved sequentially: one that addresses baly t
been commonly used as the backbone infrastructure of Eftergaffic routing and lightpath routing subproblems and iwedl
services, since they deliver high performance in terms @ bOsirst: and another that addresses the wavelength assignment
throughput and QoS. With the help of WDM technology, ibroblem only and takes as input the solution of the first ILP.
is possible to transmit traffic on different wavelengthshivit |, [14], a multi-level decomposition method is introduced t
the same optical fiber si_mt_JItaneoust. Currently, the data I address the multi-layered routing and multi-rate conmoecti
of a single wavelength is in the order of 10-40 Gbps, whilgnaracteristics of traffic grooming. In [11], the objectigeto
higher rates are becoming commercially available. ~ design a ring network that is able to satisfy any requesttgrap
The capacity of each wavelength can be significantly highgfin “maximum degree at most The cases ob = 2 and
than the magnitude of individual traffic demands. The kewnidg _ 3 \yere solved by graph decomposition.
of traffic grooming is to aggregate individual traffic reqtses  column generation techniques were developed in [3], [12].
onto wavelengths so as to improve bandwidth utilizatioser 5 peyristic algorithm using column generation for a path-
the network and minimize the use of network resources. Mag¥sed formulation of the problem was developed in [3].
variants of traffic grooming have been studied in the liteiat 1o key idea was to generate an optimal subset of paths
Online versions of the problem target network environmemts gficiently. A hierarchical optimization method was propds
which traffic demands arrive in real time. Since future dedsan;p, [12]. The method first deals with the grooming and routing
are not known, the main objective of online problems is @ecisions using column generation to find the dual bounds
minimize blocking probability or maximize throughput. anq 4 rounding heuristic to find integral solution; waveléng
Offline traffic grooming is a fundamental network des'g'&ssignment was then carried out in a second step.
problem that has been shown to be NP-hard [4]. Such nety, this paper, we define theTTR problem in Section I,
work design problems have been formulated as integer lin€@y in Section 111, we present an algorithm based on partial

programs (ILPs) and assume the existence of a traffic matjiy ye|axation to solve it. In Section IV, we present numrica
representing the demands between node pairs. Basic IR its and we conclude the paper in Section V.

formulations of the problem are available in [6] and [17]piFy
cally, the objective is to minimize the total network costileh Il. THEVTITRPROBLEM

satisfying all demands (e.g., as in [2], [8]), or to maximize |, [13], we proposed a decomposition of the traffic groom-
the total revenue by satisfying as many traffic demands % (TG) problem, where the objective is to minimize the
possible given certain capacity (wavelength) constre@ss., numper of lightpaths, into two subproblems, tigual topol-
as in [17]). Therefore, the number of lightpaths estabtish(?ng and traffic routing (VTTRyubproblem and theouting

This work was supported by the National Science FoundatimeuGrant and wavelength assignment (RV\HU)bprpblem, that are then
CNS-1113191. solved sequentially. We have shown in [13] that, whenever



TABLE |

the network is not wavelength (bandwidth) limited, this se- CPUTIME COMPARISON OFVTTRAND VTTR-rlx N = 16
guential solution yields an optimal solution to the oridina
traffic grooming problem. We have also developed scalable CPU Time (sec)
optimal RWA algorithms for ring and mesh topologies in [15] tmas | VITR ] VITR-X
and [10], respectively. Therefore, our focus here is on the 10 | 21629.1] 0.184
20 | 21626.7| 0.199

VTTRsubproblem. 30 1 2162661 0.200

The VTTRsubproblem is defined as follows: 40 | 21732.8| 0.242

Definition 2.1 (VTTR):Given the numberN of nodes in 50 | 21740.4] 0.259
the network graphG, the wavelength capacit¢, and traffic 60 | 216259] 0.188

demand matrix’, establish the minimum number of lightpaths
to carry all traffic demands.

Note that theVTTR problem does not take as input th
network graphG, only the traffic demand matri’ (and,
hence, the number of node¥}). Consequently, the output of

She original ILP formulation has stronger constraints tfitan
LP relaxation, in the case of minimization problems such as

the problem is simply the set of lightpaths to be establish%f one we consider in this work, the optimal value of the

. . ) relaxation provides a lower bound for the original ILP
but not the (physical) paths that these lightpaths take in §N§rmulation. Although LP relaxation sacrifices optimalitige

network. The physical paths must be determined by the R . S
; : : - .relaxed problem can be solved as a linear program in time that
algorithm in a second step of solving the original traffic ; :
. ! may be orders of magnitude lower than the time to solve the
grooming problem on the given network gragh

Due to space constraints, we do not provide the ILP formg_riginal ILP.
lation for VTTR However,VTTRhas the same objective func-. Ichef|n|t|onhé.2:f(_?_gTi—rlx) G'\llen EEe numperN OL TO?‘?S
tion as the original traffic grooming problem in minimizingIn € grapnts o » the wavelength capacity/, and traffic

the number of lightpaths, but only a subset of the constraingemand ma””.T’ establish the'mlmmu.m nur_nber (.Jf lightpaths
namely, those related to routing the traffic demands over tFPecaFW all traffic demands while allowirigactional lightpaths
lightpaths in the virtual topology (e.g., refer to [16]). to exist betwee_n any palr_ of nodes. . .

The VTTR subproblem is similar in concept to the virtual L€t {bi;} be integer variables denoting the number of light-
topology problem studied in the context of multihop broadea Paths from node to node; in the virtual topologyVTTR-rix
and-select (BAS) networks [9]. In multihop BAS networkssit j 6N be derived fron'VTTRby replacing the integer variables
not possible to establish direct connections between ery {bi;} with non-negative real variablg$;; }, while maintaining
of nodes, hence some traffic demands may need to be rOLH%‘?i mtegrallty constraints on all other mteger varlabrm;he
via intermediate nodes — just as traffic demands need to lBEMulation. ThenyVTTR-rixrepresents partial LP relaxation
routed over multiple lightpaths in our problem. Furthersor ©f VTTR and can be formulated as a mixed integer linear
just as BAS networks do not impose any physical topolod}fogram (MILP). Also, if{b;; } is a feasible solution tVTTR-
constraints on the formation of direct connections due éirth - then{[bi;]} is a feasible solution tYTTR
all-to-all broadcast nature, theTTR subproblem does not Ve compared th¥ TTRandVTTR-rlxon problem instances
impose any physical topology constraints on the formatig#gfined on a 16-node network. For the comparison, we gener-
of the virtual topology of lightpaths. The virtual topologyated traffic instances by setting each traffic demandas
determined by TTRis reconciled with the physical topology@ random integer in the range, t,...|. We let parameter
by solving the second subproblem [13]. tmax = 10,20,30,40,50,60, and for each value of,,q.

Ignoring the physical topology constraints in the defimitioWe generated ten traffic matrices (i.e., problem instanites)
of the VTTR subproblem has two major benefits. First, th&ere used to solve botTTRand VTTR-rix
running time for finding an optimal solution depends only Table | presents the CPU time (in sec), averaged over the
on the size (i.e., numbeN of nodes) of the network, notten random instances, that CPLEX needs to solveMliéR
its topology. Hence, the running time of a problem instan@ndVTTR-rixproblems for each value @f,,.. We imposed a
with a given demand matrix@ would be identical for a Six-hour limit on running time; if an instance did not contele
sparse ring network and a dense mesh network of the sayithin this time limit, we recorded the best available smint
size. Second, the problem formulation does not include afgund until that time and terminated the CPLEX process. We
binary variables. Therefore, it is possible to employ pattP note that the CPU times do not vary much across the values
relaxation techniques so as to reduce the time requireddo ff tmaz, but solving the partial LP relaxatiodTTR-rIx takes
solutions that are close to the optimal; we describe antitera @ fraction of a second whereas solving #M&TRILP takes
algorithm that uses such techniques in the following sectiolonger than the six hour limit we imposed.

. . Table Il compares the best available solutionsMdTR
A. Partial LP Relaxation of VTTR obtained within the six-hour limit, to the optimal soluti®n

Linear programming (LP) relaxation of an ILP is thao VTTR-rlx in terms of the objective value (i.e., number of
problem that arises by relaxing the integrality constsion lightpaths). For each row of the table (i.e., a specific vaifie
the relevant decision variables of the original problenmc8i ¢,,..), the values shown are averages over the corresponding



TABLE Il

OBJECTIVE VALUE COMPARISON OFVTTRAND VTTR-flx N = 16 the ﬂ_oor (reSPeCtiveWa ceiling) Qf the corresponding _Dml
solution obtained fromVTTR-rx if U;; < U; (respectively,
Objective Value (# of lightpaths) U;; > Up). We repeat this process, increasing the threshold
VTTR __ VITRrX value U; and decreasing, at each iteration, until one of the
tmaz (best available)| (optimal) [ (rounded-up) . . Lo e
o T =TT =175 following stopping criteria is satisfied:
50 1732 150.0 5745 1) all lightpath variables in the solution are integer, and
30 250.6 226.6 340.1 hence represent an optimal solutionM®TR
‘5‘8 gg;; ggg-i jgg-? 2) the threshold pairn(U;,U;,) reaches a predetermined
60 4682 4435 558.5 value, or

3) the improvement in the value of the objective function
over the previous iteration is less than a predetermined
minimum valued.

ten traffic instances. However, the optimal solution to iphrt A combination of the above criteria may be used, e.g., stop

LP relaxationVTTR-rIxis a lower bound, but not necessarilywhenever the thresholds have reached a predetermined value

a feasible solution to/TTR Therefore, we also present thepr the improvement over the previous iteration is less than

objective value of the feasible solution obtained by rongdi whichever is satisfied first.

up the real valueél*j of the optimal solution to/TTR-rlx The algorithm can be described by these steps:

From the two tables we make two important observations. 1) Initialization: i < 0; U; < 0.1; Uy < 0.9.

First, the integral constraints of the lightpath varialiigsplay 2) SolveVTTR-rIxwith no integer constraints ofb;;} ac-

an important role in increasing the complexity of the branch tivated. Calculate and recofd;; for lightpaths between

and-bound process of the ILP solver. Second, rounding up  all node pairs(i, j) in the optimal solution.

the real lightpath values;; results in a large optimality gap.  3) Re-solveVTTR-rIxwith the following two sets of equal-

Based on these observations, in the next section we develop a ity constraints activated:

iterative algorithm that strikes a good balance betweeningn . . .

time and quality of solution. bij = “fiﬂ Vinj: Uij 2 Un

bij = I_b”J V i,j : Uij S Ul
Find the new optimal solution, and determine the objec-
tive value of the corresponding feasible solution obtained
by rounding up all non-integer lightpath variables.

4) If the stopping criterion is satisfied, return the current

E;j . solution; otherwise set«— i+ 1;U; «+ U; +0.1; U, +—

Uij = Ak bj; > 0. @) U, — 0.1 and repeat from Step 2.

“ We note that, at each iteration of the algorithm, a tighter

The quantityU;; represents the utilization of the lightpathsyaja| |p relaxation o/ TTRwith a larger number of equality
from nodei to node; in the rounded-up feasible solution.. nstraints is considered, generally requiring longeretir

When the utilization is high (i.eli; is close to 1.0), the o1y On the other hand, the objective value of the solution
corresponding lightpath resources are used effectivelihén o, ovyes with each iteration. By selecting an appropriate
solution; furthermore, rounding up the correspondingtbglth - ¢1655ing criterion, especially in terms of the thresholtiga

variable to obtain a feasible solution makes only a smajl, jightpath utilization, this algorithm may be designed to

contribution to the optimality gap. The opposite is true Wheygjiver a desirable tradeoff between running time and guali
the utilization of a set of lightpaths is low. of the final solution.

We defineU; andU,, 0 < U, < U, < 1, as a low and
high threshold, respectively on lightpath utilization.€eTkey IV. NUMERICAL RESULTS
idea of the iterative algorithm fovTTRis to treat the integer  In this section, we present the results of a simulation study
constraints on lightpath variablés; aslazy constraints, and we conducted to investigate the performance of YAETR
activate only a subset of them at each iteration, based on hpkeblem and the iterative algorithm described in the presio
they relate to this pair of utilization thresholds. section for the VTTR problem in terms of scalability (i.e.,
The algorithm starts by solving the partial LP relaxationunning time) and quality of solution. All results were abted
VTTR-rixin which none of the integrality constraints ¢t;;} by running the IBM Illog CPLEX 12 optimization tool on
are activated. If all lightpath variables in the optimalwgimn a cluster of identical compute nodes with dual Woodcrest
are integer, then this is a feasible (and optimal) solutimn Xeon CPU at 2.33GHz with 1333MHz memory bus, 4GB of
VTTR Otherwise, we examine the solution to identify almemory and 4MB L2 cache.
lightpath variables;; with a utilizationU;; < U; or U;; > U,. Our study involves a large set of problem instances defined
We then activate two sets ofquality constraintson the on several network sizéswith various random traffic loads.
identified variables, i.e., we solve a modified versioVaflR- 1We remind the reader that théTTR problem does not account for the
rIx in which the identified variables;; are set to be equal to physical topology of the network.

IIl. AN ITERATIVE ALGORITHM FORVTTR

Consider the optimal squtio{’B;j} to theVTTR-rIxproblem

and the corresponding feasible solutigfib;;]} to VTTR
obtained by rounding. Let us define:
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Fig. 1. CPU time of the iterative algorithnly = 16 Fig. 2. Solution quality of the iterative algorithmy, .. = 30

In particular, we consider networks withh = 8, 16, 24, to the modified version oW TTR-rix problem for the given
and 32 nodes. In all the simulations, we set the wavelengt@lue of a pair of thresholds. The denominator is the value of
capacityC = 16. For each network topology, we considethe objective function for the optimal solution to theTTR
several problem instances. For each problem instance, Bigblem (obtained within &% relative optimality gap, as
traffic demand matrix” = [t.4] is generated by drawing thewe explained earlier). A low value of the above expression
(integer) traffic demands uniformly at random in the intérvalenotes a higher quality solution. As expected, the quality
[07tma$]_ The values ot,,,, we used in the simulations arethe solution starts away from optimal fMTTR-rIx (i.e., the

20, 30, 40, and 50. Each data point in the figures we pres®gint (0,0) in the figure) since all integer lightpath vatesbare

in this section represents the average of 10 random problégtaxed; the solution quality then improves @sincreases or
instances for the stated values of the input parameters. Uy, decreases. The best result is achieved for the threshald pai

In this section, we set the relative optimality gap to 2% foiUi, Urn) = 0.5,0.6. Importantly, for all network sizes shown
all simulations. Consequently, CPLEX terminates when din in the figure, the solution is at most 11% of the optimal as soon
a solution that is within 2% of the optimal for the problen®s (Ui, Us) = (0.5,0.6); this worst case occurs faV = 8,
at hand, rather than continuing until the problem is sohad &nd the gap decreases as the network sizencreases. For
optimality. Later in this section we will investigate howeth the 32-node network, the gap is as small3&s. Note that
running time required to solve théTTRproblem is affected this pair of values fo(U;, U, ) ensures that no wavelength is
by this optimality gap. under-utilized (i.e., it is filled to 50% at minimum) whilesal

Figure 1 plots the running time of the iterative algorithnieaving some room to accommodate future demands without
for VTTRas a function of the thresholds; and U;,; note Nnecessarily setting up additional lightpaths.
that the pair (0,0) in the figure corresponds to the solution Figure 3 plots the running time of the algorithm as a
of the relaxed problenvTTR-rlx The figure plots results for function of the network sizeV. For this simulation, we set
networks with N = 16 nodes and various values tf,... As (U,Un) = (0.5,0.6), the value that achieves the solution
expected, the running time generally increaseasicreases ©Of highest quality (i.e., the smallest number of lightpatas
or U,, decreases, since in both cases equality constraints W observed earlier. As we can see, the algorithm makes it
imposed on a larger number of lightpath variables. We al§§ssible to solve the/TTR problem for network sizes up
see that the running time is not significantly affected by tH® N = 32 within one hour without sacrificing much in
value of parametet;, .. Whent,,,. increases fron20 to 50, terms of optimality (as Figure 2 indicates). Such problem
the running time only increases by a few seconds. This sholR§tances are impossible to solve by directly using theimaig
that the algorithm is relatively stable to the changet,of,,, ILP formulation for theVTTR problem, even applying a%
and hence, is effective across a range of traffic loads. optimality gap.

Based on the last observation, for the simulations in the re-Finally, Figure 4 compares the running time as a function of
mainder of this section we have fixed the value. gf,, = 30; network size of three methods for solving tHi@ TRproblem:
with this value oft,,.., the average size of demands between 1) solvingVTTRto optimality;
any source-destination pair is close to the capa€ity= 16 ~ 2) solving VTTRwith a 2% relative optimality gap; and
of a wavelength. Results for other valuestgf,, exhibit the  3) solving VTTR-rIxusing (U;, Up,) = (0.5,0.6).
same behavior and are omitted. All simulations are allowed to run for as long as 24 hours.

Figure 2 plots the quality of the solution of the iterativéds we can see, the running time of the first method (i.e.,
algorithm as a function of the pair of threshold&;,U;) directly solving the ILP formulation for the VTTR problem
and for various network sizes. The quality of the solution i® optimality), grows consistently with the netwok sizé.
defined as)_ H_)Z*j]/Zb;*j. The numerator in this expressionWithin the 24-hour time limit, this method can only solve
is the value of the feasible solution MTTR obtained by network sizes up to 16 nodes. Setting the optimality gap to
rounding up the lightpath variables in the optimal solutio@% (i.e., using the second method listed above) reduces the
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running time of finding a solution by about two orders ofor VTTR By combining this algorithm with scalable RWA al-
magnitude, but even in this case it is not possible to solve 3gorithms [10], [15], this decomposition approach scalel tve

node networks within the 24-hour time limit. Notice that lwit both ring and mesh network topologies and enables operators

the second method, the running time for the 8-node networktis carry out extensive "what-if"analysis in optimizing the
longer than the time it takes to solve the 16-node networis Thetwork.

drop in running time when the network size increases from 8
to 16 can be explained by making the observation that, with a
fixed value oft,,., = 30, as the network size grows so doesl!]
the offered traffic and the optimal objective value (i.e miner
of lightpaths). Hence, CPLEX may take a shorter time to reaciz]
a solution that is 2% from the optimal solution as the network
size increases, as the absolute difference from the optimaj
solution is larger. Of course, as the network size increases
further, the increase in the number of variables and canssra
. - L 4]

becomes once again the factor determining the running tlmé,
hence the increase as network size grows to 24 and beyongh]

Finally, the iterative algorithm we described in the prexdo 5
section is significantly faster over all network sizes, an& ]
reduces the running time by more than one order of magnitud@
compared to solving/TTR directly within a 2% optimality
gap. In particular, the iterative algorithm solves t@TR (8]
problem on the 32-node network in about 3000 seconds (i.e.,
less than 1 hour), while also obtaining a solution that isimit
3% of the best solution (refer also to Figure 2) that we Werég]
able to obtain after running the second method for 24 houfs0]
Note that in Figure 4, we used/;,U;,) = (0.5,0.6) as the 1]
pair of thresholds for the algorithm; however, other paifs J,
thresholds may be applied to further reduce the running.time

Based on these results, we conclude that, for small networkg!
e.g., of size between 8-10 nodes, ¥&TR problem can be
directly solved by using the MILP formulation with or withbu [13]
imposing a2% optimality gap. However, for larger networks, 14]
the iterative algorithm we presented in Section Il is mor%

efficient and effective.
[15]

V. CONCLUSIONS
[16]

We have presented an efficient iterative algorithm based
on partial LP relaxation to solve the virtual topology and
traffic routing Y TTR problem, that arises in a sequentiaj;g
decomposition of the traffic grooming problem. The thredhol
parameters of the algorithm may be tuned to achieve a desired
tradeoff between running time and quality of the final santi
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