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Abstract—We consider the virtual topology and traffic routing
(VTTR) problem, a subproblem of traffic grooming that arises as
a fundamental network design problem in optical networks. The
objective of VTTR is to determine the minimum number of light-
paths so as to satisfy a set of traffic demands, and does not take
into account physical layer constraints; a routing and wavelength
assignment (RWA) algorithm must reconcile the virtual topology
obtained by VTTR with the physical topology. We propose an
efficient algorithms that uses a partial LP relaxation technique
with lazy constraints to improve substantially the scalability of
VTTR, and, hence, of traffic grooming. Our approach delivers a
desirable tradeoff between running time and quality of solution.

I. I NTRODUCTION

To accommodate the exponential growth of demand in com-
munications, infrastructure that can support ever increasing
amounts of traffic is highly needed. Optical networks have
been commonly used as the backbone infrastructure of Internet
services, since they deliver high performance in terms of both
throughput and QoS. With the help of WDM technology, it
is possible to transmit traffic on different wavelengths within
the same optical fiber simultaneously. Currently, the data rate
of a single wavelength is in the order of 10-40 Gbps, while
higher rates are becoming commercially available.

The capacity of each wavelength can be significantly higher
than the magnitude of individual traffic demands. The key idea
of traffic grooming is to aggregate individual traffic requests
onto wavelengths so as to improve bandwidth utilization across
the network and minimize the use of network resources. Many
variants of traffic grooming have been studied in the literature.
Online versions of the problem target network environmentsin
which traffic demands arrive in real time. Since future demands
are not known, the main objective of online problems is to
minimize blocking probability or maximize throughput.

Offline traffic grooming is a fundamental network design
problem that has been shown to be NP-hard [4]. Such net-
work design problems have been formulated as integer linear
programs (ILPs) and assume the existence of a traffic matrix
representing the demands between node pairs. Basic ILP
formulations of the problem are available in [6] and [17]. Typi-
cally, the objective is to minimize the total network cost while
satisfying all demands (e.g., as in [2], [8]), or to maximize
the total revenue by satisfying as many traffic demands as
possible given certain capacity (wavelength) constraints(e.g.,
as in [17]). Therefore, the number of lightpaths established
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to carry the traffic demands is usually taken as the metric to
minimize [8]. Other cost functions have also been considered;
for instance, the electronic switching cost of grooming traffic
between lightpaths at intermediate switches [5] or power
consumption in optical networks [16].

One essential concern about the ILP formulations is that
they are solvable only for small network topologies [16].
For larger topologies representative of realistic networks, the
ILP formulation cannot be solved to optimality within rea-
sonable amounts of time (e.g., several hours). Therefore, the
offline problem has generally been addressed using heuristic
algorithms [1], [18]. Other approaches tackle the problem
by manipulating the ILP formulation using decomposition or
column generation techniques.

In [7], the original ILP is decomposed into two simpler
ILPs that are solved sequentially: one that addresses only the
traffic routing and lightpath routing subproblems and is solved
first; and another that addresses the wavelength assignment
problem only and takes as input the solution of the first ILP.
In [14], a multi-level decomposition method is introduced to
address the multi-layered routing and multi-rate connection
characteristics of traffic grooming. In [11], the objectiveis to
design a ring network that is able to satisfy any request graph
with maximum degree at mostδ. The cases ofδ = 2 and
δ = 3 were solved by graph decomposition.

Column generation techniques were developed in [3], [12].
A heuristic algorithm using column generation for a path-
based formulation of the problem was developed in [3].
The key idea was to generate an optimal subset of paths
efficiently. A hierarchical optimization method was proposed
in [12]. The method first deals with the grooming and routing
decisions using column generation to find the dual bounds
and a rounding heuristic to find integral solution; wavelength
assignment was then carried out in a second step.

In this paper, we define theVTTR problem in Section II,
and in Section III, we present an algorithm based on partial
LP relaxation to solve it. In Section IV, we present numerical
results, and we conclude the paper in Section V.

II. T HE VTTRPROBLEM

In [13], we proposed a decomposition of the traffic groom-
ing (TG) problem, where the objective is to minimize the
number of lightpaths, into two subproblems, thevirtual topol-
ogy and traffic routing (VTTR)subproblem and therouting
and wavelength assignment (RWA)subproblem, that are then
solved sequentially. We have shown in [13] that, whenever



the network is not wavelength (bandwidth) limited, this se-
quential solution yields an optimal solution to the original
traffic grooming problem. We have also developed scalable
optimal RWA algorithms for ring and mesh topologies in [15]
and [10], respectively. Therefore, our focus here is on the
VTTRsubproblem.

The VTTRsubproblem is defined as follows:
Definition 2.1 (VTTR):Given the numberN of nodes in

the network graphG, the wavelength capacityC, and traffic
demand matrixT , establish the minimum number of lightpaths
to carry all traffic demands.

Note that theVTTR problem does not take as input the
network graphG, only the traffic demand matrixT (and,
hence, the number of nodes,N ). Consequently, the output of
the problem is simply the set of lightpaths to be established
but not the (physical) paths that these lightpaths take in the
network. The physical paths must be determined by the RWA
algorithm in a second step of solving the original traffic
grooming problem on the given network graphG.

Due to space constraints, we do not provide the ILP formu-
lation for VTTR. However,VTTRhas the same objective func-
tion as the original traffic grooming problem in minimizing
the number of lightpaths, but only a subset of the constraints,
namely, those related to routing the traffic demands over the
lightpaths in the virtual topology (e.g., refer to [16]).

The VTTRsubproblem is similar in concept to the virtual
topology problem studied in the context of multihop broadcast-
and-select (BAS) networks [9]. In multihop BAS networks it is
not possible to establish direct connections between everypair
of nodes, hence some traffic demands may need to be routed
via intermediate nodes – just as traffic demands need to be
routed over multiple lightpaths in our problem. Furthermore,
just as BAS networks do not impose any physical topology
constraints on the formation of direct connections due to their
all-to-all broadcast nature, theVTTR subproblem does not
impose any physical topology constraints on the formation
of the virtual topology of lightpaths. The virtual topology
determined byVTTRis reconciled with the physical topology
by solving the second subproblem [13].

Ignoring the physical topology constraints in the definition
of the VTTR subproblem has two major benefits. First, the
running time for finding an optimal solution depends only
on the size (i.e., numberN of nodes) of the network, not
its topology. Hence, the running time of a problem instance
with a given demand matrixT would be identical for a
sparse ring network and a dense mesh network of the same
size. Second, the problem formulation does not include any
binary variables. Therefore, it is possible to employ partial LP
relaxation techniques so as to reduce the time required to find
solutions that are close to the optimal; we describe an iterative
algorithm that uses such techniques in the following section.

A. Partial LP Relaxation of VTTR

Linear programming (LP) relaxation of an ILP is the
problem that arises by relaxing the integrality constraints on
the relevant decision variables of the original problem. Since

TABLE I
CPU TIME COMPARISON OFVTTRAND VTTR-rlx, N = 16

CPU Time (sec)
tmax VTTR VTTR-rlx

10 21629.1 0.184
20 21626.7 0.199
30 21626.6 0.200
40 21732.8 0.242
50 21740.4 0.259
60 21625.9 0.188

the original ILP formulation has stronger constraints thanits
LP relaxation, in the case of minimization problems such as
the one we consider in this work, the optimal value of the
LP relaxation provides a lower bound for the original ILP
formulation. Although LP relaxation sacrifices optimality, the
relaxed problem can be solved as a linear program in time that
may be orders of magnitude lower than the time to solve the
original ILP.

Definition 2.2: (VTTR-rlx) Given the numberN of nodes
in the graphG of TG, the wavelength capacityC, and traffic
demand matrixT , establish the minimum number of lightpaths
to carry all traffic demands while allowingfractional lightpaths
to exist between any pair of nodes.

Let {bij} be integer variables denoting the number of light-
paths from nodei to nodej in the virtual topology.VTTR-rlx
can be derived fromVTTRby replacing the integer variables
{bij} with non-negative real variables{b̄ij}, while maintaining
the integrality constraints on all other integer variablesin the
formulation. Then,VTTR-rlxrepresents apartial LP relaxation
of VTTR, and can be formulated as a mixed integer linear
program (MILP). Also, if{b̄ij} is a feasible solution toVTTR-
rlx, then{⌈b̄ij⌉} is a feasible solution toVTTR.

We compared theVTTRandVTTR-rlxon problem instances
defined on a 16-node network. For the comparison, we gener-
ated traffic instances by setting each traffic demandtsd as
a random integer in the range[0, tmax]. We let parameter
tmax = 10, 20, 30, 40, 50, 60, and for each value oftmax

we generated ten traffic matrices (i.e., problem instances)that
were used to solve bothVTTRandVTTR-rlx.

Table I presents the CPU time (in sec), averaged over the
ten random instances, that CPLEX needs to solve theVTTR
andVTTR-rlxproblems for each value oftmax. We imposed a
six-hour limit on running time; if an instance did not complete
within this time limit, we recorded the best available solution
found until that time and terminated the CPLEX process. We
note that the CPU times do not vary much across the values
of tmax, but solving the partial LP relaxationVTTR-rlx takes
a fraction of a second whereas solving theVTTR ILP takes
longer than the six hour limit we imposed.

Table II compares the best available solutions toVTTR
obtained within the six-hour limit, to the optimal solutions
to VTTR-rlx, in terms of the objective value (i.e., number of
lightpaths). For each row of the table (i.e., a specific valueof
tmax), the values shown are averages over the corresponding



TABLE II
OBJECTIVE VALUE COMPARISON OFVTTRAND VTTR-rlx, N = 16

Objective Value (# of lightpaths)
VTTR VTTR-rlx

tmax (best available) (optimal) (rounded-up)

10 101.7 74.1 217.9
20 173.2 150.0 274.2
30 250.6 226.6 340.1
40 327.1 302.6 423.6
50 389.3 366.4 480.1
60 468.2 443.5 558.5

ten traffic instances. However, the optimal solution to partial
LP relaxationVTTR-rlx is a lower bound, but not necessarily
a feasible solution toVTTR. Therefore, we also present the
objective value of the feasible solution obtained by rounding
up the real values̄b⋆

ij of the optimal solution toVTTR-rlx.
From the two tables we make two important observations.

First, the integral constraints of the lightpath variablesbij play
an important role in increasing the complexity of the branch-
and-bound process of the ILP solver. Second, rounding up
the real lightpath values̄b⋆

ij results in a large optimality gap.
Based on these observations, in the next section we develop an
iterative algorithm that strikes a good balance between running
time and quality of solution.

III. A N ITERATIVE ALGORITHM FOR VTTR

Consider the optimal solution{b̄⋆
ij} to theVTTR-rlxproblem

and the corresponding feasible solution{⌈b̄⋆
ij⌉} to VTTR,

obtained by rounding. Let us define:

Uij =
b̄⋆
ij

⌈b̄⋆
ij⌉

, b̄⋆
ij > 0. (1)

The quantityUij represents the utilization of the lightpaths
from node i to nodej in the rounded-up feasible solution.
When the utilization is high (i.e.,Uij is close to 1.0), the
corresponding lightpath resources are used effectively inthe
solution; furthermore, rounding up the corresponding lightpath
variable to obtain a feasible solution makes only a small
contribution to the optimality gap. The opposite is true when
the utilization of a set of lightpaths is low.

We defineUl and Uh, 0 ≤ Ul ≤ Uh ≤ 1, as a low and
high threshold, respectively on lightpath utilization. The key
idea of the iterative algorithm forVTTRis to treat the integer
constraints on lightpath variablesbij as lazy constraints, and
activate only a subset of them at each iteration, based on how
they relate to this pair of utilization thresholds.

The algorithm starts by solving the partial LP relaxation
VTTR-rlx in which none of the integrality constraints on{bij}
are activated. If all lightpath variables in the optimal solution
are integer, then this is a feasible (and optimal) solution to
VTTR. Otherwise, we examine the solution to identify all
lightpath variables̄bij with a utilizationUij ≤ Ul or Uij ≥ Uh.
We then activate two sets ofequality constraintson the
identified variables, i.e., we solve a modified version ofVTTR-
rlx in which the identified variables̄bij are set to be equal to

the floor (respectively, ceiling) of the corresponding optimal
solution obtained fromVTTR-rlx if Uij ≤ Ul (respectively,
Uij ≥ Uh). We repeat this process, increasing the threshold
valueUl and decreasingUh at each iteration, until one of the
following stopping criteria is satisfied:

1) all lightpath variables in the solution are integer, and
hence represent an optimal solution toVTTR;

2) the threshold pair(Ul, Uh) reaches a predetermined
value, or

3) the improvement in the value of the objective function
over the previous iteration is less than a predetermined
minimum valueδ.

A combination of the above criteria may be used, e.g., stop
whenever the thresholds have reached a predetermined value
or the improvement over the previous iteration is less thanδ,
whichever is satisfied first.

The algorithm can be described by these steps:
1) Initialization: i ← 0;Ul ← 0.1; Uh ← 0.9.
2) SolveVTTR-rlxwith no integer constraints on{bij} ac-

tivated. Calculate and recordUij for lightpaths between
all node pairs(i, j) in the optimal solution.

3) Re-solveVTTR-rlxwith the following two sets of equal-
ity constraints activated:

b̄ij = ⌈b̄ij⌉ ∀ i, j : Uij ≥ Uh

b̄ij = ⌊b̄ij⌋ ∀ i, j : Uij ≤ Ul

Find the new optimal solution, and determine the objec-
tive value of the corresponding feasible solution obtained
by rounding up all non-integer lightpath variables.

4) If the stopping criterion is satisfied, return the current
solution; otherwise seti ← i + 1;Ul ← Ul + 0.1; Uh ←
Uh − 0.1 and repeat from Step 2.

We note that, at each iteration of the algorithm, a tighter
partial LP relaxation ofVTTRwith a larger number of equality
constraints is considered, generally requiring longer time to
solve. On the other hand, the objective value of the solution
improves with each iteration. By selecting an appropriate
stopping criterion, especially in terms of the threshold values
on lightpath utilization, this algorithm may be designed to
deliver a desirable tradeoff between running time and quality
of the final solution.

IV. N UMERICAL RESULTS

In this section, we present the results of a simulation study
we conducted to investigate the performance of theVTTR
problem and the iterative algorithm described in the previous
section for the VTTR problem in terms of scalability (i.e.,
running time) and quality of solution. All results were obtained
by running the IBM Ilog CPLEX 12 optimization tool on
a cluster of identical compute nodes with dual Woodcrest
Xeon CPU at 2.33GHz with 1333MHz memory bus, 4GB of
memory and 4MB L2 cache.

Our study involves a large set of problem instances defined
on several network sizes1 with various random traffic loads.

1We remind the reader that theVTTR problem does not account for the
physical topology of the network.
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Fig. 1. CPU time of the iterative algorithm,N = 16

In particular, we consider networks withN = 8, 16, 24,
and 32 nodes. In all the simulations, we set the wavelength
capacityC = 16. For each network topology, we consider
several problem instances. For each problem instance, the
traffic demand matrixT = [tsd] is generated by drawing the
(integer) traffic demands uniformly at random in the interval
[0, tmax]. The values oftmax we used in the simulations are
20, 30, 40, and 50. Each data point in the figures we present
in this section represents the average of 10 random problem
instances for the stated values of the input parameters.

In this section, we set the relative optimality gap to 2% for
all simulations. Consequently, CPLEX terminates when it finds
a solution that is within 2% of the optimal for the problem
at hand, rather than continuing until the problem is solved to
optimality. Later in this section we will investigate how the
running time required to solve theVTTRproblem is affected
by this optimality gap.

Figure 1 plots the running time of the iterative algorithm
for VTTR as a function of the thresholdsUl and Uh; note
that the pair (0,0) in the figure corresponds to the solution
of the relaxed problemVTTR-rlx. The figure plots results for
networks withN = 16 nodes and various values oftmax. As
expected, the running time generally increases asUl increases
or Uh decreases, since in both cases equality constraints are
imposed on a larger number of lightpath variables. We also
see that the running time is not significantly affected by the
value of parametertmax. Whentmax increases from20 to 50,
the running time only increases by a few seconds. This shows
that the algorithm is relatively stable to the change oftmax,
and hence, is effective across a range of traffic loads.

Based on the last observation, for the simulations in the re-
mainder of this section we have fixed the value oftmax = 30;
with this value oftmax, the average size of demands between
any source-destination pair is close to the capacityC = 16
of a wavelength. Results for other values oftmax exhibit the
same behavior and are omitted.

Figure 2 plots the quality of the solution of the iterative
algorithm as a function of the pair of thresholds(Ul, Uh)
and for various network sizes. The quality of the solution is
defined as:

∑
⌈b̄⋆

ij⌉/
∑

b⋆
ij . The numerator in this expression

is the value of the feasible solution toVTTR obtained by
rounding up the lightpath variables in the optimal solution
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Fig. 2. Solution quality of the iterative algorithm,tmax = 30

to the modified version ofVTTR-rlx problem for the given
value of a pair of thresholds. The denominator is the value of
the objective function for the optimal solution to theVTTR
problem (obtained within a2% relative optimality gap, as
we explained earlier). A low value of the above expression
denotes a higher quality solution. As expected, the qualityof
the solution starts away from optimal forVTTR-rlx (i.e., the
point (0,0) in the figure) since all integer lightpath variables are
relaxed; the solution quality then improves asUl increases or
Uh decreases. The best result is achieved for the threshold pair
(Ul, Uh) = 0.5, 0.6. Importantly, for all network sizes shown
in the figure, the solution is at most 11% of the optimal as soon
as (Ul, Uh) = (0.5, 0.6); this worst case occurs forN = 8,
and the gap decreases as the network sizeN increases. For
the 32-node network, the gap is as small as3%. Note that
this pair of values for(Ul, Uh) ensures that no wavelength is
under-utilized (i.e., it is filled to 50% at minimum) while also
leaving some room to accommodate future demands without
necessarily setting up additional lightpaths.

Figure 3 plots the running time of the algorithm as a
function of the network sizeN . For this simulation, we set
(Ul, Uh) = (0.5, 0.6), the value that achieves the solution
of highest quality (i.e., the smallest number of lightpaths) as
we observed earlier. As we can see, the algorithm makes it
possible to solve theVTTR problem for network sizes up
to N = 32 within one hour without sacrificing much in
terms of optimality (as Figure 2 indicates). Such problem
instances are impossible to solve by directly using the original
ILP formulation for theVTTRproblem, even applying a2%
optimality gap.

Finally, Figure 4 compares the running time as a function of
network size of three methods for solving theVTTRproblem:

1) solvingVTTRto optimality;
2) solvingVTTRwith a 2% relative optimality gap; and
3) solvingVTTR-rlxusing (Ul, Uh) = (0.5, 0.6).
All simulations are allowed to run for as long as 24 hours.

As we can see, the running time of the first method (i.e.,
directly solving the ILP formulation for the VTTR problem
to optimality), grows consistently with the netwok sizeN .
Within the 24-hour time limit, this method can only solve
network sizes up to 16 nodes. Setting the optimality gap to
2% (i.e., using the second method listed above) reduces the
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running time of finding a solution by about two orders of
magnitude, but even in this case it is not possible to solve 32-
node networks within the 24-hour time limit. Notice that with
the second method, the running time for the 8-node network is
longer than the time it takes to solve the 16-node network. This
drop in running time when the network size increases from 8
to 16 can be explained by making the observation that, with a
fixed value oftmax = 30, as the network size grows so does
the offered traffic and the optimal objective value (i.e., number
of lightpaths). Hence, CPLEX may take a shorter time to reach
a solution that is 2% from the optimal solution as the network
size increases, as the absolute difference from the optimal
solution is larger. Of course, as the network size increases
further, the increase in the number of variables and constraints
becomes once again the factor determining the running time;
hence the increase as network size grows to 24 and beyond.

Finally, the iterative algorithm we described in the previous
section is significantly faster over all network sizes, and
reduces the running time by more than one order of magnitude
compared to solvingVTTR directly within a 2% optimality
gap. In particular, the iterative algorithm solves theVTTR
problem on the 32-node network in about 3000 seconds (i.e.,
less than 1 hour), while also obtaining a solution that is within
3% of the best solution (refer also to Figure 2) that we were
able to obtain after running the second method for 24 hours.
Note that in Figure 4, we used(Ul, Uh) = (0.5, 0.6) as the
pair of thresholds for the algorithm; however, other pairs of
thresholds may be applied to further reduce the running time.

Based on these results, we conclude that, for small networks,
e.g., of size between 8-10 nodes, theVTTR problem can be
directly solved by using the MILP formulation with or without
imposing a2% optimality gap. However, for larger networks,
the iterative algorithm we presented in Section III is more
efficient and effective.

V. CONCLUSIONS

We have presented an efficient iterative algorithm based
on partial LP relaxation to solve the virtual topology and
traffic routing (VTTR) problem, that arises in a sequential
decomposition of the traffic grooming problem. The threshold
parameters of the algorithm may be tuned to achieve a desired
tradeoff between running time and quality of the final solution

0.01

0.1

1

10

100

1000

10000

time limit

8 16 24 32

R
un

ni
ng

 ti
m

e 
(s

ec
)

N

VTTR (solved to optimality)
VTTR (solved with 2% gap)

Iterative algorithm (solved with 2% gap)
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for VTTR. By combining this algorithm with scalable RWA al-
gorithms [10], [15], this decomposition approach scales well to
both ring and mesh network topologies and enables operators
to carry out extensive ”what-if”analysis in optimizing their
network.
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