
On the Impact of Scheduler Settings
on the Performance of Multi-Threaded SIP Servers

Ramesh Krishnamurthy†, George N. Rouskas†‡
†North Carolina State University, Raleigh, NC 27695-8206 USA ‡King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Multi-threading is a widely used program execution
model, where each thread executes independently while sharing
some of the process resources. Multi-threaded processes are used
for a range of network application servers including web servers,
mail servers and SIP proxy servers (SPS) for Voice over IP
(VoIP). The process scheduler is a core part of any Operating
System and the policy it uses may have a significant impact
on the various applications executing on the system. In this
work, we investigate the impact of the Linux scheduler on the
performance of OpenSIPS, an open source SIP proxy server.
The version of Linux used in our study uses a scheduling policy
known as “Completely Fair Scheduler” (CFS), and the Linux
kernel provides several parameters that may be used to tune
the CFS policy. We have collected a large set of experimental
data, in a methodical fashion, to characterize the performance
of SPS as a function of the number of server threads and
the call arrival rate under (1) default CFS setting and (2)
with CFS parameters tuned for improved performance. By fine
tuning the scheduler parameters, SPS performance is improved
in all scenarios, in some cases significantly. To the best of our
knowledge, this is the first study that takes into account the
scheduler parameters in improving the performance of the SPS.
Our results indicate that network operators may increase server
capacity without additional capital expenditures, by applying
insightful configuration changes to scheduler policy.

I. INTRODUCTION

Multi-threading is a widely used program execution model,
where each thread executes independently of others. These
threads share some of the process resources, including process
state and memory space. Multi-threading can increase perfor-
mance in terms of responsiveness by concurrent execution of
these threads. The process scheduler is a core part of the oper-
ating system, and determines which process can execute on the
system and the duration it runs. The scheduling policy needs to
account for several objectives, including fairness, throughput
and response time, which often may be contradictory. In this
paper, we investigate the impact of the Linux Completely
Fair Scheduler (CFS) on the performance of OpenSIPS, as
a function of the number of threads and the call arrival rate.

In earlier work [1], we used waiting time as the metric
for evaluating the performance of the SPS in a single-server,
single-core system. We observed that the waiting time in-
creases several orders of magnitude from a few microseconds
to several milliseconds, as a function of the call arrival rate.
Despite this relative increase in waiting time, the absolute
values are sufficiently low that may not be noticeable to
VoIP users. To provide a more representative performance
measure of SPS for service providers, in this work we focus
on SIP control packet drop rate as the key performance metric.

Our contributions include: (1) collection of a large set of
experimental data, in a methodical fashion, to characterize the
performance of SPS as a function of the number of server
threads and increasing call arrival rates; (2) characterization
of the impact of the scheduler on the performance of a multi-
threaded SPS, in terms of SIP control packet drop rate and
waiting time; and (3) identification of the key scheduler param-
eters of CFS scheduler and concrete guidelines on tuning these
parameters to achieve significant performance improvement.

There have been several studies in the literature on the
impact of multi-threading on the performance of servers. The
ones most relevant to our current research include [2]–[4].
In [2], the authors develop techniques to determine optimal
allocation of threads for a specific Quality of Service (QoS)
objective, and use realistic workloads on a typical web server
to show the efficacy of the new methodology. In [3], the
complexity of the optimal configuration of a multi-threaded
web server for different workloads was explored. In [4], a
simulation study was carried out to investigate the impact
of multi-threading on cache performance. Several studies
investigate the impact of the process scheduler in various
contexts. An approach to improve the interactivity of user tasks
in an Android smartphone environment by passing information
about the user task from the Android framework layer to
the underlying Linux CFS is implemented in [5]. In [6],
the Linux scheduler was analyzed under the presence of
network I/O and a certain parameter was tuned to mitigate
starvation experienced by some processes. In [7], the authors
designed a feedback method between the user process and
the Linux scheduler so as to lower the global power budget.
Our work differs from these studies in that: (1) we focus
on the performance of SPS in terms of SIP control packet
drop rate; (2) we modify the kernel and SPS code to obtain
accurate packet measurements; and (3) we study the impact
of the scheduler and tune its parameters so as to improve
the SPS performance. There have also been several attempts
in the literature to characterize the performance of the SPS,
including [8]–[10]. These studies make specific assumptions
about the service time and its distribution, whereas we have
conducted extensive experiments to get an accurate measure
of service time, waiting time and packet drop rate.

Following the introduction, we describe the experimental
testbed in Section II, and discuss the measurement methodol-
ogy in Section III. In Section IV, we identify and tune the CFS
scheduler parameters, and present experimental performance
data. We conclude the paper in Section V.



Media Session (UAC <−> UAS)

INVITE

100 TRYING
INVITE

180 RINGING

180 RINGING
200 OK (INVITE)

200 OK (INVITE)

ACK
ACK

UAC SIP Proxy Server (SPS) UAS

BYE
BYE

200 OK (BYE)
200 OK (BYE)

Fig. 1. SIP message exchange for call setup and teardown

Fig. 2. Testbed for performance measurements of OpenSIPS SPS

II. TESTBED AND EXPERIMENTAL SETUP

SIP is an application layer signaling protocol that can
establish, modify, and terminate multimedia sessions such
as Internet telephony calls [11], [12]. The SPS is a key
component of the SIP infrastructure, and handles all SIP
messages generated by the User-Agent Client (UAC) and User-
Agent Server (UAS) during setup, modification or termination
of each media session. In case of overload, the SPS may
become a performance bottleneck that limits the ability of
users to establish SIP sessions. Consequently, we only focus
on the SPS in this work.

Figure 1 shows the exchange of SIP messages between the
UAC and UAS through an SPS, for both the call setup and
teardown operations. This is the message flow that we use in
our experimental data collection and in measuring the SPS
performance. Figure 2 shows the network testbed we used
to generate SIP calls and collect measurement data so as to
characterize the performance of the SPS. The hardware setup
consists of:
• OpenSIPS SPS. OpenSIPS [13] is an open source im-

plementation of a SIP proxy server. We installed the
OpenSIPS SPS on a quad-core Intel R© Xeon

TM
E5540

@2.53GHz processor with 8192 KB cache running the

dep

Layer
Transport

Device
Layer

IP Layer

Socket
Layer

SIP Layer
Common 
Processing

Transport
Layer

IP Layer

Device
Layer

Socket

Layer

Message−Specific
Processing

Physical Medium

arrt

tstack

tsockq

User Space

Kernel Space

tsip−in
sip−c tsip−out
t

t

Fig. 3. Path of packets through the Linux network stack and SIP layer

Debian 6.0.2 Linux distribution (2.6.32 Linux operating
system). All our experiments were conducted after dis-
abling two cores of available four cores and assigning
the SPS process to one active core and syslogd to the
other active core; this setup emulates a single processor
environment for SPS process threads. We configured UDP
as the transport layer protocol, and we modified the
default configuration file (i.e., opensips.cfg) to set
the number of children to the required number m of
threads; in our experiments, we let m = 2, 4, 6, 8, 16.

• SIPp UAC and UAS. SIPp is a free open source test tool
and traffic generator for the SIP protocol. For UAC and
UAS we used two separate machines with quad Intel R©

Xeon R© CPU E5540 @2.53GHz processors, running Red-
hat Linux 4.1.2-44 (Linux kernel version 2.6.18) OS.

III. MEASUREMENT METHODOLOGY AND EXPERIMENTS

Our goal is to get exact time measurements for each SIP
packet in the SPS, from the arrival instant (i.e., the time it is
received by the device driver) to the departure instant (i.e.,
the time it is transmitted by the device driver after it has
undergone processing at the SIP layer). Figure 3 illustrates
the packet receiving and sending operations within the Linux
kernel network stack. We identify three main components that
make up the total time a packet spends within the SPS:

1) Krcv: This component represents the time spent within
the kernel from the instant the packet is received at the kernel
device layer until the instant it is handed off to the SIP
layer. Note that this component consists of four distinct sub-
components: Kstack, the time it takes the packet to undergo
processing at the device, network, and transport layers; Kw

sockq ,
the time the packet spends waiting at the socket queue before
it can be delivered to the application (SIP) layer; Ks

sockq , the
time it takes the kernel to process the packet once it is in



the queue, including the time to wake the receiving user level
process to indicate the availability of data and handling the
dequeue request from the user process; and Kcopy , the time
needed to copy the data from the kernel space to user space.
Clearly, Krcv = Kstack +Kw

sockq +Ks
sockq +Kcopy .

2) Tsip: This component represents the time that the packet
undergoes processing within the SIP layer. The SIP layer
receives one packet at a time from the socket, processes it,
and passes it to the kernel for forwarding before it receives
the next packet from the socket. Therefore, Tsip reflects the
service time of the packet within the SIP layer, and does not
include any waiting time.

3) Ksnd: This component represents the time it takes the
packet to traverse the kernel on the sending side, until it is
transmitted on the physical medium. The SIP layer passes one
packet to the kernel at a time and then is blocked till the kernel
has processed the packet and sent it to the device layer.

Figure 3 shows the instances at which we record the
timestamps for the SIP packet at it moves through the SPS.
Each recorded data is logged as the packet is processed. Post-
experiment processing of logged data is performed to obtain
the waiting and service times for the packet.

The main time components Krcv , Tsip and Ksnd are cal-
culated using the recorded timestamps as shown in Figure 3.
The kernel and SPS time components are obtained using the
following calculations from the recorded timestamps:

Krcv = tsip−in − tarr,

Ksockq = Ks
sockq +Kw

sockq = tsockq − tstack,

Tsip = tsip−out − tsip−in,

Ksnd = tdep − tsip−out. (1)

In our experiments, we initiated calls between the UAC and
UAS via the SPS. For each experiment, 200,000 calls were
started. For each call, the messages exchanged between the
UAC and UAS are as shown in Figure 1. For each message
processed by the SPS, we measured the time components
described above to determine the waiting and service times
of the message through the SPS; we also kept a count of
any messages dropped. To ensure that the performance of the
SPS was not affected by any other process and did not take
advantage of multiple cores, all SPS threads were configured
to run on one core of the quad-core processor; syslogd was
run on a different core, and the other two cores were disabled.
The study of a multi-threaded SPS on multiple cores is the
subject of our ongoing work.

Each experiment is characterized by two parameters:
1) Call arrival rate. The call arrival rate range was from

200 cps to 4000 cps, where each call results in six arrivals at
the SPS as shown in Figure 1. The maximum call rate was set
to the point where the SPS starts getting overloaded and be-
yond which no meaningful result can be obtained. We modified
the SIPp tool (see http://rouskas.csc.ncsu.edu/Projects/SPS/) to
generate call arrivals using a specified time between inter-
arrivals. We generated the times separately such that these
inter-arrivals were exponentially distributed around the mean

call rate that we desired. The modified SIPp tool was used at
the UAC to initiate the calls.

2) The number of server threads, The experiments were
conducted for 2, 4, 6, 8 and 16 server threads.

Upon completion of an experiment for a specific call
rate and number of server threads, we process the logged
data and obtain the sample mean values for Krcv , Kstack,
Ksockq Tsip, and Ksnd; we obtain the mean value for each
SIP message type as well as the over-all mean across all
six message types for each of our experiments. We also
estimate 95% confidence intervals around the overall mean.
From these values, we define the overall service time as
E[x] = Kstack +Ks

sockq +Kcopy + Tsip +Ksnd. In addition,
for each experiment, the overall drop rate is measured by using
the netstat command, to obtain the statistics for packets in
the system.

IV. IMPACT OF PROCESS SCHEDULER ON SPS
PERFORMANCE

The main purpose of the process scheduler is to provide fair-
ness among different processes, maintain high-throughput for
the system and achieve maximum utilization of the CPU. The
Linux kernel uses a scheduling mechanism called completely
fair scheduling (CFS) [14]. CFS is a variant of weighted fair
queuing (WFQ), and its objective is to maintain fairness in
providing processor time to tasks. CFS uses red-black trees to
get the next process to run based on the concept of a “virtual
run-time”.

The main design principle of CFS is to model an ideal,
precise multi-tasking CPU. Note that a CPU can run only a
single task at a given time, while other tasks are waiting. To
ensure fair access to the CPU across all tasks, CFS tracks
a task’s “fairness imbalance” via a per-task variable referred
to as wait_runtime, that captures the task’s waiting time.
wait_runtime is the amount of time the task should
be allowed to run on the CPU under completely fair and
balanced scheduling. CFS tries to enforce fairness among all
its runnable tasks by scheduling the task that has the maximum
wait_runtime value and, thus, is most in need of CPU
time.

CFS also encompasses the concept of group schedul-
ing, introduced with the 2.6.24 kernel. Group scheduling
allows the scheduler to provide fair access to CPU time across
all tasks in the system, and enforces hierarchical fairness
among tasks, when a task spawns multiple child tasks.

CFS uses nanosecond granularity to account for the pro-
cess times. Linux provides several parameters for tuning the
behavior of the CFS scheduler, including the following three
that we considered in our study:
• sched_latency_ns: A period in which each task runs

once.
• sched_min_granularity_ns: The minimum time

after which a task becomes eligible to be preempted. The
scheduler tries to maintain this equality:

sched min granularity ns =
sched latency ns

nr tasks



where nr_tasks is the number of tasks in the queue. If
the equality is not met, the CFS scheduler tries to increase
the sched_latency_ns time to match the increased
number of tasks in the queue.

• sched_wakeup_granularity_ns: The ability of
the task being awaken to preempt the current task. A
larger value for this parameter makes it difficult for other
tasks to force preemption. This parameter is used to
reduce overscheduling.

The above parameters may be used to tune the scheduler’s
behavior to “desktop” workloads (where the objective is low
latency) or “server” workloads (where the goal is to achieve
good batching of jobs). The scheduler defaults to a setting
suitable for desktop workloads. The values of these parameters
are a function of the number of CPUs in the system. For
the two-core system used for our experiments, the default
values are: sched_latency_ns = 10,000,000 (10 ms),
sched_min_granularity_n = 2,000,000 (2 ms), and
sched_wakeup_granularity_ns = 2,000,000 (2 ms).

A. Baseline Server Mode

In our preliminary experiments, we determined that con-
figuring the scheduler in “desktop” mode results in poor
performance for the SPS. Therefore, following the recommen-
dations in [15], we modified the values of the three scheduler
parameters to move the default scheduler policy to “server”
mode, as follows: sched_latency_ns = 1,000,000 (1 ms),
sched_min_granularity_n = 100,000 (100 µ s), and
sched_wakeup_granularity_ns = 25,000 (25 µ s).
With these values, the scheduler allows the threads that are
spawned as part of the server to be scheduled more often,
improving the overall system performance. We will refer to
this configuration as the baseline “server” mode; we note
that these parameter values are recommended in [15] as a
generic server configuration and do not take into account
characteristics or workloads specific to SPS.

Consider an SPS process with multiple server threads. As
the system load increases, context switching overhead and
data cache pollution increases, hence performance suffers.
Similarly, as the number of threads in the system increases,
there is further process scheduling overhead, as well as pol-
lution of the instruction cache, in addition to the data cache
pollution. Therefore, it is clear that no set of fixed values for
the scheduler parameters will work well across the range of
system loads and number of threads under which a server is
expected to operate. As we mentioned above, CFS attempts
to adapt to an increase in the system load (i.e., an increase
in the number of tasks in the queue) by increasing the value
of parameter sched_latency_ns. By doing so, in effect,
CFS relaxes the fairness policy so as to reduce the context
switching overhead; as a result, the CPU is better utilized and
system throughput increases.

B. Enhanced Server Mode

Based on the above observations, we have carried out a large
number of experiments to measure the impact of the three

scheduler parameters identified above on three performance
metrics: (1) the service time, Tsip of a packet in the SIP layer,
(2) the kernel time, Krcv that includes the waiting time at the
socket queue, and (3) the drop rate of SIP control packets,
measured by the ratio of RcvErrors to Total number
of Messages provided by the netstat command. Our
finding are as follows.

1) sched latency ns: Setting this parameter to the fixed
value 800,000, independent of the number of threads,
achieved the best results. Recall that this parameter
controls the latency of CPU bound tasks, and is dynami-
cally adjusted by the scheduler in response to variations
in the system load (in our case, packet arrival rate).
Therefore, using a low value for this parameter provides
the scheduler with significant flexibility in adjusting this
value upwards to control the context switching overhead
following an increase in system load.

2) sched min granularity ns: This parameter controls
the amount of time that tasks may run without preemp-
tion. Therefore, it is desirable to set it to a value that
corresponds to the amount of time needed to complete
a task (in this case, process a SIP packet), so as to
minimize context switching overhead. To this end, we
set this parameter to a quantity that roughly corresponds
to the measured value of mean service time Tsip at the
point where the system started experiencing overload.
The specific values we used for this parameter were
100,000, 150,000, 200,000, 250,000, and 400,000, for
2, 4, 6, 8 and 16 server threads, respectively.

3) sched wakeup granularity ns: This parameter con-
trols the wake-up latency of a task, i.e., the amount of
time it must lapse before it can preempt the current
task. Since we set the amount of time that a task
may run without preemption to a value that ensures
that most tasks will complete before being preempted
(see the discussion on the second parameter above), it
follows that we should allow a new task to immediately
preempt the current task. Indeed, setting the value of
this parameter to zero achieved the best results across
all thread configurations.

We will refer to the configuration of the CFS scheduler with
these parameter values as the enhanced “server” mode.

C. Experimental Results

We now present the results of experiments we have con-
ducted to compare the performance of the SPS under the
baseline and enhanced “server” mode configuration for the
scheduler. In the experiments, we vary both the number of
SPS threads and the traffic load, expressed as number of calls
per second (cps). Our goal is to identify the traffic load (in cps)
at which the SIP control packet drop rate starts to exceed 1%,
implying that end users may experience call establishment
problems due to packet drops. Service providers may use this
traffic load as a trigger to add more capacity to the system
before significant losses of SIP control packets start to occur.
Based on our survey of industry standards, the threshold for



acceptable drop-rate in a VoIP environment is about 1% [16].
This value is considered in the industry as the threshold below
which voice calls have quality comparable to toll quality.
Note that this threshold is typically applied to voice packets
to characterize the performance of the data plane. In this
study, we use 1% as a reasonable value above which the drop
rate will negatively impact the operation of the control plane;
however, our methodology can be applied with any appropriate
threshold value.

Tables I and II present the measured values of Tsip, Krcv,
and SIP packet drop rate under the baseline and enahanced
“server” mode, respectively. Each column in these tables
presents the average of thirty experiments for the stated
number of threads and load (cps). For each value of the
number of threads, we present results for two load values:
the load value at which the drop rate exceeds 1% for the first
time, and the immediately lower value (in our experiments,
we used an increment of 200 cps for load values). We make
two observations from these tables. For the same load value,
configuring the scheduler parameters to the enhanced “server”
mode, always improves the SPS performance in terms of
drop rate and waiting time (which is included in the kernel
time, Krcv). Furthermore, in some cases (i.e., for two and
16 threads), the load at which the drop rate crosses the 1%
threshold we imposed is higher for the enhanced mode than
the baseline mode.

To better illustrate the performance improvement under the
enhanced mode, Table III compares the drop rate and Krcv

values for specific number of threads and load pairs; these
pairs were selected as they correspond to the scenarios where
the drop rate under the baseline mode exceeds 1%. As we can
see, the performance improvement is between 26-40% for the
drop rate and between 7-34% for Krcv . In fact, the enhanced
mode results in better performance in all the scenarios, and the
degree of improvement increases with the number of threads.
In other words, by adjusting the scheduler parameters to align
with the packet processing time at various degrees of multi-
threading, the enhanced “server” mode is capable of reducing
the context switching overhead associated with larger thread
numbers. We emphasize that the benefits of the enhanced mode
are available for free (other than the one-time cost of carrying
out the off-line experiments), in that they are achievable simply
by setting the scheduler parameter to appropriate values and
do not involve any resource tradeoffs. Finally, we note that
our methodology for optimizing the scheduler mode, although
carried out in the context of SPS, is independent of the
application layer, and hence it may be applied to a spectrum
of servers.

V. CONCLUDING REMARKS

We have investigated the impact of the Linux scheduler
settings on the performance of single-core, multi-threaded SIP
proxy servers, in terms of packet service time, waiting time,
and drop rate. Based on the results of a large set of experiments
across a wide range of values for the number of server threads

and traffic load, we have developed a methodology to config-
ure the scheduler parameters that results in significant gains in
SPS performance compared to industry-recommended “server”
mode operation. Our methodology is not limited to SPS and
may be applied to any application-layer server. Importantly,
the gains in performance are the result of simply setting the
scheduler parameters to appropriate values, without the need
for adding server capacity or other capital expenditures. In
our future work, we plan to investigate the performance of
multi-threaded SPS on multiple CPU cores.

REFERENCES

[1] Ramesh Krishnamurthy and George N. Rouskas. Evaluation of sip proxy
server performance: Packet-level measurements and queuing model. In
Proceedings of IEEE ICC, pages 2330–2336, June 2013.

[2] H. Jamjoom, C.T. Chou, and K.G. Shin. Impact of concurrency gains
on the analysis and control of multi-threaded internet services. In
Proceedings of IEEE INFOCOM, pages 827–837, March 2004.

[3] V Beltran, J Torres, and E Ayguade. Understanding tuning complexity in
multithreaded and hybrid web servers. In Proceedings of IEEE Parallel
and Distributed Processing, pages 1–12, April. 2008.

[4] Ben Lee et al. Hantak Kwak. Effects of multithreading on cache
performance. IEEE Transactions on Computer, 48(2):176–184, Feb.
1999.

[5] Jonghun Yoo Sungju Huh and SeongSoo Hong. Improving interactivity
via vt-cfs and framework-assisted task characterization for linux/android
smartphones. In Proceedings of IEEE International Conference on
Embedded and Real-Time Computing Systems, 2012.

[6] S.Zeaddally K.Salah, A.Manea and Jose M.Alcaraz Calero. On liux
starvation of cpu-bound processes in the presense of network i/o.
Computer and Electrical Engineeting, 30, 2011.

[7] Ajoy K. Datta and Rajesh Patel. Cpu scheduling for power/energy
management on multicore processors using cache misses and context
switch data. IEEE Transactions on Parallel and Distributed Sys, pages
1190–1199, May 2013.

[8] S.V. Subramanian and R. Dutta. Comparative study of M/M/1 and
M/D/1 models of a SIP proxy server. In Proceedings of the Australasian
Telecommunications Networking and Application Conference (ATNAC),
pages 397–402, December 2008.

[9] S.V. Subramanian and R. Dutta. Measurements and analysis of M/M/1
and M/M/c queueing models of the SIP proxy server. In Proceedings
of the 18th International Conference on Computer Communications and
Networks (ICCCN 2009), pages 1–7, August 2009.

[10] S.V. Subramanian and R. Dutta. Performance and scalability of M/M/c
based queueing model of the SIP proxy server - a practical approach.
In Proceedings of the Australasian Telecommunications Networking and
Application Conference (ATNAC), pages 1–6, December 2009.

[11] J. Rosenberg et al. SIP: Session Initiation Protocol. RFC 3261, June
2002.

[12] A. Johnston. SIP: Understanding Session Initiation Protocol. Artech
House Publishers, 2nd Edition, 2004.

[13] OpenSIPS: Open source implementation of a SIP server. http://www.
opensips.org/.

[14] Linux CFS Proces Scheduler. https://www.kernel.org/doc/
Documentation/scheduler/sched-design-CFS.txt%.

[15] CFS Tuning by IBM. http://tinyurl.com/CFSTuning.
[16] Packet Drop Rate. http://www.telecompute.com/voip.asp/.



TABLE I
MEASURED SPS PERFORMANCE, BASELINE SERVER MODE

Model Parameters Number of Server Threads
2 Threads 4 Threads 6 Threads 8 Threads 16 Threads

2200cps 2400cps 2000cps 2200cps 1800cps 2000cps 1600cps 1800cps 1200cps 1400cps
Arrival rate (packets/sec) 13200 14400 12000 13200 10800 12000 9600 10800 7200 8400
Tsip (µs) 76.9 79.58 130.81 146.25 167.97 203.9 213.47 279.36 303.00 429.83
Krcv (µs) 1309.16 1752.26 1473.32 2184.27 1042.66 1981.73 893.26 1974.84 809.76 1394.47
RCV Errors 3926 7993 4103 8061 3163 7830 2166 8100 2613 5114
Total Messages 633487 598877 494568 513137 441154 490867 417454 447876 354911 372133
Drop rate 0.0062 0.0133 0.0083 0.0157 0.0072 0.0159 0.0052 0.018 0.0074 0.0137

TABLE II
MEASURED SPS PERFORMANCE, ENHANCED SERVER MODE

Model Parameters Number of Server Threads
2 Threads 4 Threads 6 Threads 8 Threads 16 Threads

2400cps 2600cps 2000cps 2200cps 1800cps 2000cps 1600cps 1800cps 1400cps 1600cps
Arrival rate (packets/sec) 14400 15600 12000 13200 10800 12000 9600 10800 8400 9600
Tsip (µs) 77.21 85.11 129.28 138.76 178.11 186.85 189.37 242.29 392.25 540.13
Krcv (µs) 1624.2 2322.44 1363.77 1805.35 1116.93 1418.35 594.44 1321.15 918.58 1864.63
RCV Errors 6283 10908 4559 6028 3312 5103 1698 4996 2987 8470
Total Messages 636057 642238 504670 525251 445583 461109 433703 440549 367064 363775
Drop rate 0.0098 0.0169 0.0090 0.0115 0.0074 0.0110 0.0039 0.0113 0.0081 0.0233

TABLE III
DROP RATE AND KERNEL TIME (Krcv) COMPARISON

Server Threads and CPS Drop Rate comparison Kernel time, Krcv , comparison (µs)
Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

2 Threads, 2400cps 0.0133 0.0098 26.31% 1752.26 1624.2 7.3%
4 Threads, 2200cps 0.0157 0.0115 26.4 % 2184.27 1805.35 17.3 %
6 Threads, 2000cps 0.0159 0.0110 30.8% 1981.73 1418.35 28.4%
8 Threads, 1800cps 0.018 0.0113 37.22% 1974.84 1321.15 33.08%
16 Threads, 1400cps 0.0137 0.0081 40.87 % 1394.47 918.58 34.1%


