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Abstract—The growing number of applications that use the
Session Initiation Protocol (SIP) to manage media sessions over
IP is placing increasing demands on the SIP proxy servers (SPS)
that make up the core of the SIP network. In this work we
investigate the performance of OpenSIPS, an open source SPS.
We have collected a large set of experimental data to characterize
the performance of the SPS under various call arrival rates and
inter-arrival time distributions. Based on these measurements,
we model the SPS as an M/G/1 queue. A key component of the
model is a parameter that captures the cache-miss overhead, i.e.,
the impact of cache-misses on kernel service times.

I. INTRODUCTION

The Session Initiation Protocol (SIP) is widely used as a
signaling protocol for managing media sessions over IP. In
this work we investigate the performance of OpenSIPS, an
open source SIP proxy server, and make several contributions.
(1) We have modified the Linux kernel and the OpenSIPS
source code to obtain packet-level measurements for each SIP
message, from which the service and waiting times within
the kernel and the SIP layer can be easily obtained. (2) We
also enhanced SIPp, a SIP traffic generator tool, to generate
calls with inter-arrival times that follow any user-specified
distribution. (3) We have collected a large set of experimental
data to characterize the performance of the SPS under various
call arrival rates and inter-arrival time distributions. (4) Based
on these measurements, we model the SIP proxy server as an
M/G/1 queue. A key component of the model is a parameter
that captures the cache-miss overhead, i.e., the impact of
cache-misses on socket queue service times.

An analytical model to estimate the mean response time for
call setup, as measured from the User-Agent Client (UAC)
perspective, was developed in [1]. In this study, the mean
response time consists of the processing and queuing delays
at the SPS and User-Agent Server (UAS). The SPS and
UAS are modeled as a queuing network with six M/M/1
queues, each queue corresponding to the processing of one
message type at either the SPS or UAS, including failure
messages not shown in Figure 2. Based on the observation
that the processing of messages of a specific type does not
follow an exponential distribution but, rather, it is close to
constant, the queuing network of [1] was analyzed in [7]
under the assumption that each of the six queues are of the
M/D/1 type. While these studies provide some insight into
the mean response time, the six-node queuing network is not
an accurate model of the way the SPS and UAS operate
in practice, as typically a single queue is used for arriving
packets. In [8], the SPS is modeled as a single M/M/c

Fig. 1. Testbed for performance measurements of OpenSIPS SPS

queue, and the analytical results are compared to experimental
data collected from an SPS with three threads. This study
was further extended in [9]. These studies are based on the
fundamental assumption that the service time distribution is
exponential. In contrast, we conducted extensive experiments
to get an accurate characterization of the service time. Based
on our findings, we use a six-modal distribution that provides
an accurate representation of service times in the SPS. Further,
these earlier studies conducted experiments in a black-box
model whereby the specifics of packet processing in the kernel
and SPS were not considered. On the other hand, we carried
out experiments in a white-box model by using a measurement
methodology designed to capture all components of packet
processing within the kernel and SPS.

We discuss the measurement methodology in Section II, and
we present the measurement data in Section III. We develop
a queuing model for the SPS proxy server in Section IV, and
we conclude the paper in Section V.

II. MEASUREMENT METHODOLOGY

The main objective of our experimental study is to obtain
precise measurements of the time a SIP packet spends within
the SPS. Figure 1 shows the network testbed that we used
to generate SIP calls and collect measurement data so as to
characterize the performance of the SPS as a function of traffic
load. The hardware setup in addition to a router, consists of
OpenSIPS SPS Server and UAC and UAS. Figure 2 shows the
exchange of SIP messages between the UAC and UAS through
an SPS, for both the call setup and teardown operations. This
is the message flow that we use in our experimental data
collection and in modeling the SPS performance.

Let us refer to Figure 3 which illustrates the packet receiving
and sending operations within the Linux kernel network stack.
Based on this figure, there are three distinct components
comprising the processing a SIP packet: packet receiving at the
kernel network stack, application layer-SIP packet processing,
and packet sending at the kernel network stack.
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Fig. 2. SIP message exchange for call setup and teardown
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Fig. 3. Path of packets through the Linux network stack and SIP layer

In order to capture the packet service and waiting time
components, we modified the OpenSIPS and the Linux kernel
source code to log information about each packet as it moves
through the system. Each log entry contains a timestamp along
with the source IP address, call id, command sequence, and
method type of the packet, i.e., all the information necessary
to uniquely identify the message type and related call. Times-
tamps are recorded with microsecond precision at the instants
shown in Figure 3. At the end of the experiment, the log file
is parsed to determine the various time components.

1) The Kernel Receive Krcv Component: We log three time
values for each packet in the kernel and a fourth one as soon
as it enters the SIP layer:
• tarr: the time the packet arrives at the SPS, recorded by

the kernel on a timestamp attached to the packet at the
time it is received by the device layer.

• tstack: the time the packet completes processing by the
kernel network stack. We modified the kernel packet
structure to add a new field to record this timestamp just
before the packet is inserted to the socket queue.

• tsockq: the time at which the application is ready to
dequeue the packet from the socket queue. We modified
the kernel socket structure to include a new field to record
this timestamp.

• tsip−in: the time the packet enters the SIP layer.
We may then calculate Krcv (the time spent within the kernel
from the instant the packet is received at the kernel device
layer until the instant it is handed off to the SIP layer) and
its various components as: Kstack = tstack − tarr,Ksockq =
Ks

sockq + Kw
sockq = tsockq − tstack,Kcopy = tsip−in −

tsockq,Krcv = tsip−in − tarr, where: Kstack is the time it
takes the packet to undergo processing at the device, network,
and transport layers; Kw

sockq is the time the packet spends

waiting at the socket queue; Ks
sockq is the time taken by the

kernel to process the packet once it is in the queue, including
the time to wake the receiving user level process and handling
the dequeue request from the user process; and Kcopy is the
time needed to copy the data from the kernel space to user
space.

2) The SIP Service Time Tsip Component: Tsip reflects the
service time of the packet within the SIP layer, and does
not include any waiting time. For each packet, we log two
additional time values within the SIP layer:
• tsip−c: this is the instant at which the packet processing

part that is common to all packet types is complete.
• tsip−out: this is the instant at which the SIP layer has

completed the processing of the packet and is ready to
pass the packet back to the kernel.

From these values, the SIP service time and its subcomponents
can be calculated as: T 1

sip = tsip−c−tsip−in, T
2
sip = tsip−out−

tsip−c, Tsip = T 1
sip +T 2

sip, where T 1
sip is the time spent during

common message processing, and T 2
sip is the time it takes to

perform message-specific processing.
3) The Kernel Sending Ksnd Component: To determine the

time Ksnd a packet spent traversing the kernel after being
processed at the SIP layer, we observed that the call from the
SIP layer to send the packet to the kernel returns only when
the kernel stack has completed processing and has transferred
the packet to the device driver for transmission. We record
another timestamp at the SIP layer as soon as this call returns
(at which time SIP is ready to fetch the next packet from the
socket for processing):
• tdep: the instant at which the packet departs the kernel

layer and control is transferred back to the SIP layer;
corresponds to the time shown in Figure 3.

We may now calculate the Ksnd component as: Ksnd = tdep−
tsip−out.
III. EXPERIMENTS AND PERFORMANCE MEASUREMENTS

We conducted a large set of experiments to measure the
components Krcv, Kstack, Ksockq , Ksnd and Tsip of the time
each SIP packet spends at the SPS. For each experiment,
the UAC initiates 1M (million) calls to the UAS. Each call
is accepted by the UAS, resulting in the message exchange
shown in Figure 2. Therefore, for each call, six different
messages are generated by either the UAC or the UAS and are
forwarded to the other party via the SPS. In other words, for
each experiment, the SPS may process up to 6M SIP messages,
i.e., up to 1M messages of each type seen in Figure 2. Each
experiment is characterized by two parameters:
• Call arrival rate. We varied the call arrival rate from

100 cps to 1200 cps. At a rate of 1200 cps, the SPS
crashes frequently as it cannot handle the message vol-
ume, indicating that the server is severely overloaded.

• Call inter-arrival time distribution. The call inter-arrival
time is the time between two consecutive INVITE mes-
sages generated by the UAC. For each call arrival rate,
we generated inter-arrival times using exponential and
deterministic distributions.



Fig. 4. Mean values of Ksockq in the stable region, Poisson arrivals

Fig. 5. Overall mean values (in µs) and confidence intervals for Ksockq

For each packet processed by the SPS, we log the seven time
values tarr, tstack, tsockq , tsip−in, tsip−c, tsip−out and tdep.
We then process the log files to obtain the sample mean values
for quantities Krcv, Kstack, Ksockq Tsip, and Ksnd; we record
both the overall mean (i.e., across all packets) and the mean
per packet type. We use the method of batch means to estimate
95% confidence intervals around the overall mean.

A. Measurement Data for Krcv, Kstack, and Ksockq

Figure 4 shows the measured values for quantity Ksockq ,
under exponentially distributed inter-arrival times and for
various call rates. Figure 5 presents the overall mean value
(i.e., averaged over all six message types) for both exponential
and deterministic inter-arrivals; all values are expressed in µs.
Due to space constraints, we do not present figures of the
Krcv and Kstack values we have obtained. However, we have
observed that kernel stack processing times Kstack are largely
constant, averaging 2 µs independent of message type and call
arrival rate (refer also to Table I for the Kstack values obtained
through a different experiment). The values of Kcopy , obtained
as (Krcv−Kstack−Ksockq), are also constant at around 2 µs.
Krcv values are about 4 µs higher than the Ksockq values.

We observe that all mean values of Ksockq (and Krcv, not
shown here) increase rapidly with the call arrival rate up to
1000 cps, but level off beyond that rate1. This increase is due

1The measured Ksockq values level off beyond 1000 cps since, at these
high rates, the system saturates and arriving packets are dropped at the kernel.
The dropped packets are not observed at the SIP layer where statistics are
logged, hence they are not taken into account in the average values shown.

Fig. 6. Mean values for Tsip, Poisson arrivals

Fig. 7. Overall mean values and confidence intervals for Tsip

to two factors:
• Queuing delay. As the call arrival rate increases, packets

arriving at the SPS are buffered at the socket queue and
experience increasing waiting times Kw

sockq before being
delivered to the SIP layer.

• Cache-Miss overhead. The number of interrupts increases
in direct proportion to the packet arrival rate. Interrupts
introduce overhead in the form of the time needed to
handle each interrupt, the context-switching operations,
and the increase in processing time as a result of cache
misses due to these interrupts. A cache miss causes
the number of CPU cycles consumed by the network
stack receiving process to increase, as the memory access
cycles of main memory are several times that of L2
caches. The impact of cache misses on the network stack
was measured in [3], [4], [6].

B. Measurement Data for Tsip

Figure 6 shows the SIP layer processing times Tsip under
exponentially distributed call inter-arrival times and for various
call rates. Figure 7 presents the mean value over all message
types, along with confidence intervals, for both exponential
and deterministic inter-arrival times. As we described ear-
lier, SIP processing consists of a common component and
a message-specific component, and the differences in the
latter component account for the difference in service times
among the various message types. For instance, processing an
INVITE message that initiates a new session requires more
operations than other messages (e.g., to verify that this is a
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Fig. 8. M/G/1 queuing model of the SPS

new transaction and create a new table entry), and this fact is
reflected in the data.

Another important observation is that mean SIP service
times for all message types increase almost linearly with the
call rate. Recall that an SPS operating in stateful mode needs
to perform table lookups for each incoming message, so as
to match an existing transaction or create a new one. As the
call rate increases, the number of transactions in the system
also increases, resulting in larger tables at the SIP layer and,
hence, longer lookup and overall service times.

C. Measurement Data for Ksnd

Due to space constraints, we do not present a table with the
values of the kernel service time Ksnd incurred for sending a
packet received from the SIP layer down to the device driver.
We have observed that this service time varies only slightly for
each message type. However, across various call arrival rates,
the value remains fairly constant for a given message type.
The overall mean value is around 6 µs (refer also to Table I
for the Ksnd values obtained through a different experiment).

IV. M/G/1 QUEUING MODEL FOR THE SPS

We now develop an analytical model for predicting the
packet-level performance of the SPS, and specifically, the
packet waiting time. The experimental data in the previous
section indicate that the SPS packet service time distribu-
tion exhibits six modal points, corresponding to the six SIP
message types. Therefore, we model the SPS as an M/G/1
queue [5] as shown in Figure 8. This single queue models
the performance of the SPS from the time packets arrive
at the socket queue until they depart from the kernel after
undergoing SIP processing. From our earlier discussion, the
service time X of a packet may be expressed as: X =
Ks

sockq+Kcopy+Tsip+Ksnd, where Ks
sockq , Kcopy and Ksnd

are the socket, copy and send service times, respectively, in
the kernel, and Tsip is the service time at the SIP layer.

Despite its simplicity, this model is sufficiently accurate
for capturing the performance of the SPS. First, recall that
the kernel stack processing times Kstack on the receive side
are constant around 2 µs across the various arrival rates.
Therefore, queuing times at the ring buffer of the device driver
are negligible compared to the queuing times at the socket
queue and the SIP service time. Hence, we believe that a single
queue model accounting for the socket queue is sufficient.

The waiting time for the M/G/1 queue is calculated using
the well-known Pollaczek-Khinchin formula [5]:

W =
λE[X2]
2(1− ρ)

. (1)

In this expression:

TABLE I
MEASURED MEAN VALUES (IN µS) AT 1 CPS

Message Type Pkt Size (B) Kstack Ks,base
sockq

Ksnd

INVITE 624 2.6 8.3 6.15
180 Ringing 375 2.2 7.6 5.2
200 OK (INVITE) 542 2.5 8.5 5.5
ACK 466 2.2 7.4 5.6
BYE 466 2.5 8.1 5.9
200 OK (BYE) 367 2.2 7.5 5.2
Overall Mean 2.4 7.9 5.6

• λ is the packet arrival rate, expressed in packets per unit
time;

• ρ = λE[X] is the server utilization;
• E[X] is the packet service time at the SPS; and
• E[X2] is the second moment of the packet service time.

Let E[Xi], i = 1, 2, . . . , 6, denote the mean service time
of the six SIP message types. Since each call generates
exactly six messages, one of each type, the second
moment of the service time may be obtained as:

E[X2] =
1
6

6∑
i=1

E[X2
i ]. (2)

Therefore, we use the estimates of E[Xi] and E[X2
i ] from

the measurement data to obtain the mean packet waiting time
from expression (1).

A. Estimating the Ks
sockq Component of the Service Time X

The service time of a packet consists of the four components
discussed earlier. In our experiments, we have measured
directly three of the components, Kcopy , Tsip, and Ksnd. The
fourth component, Ks

sockq , represents the processing that is
incurred by the packet from the instant, tstack, it is added to
the socket queue until the instant, tsockq , it is removed from the
queue (see Figure 3). Ks

sockq is one of the two components of
Ksockq; the other component, Kw

sockq , represents the waiting
time of the packet at the socket queue. Although we have
directly measured Ksockq , it is important to have an accurate
estimate of Ks

sockq (and, consequently, Kw
sockq) to apply the

M/G/1 model. To this end, we first obtain a baseline measure-
ment of Ksockq under conditions of no queuing, and then we
adjust this baseline value for higher call rates by accounting
for the overhead caused by cache misses.

1) The Ksockq Component Under No Queuing: We con-
ducted a separate experiment to obtain the time values tarr,
tstack, tsockq and tsip−in under conditions that ensured no
queuing at the kernel socket as the packets move through the
network stack on the way to the SIP layer. Let us denote this
quantity as Ksockq−noq . We use this quantity as the baseline
value Ks,base

sockq , i.e., Ks,base
sockq = Ksockq−noq .

To measure the Ksockq−noq , we generated SIP calls at a
rate of 1 cps, since at this rate packets belonging to different
calls do not interfere with each other; The results are shown in
Table I. We observe that there is little difference in the kernel
processing time across the six message types.



TABLE II
WAITING TIMES (IN µS): MEASURED VS. ANALYTICAL, EXPONENTIAL DISTRIBUTION INTER-ARRIVAL TIMES

Model Parameters Call Arrival Rate
100cps 200cps 400cps 600cps 700cps 800cps 900cps 1000cps 1200cps

λ (packets/sec) 600 1200 2400 3600 4200 4800 5400 6000 7200
α(λ) 3.0 5.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
E[X] 133.4 149.88 174.53 179.98 181.09 181.185 183.49 185.23 189.5
ρ = λE[X] 0.080 0.1798 0.4188 0.6479 0.7606 0.8698 0.9908 1.111 1.3644
W (model) 6.0 16.89 64.21 169.19 293.98 617.77 10171.9 N/A N/A
W (measured) = Kw

sockq 5.485 13.59 53.27 190.92 333.52 664.57 9049.07 27997 36194

However, it is not reasonable to set the value of Ks
sockq in

the expression for the packet service time equal to the baseline
value Ks,base

sockq shown in Table I, as doing so would result in
an underestimation of the actual Ks

sockq values under higher
call arrival rates. Specifically, at 1 cps there is no overhead
due to cache-miss, whereas as the call arrival rate increases,
this overhead becomes substantial, as we discussed earlier. The
cache-miss overhead effectively increases the service time of
each packet within the socket queue, and it must be taken into
account explicitly in order to arrive at an accurate estimate
of the overall packet service time to be used in the waiting
time formula (1). The cache-miss primarily impacts the socket-
queue service time, as the packet is waiting in queue, the data
and instruction related to the queue and packet, is not in active
use by the processor, and the cache-replacement algorithm is
most likely flushing this data from cache. For all other service
time, the processor is actively executing the instructions, as a
result, there would be minimal cache replacement.

2) Modeling the Cache-Miss Overhead: From basic com-
puter architecture principles [2], the execution time of an
operation is given as the product of (number of instructions) ×
(cycles per instruction) × (time per cycle). Interrupts pollute
the cache, increasing cache misses, and in turn increasing the
number of cycles per instruction; the other two values in the
product are constants for a given operation. We model this
cache-miss overhead by expressing the Ks

sockq service times
as a function of the baseline value Ks,base

sockq and the server
utilization ρ, as follows:

Ks
sockq(λ) = α(λ) Ks,base

sockq . (3)

In the above expression, parameter α, given as a function of
λ, adjusts the service time Ks,base

sockq under no queuing delay
(i.e., under minimal cache-miss overhead) to account for the
cache misses due to interrupts under a given packet arrival rate
λ. E[X] values is then updated to be E[X] = Ks

sockq(λ) +
Ksnd +Kcopy + Tsip.

Based on our experimental results, we model parameter
α(λ) as a piece-wise linear function of the arrival rate λ,
expressed in units of packets/sec, such that: α(0) = 1,
α(600) = 3, α(1200) = 5, and α(λ) = 8 for λ ≥ 2400. This
function reflects our observations that (1) as the packet arrival
rate increases, the cache becomes more polluted resulting in
higher memory access times, (2) the marginal rate at which
cache pollution increases diminishes with increasing packet
arrival rates, and (3) after a point, the cache will always be

polluted, hence there would be no further deterioration due to
further increases in the packet arrival rate.

Using the values for α from this function, Table II compares
the measured waiting times to the ones obtained through
the M/G/1 model. We observe that there is a good match
between analytical and measured values in the stable region,
i.e., up to 800 cps. At arrival rates of 900 cps or higher, the
system becomes unstable, losses increase sharply, hence the
M/G/1 model is not valid. In fact, in this overload region,
the estimated value of ρ is higher than 1, hence the Pollaczek-
Khinchin formula (1) cannot be applied.

Despite their simplicity, the M/G/1 and cache-miss over-
head models are sufficiently accurate in two aspects that are
important to service providers: jointly they (1) correctly predict
the measured packet waiting times at the socket queue within
the stable region, and (2) accurately predict the transition to
the overload region through the value of ρ. Using this model,
service providers only need to monitor the packet arrival rate
λ at the SPS to be able to estimate the packet waiting times,
as well as detect whether congestion is imminent.

V. CONCLUSIONS AND FUTURE WORK

We have carried out a large set of experiments to character-
ize the performance of the OpenSIPS SPS as a function of call
arrival rate. We have also presented an M/G/1 model of the
SPS that takes into account the cache-miss overhead. In our
ongoing research, we are investigating the impact of multiple
cores on the performance of the SPS and other applications.
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