
On Congestion Minimization
for Service Chain Routing Problems

Lingnan Gaoa, George N. Rouskasa,b

aNorth Carolina State University, Raleigh, NC 27695-8206 USA
bDepartment of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Network function virtualization (NFV), with its per-
ceived potential to accelerate service deployment and to introduce
flexibility in service provisioning, has drawn a growing interest
from industry and academia alike over the past few years. One of
the key challenges in realizing NFV is the service chain routing
problem, whereby traffic must be routed so as to traverse the
various components of a network service that have been mapped
onto the underlying network. In this work, we consider the online
service chain routing problem with the goal of minimizing the
maximum network congestion. To this end, we present a simple
yet effective online algorithm in which the routing decision is
irrevocably made without prior knowledge of future requests.
We prove that our algorithm is O(logm)-competitive, where m
is the number of edges of the underlying network topology, and
we show that this ratio is asymptotically optimal.

Index Terms—Network Function Virtualization, Virtual Net-
work Functions, NFV Orchestration, Online Algorithm, Resource
Allocation

I. INTRODUCTION

Network function virtualization (NFV) [1] is an emerging
networking paradigm that promises to ease the complexity of
deploying new services into today’s network. With the help
of virtualization techniques, NFV relies on commercial off-
the-shelf hardware to replace existing networking devices [2],
thus separating the network functionality from the underlying
network equipment and decoupling the service entity from
the service location. Such a paradigm opens the door for
network operators to implement both existing and future net-
working functions as software modules and consolidate them
on general-purpose commodity servers based on demand. This
approach simplifies the deployment process and introduces
flexibility in service provisioning.

A virtual network function (VNF) represents a single func-
tional block in an NFV environment. Each network service is
composed of one or more VNFs, which is an implementation
of a network function (NF). VNFs are realized (instantiated) by
deploying them on virtual resources, such as virtual machines.
The NFV management and orchestration (NFV-MANO) unit
is responsible for the management of the VNFs [3], and
maintains a database with data models and information for
the NFs, virtual resources, and network services. The NFV-
MANO unit utilizes this information to configure, orchestrate,
and manage the life-cycle of the VNFs [4].

One key aspect in the management of requests for network
services is the “service chain routing problem” in which the
objective is to route user traffic along a path that starts at

the source node, passes through the network locations where
VNFs are implemented, and finally reaches the destination
node. This problem becomes challenging when there are
multiple VNFs for the same function available at distinct
network nodes, and it is important to select one that aligns
with the routing objectives. In an offline scenario, where all
service requests are known in advance, service chain routing is
NP-hard; this result follows from the fact that the unsplittable
flow problem, which was proven to be NP-hard in [5], is a
special case of the service chain routing problem. In practice,
service chain routing is an online problem: service requests
may arrive at arbitrary times and they must be placed onto the
network without prior knowledge of future requests. These
conditions pose additional challenges in developing effective
and efficient algorithms for the online problem.

In this work, we focus on algorithm design for service chain
routing in an online scenario, and we develop an algorithm to
find a feasible routing of the service chain with respect to
the service ordering constraints. The objective is to improve
network performance by minimizing the maximum congestion.
We solve this problem using an efficient algorithm, based
on the shortest path tour problem (SPTP) [6], [7], with a
customized length function. Under a reasonable assumption
that is satisfied in practice, i.e., that congestion does not
result from a single request, we prove that this algorithm is
O(logm)-competitive, where m is the number of edges in the
network graph. We further show that this competitive ratio is
asymptotically optimal.

Following the introduction, in Section II we review the
literature in this field. In Section III, we present the model
for the network and service requests, and formally define the
service chain routing problem we consider. In Section IV,
we develop an online algorithm to minimize the maximum
congestion and derive its competitive ratio. We conclude the
paper in Section V.

II. RELATED WORK

In recent years, research efforts have been directed towards
the service chain embedding problem, and a survey of resource
allocation problems in NFV was presented in [8]. A majority
of these works [9], [10], [11], [12] addressed an offline prob-
lem, where the aggregated requests need to be mapped onto
the underlying network in one shot, under various embedding
objectives and scenarios. In [9], [10], the authors considered

the throughput maximization problem and proposed a random-
ized algorithm with performance guarantees, with applications
to inter-datacenter networks and cellular networks. In [11],
the authors considered the placement of VNFs and routing
the traffic with a heuristic algorithm so as to minimize the
expensive optical/electrical/optical conversions in datacenters.
In [12], a heuristic algorithm based on game theory was
proposed to place the virtual network functions and route the
traffic to minimize operational cost.

Apart from the works that addressed the offline service chain
routing problem, there also exist several studies that consider
the online case. In [13], a service chain orchestration routing
strategy was proposed to route the traffic so as to satisfy the
service ordering constraints. However, the underlying link load
and capacity were not taken into account in that work. In [14],
the authors presented a multipath routing algorithm for online
service provisioning, which was obtained by solving a linear
programming problem, while in [15], the authors proposed an
admission control scheme to admit and route online requests.
In this work, on the other hand, we consider the online problem
of routing unicast traffic along a single path.

The two studies most related to our work are [16], [17].
The objective of both is to map incoming network service
requests to the physical network with finite capacity, and
jointly consider the service chain embedding problem with
admission control. In [16], the authors proposed an online
algorithm that maximizes the number of admitted requests,
under node capacity constraints, and has an O(logK) com-
petitive ratio, where K is the number of network functions in
the service chain. A “standby” mode was introduced in [17] to
defer the acceptance of a request when sufficient resources are
not available. Under this architecture, the authors proposed an
online algorithm for the service chain embedding problem with
the objective of maximizing the revenue with link capacity
considerations. In our work, we tackle the problem from a
different perspective, i.e., we assume that all services are
admitted and our objective is to embed the service chain in a
way that minimizes the maximum congestion.

III. NETWORK MODEL AND PROBLEM FORMULATIONS

A. Network Model

We model the network as an undirected graph G = (V,E),
with n = |V | number of vertices, and m = |E| number
of edges. The edges are capacitated, with c(e) denoting the
capacity of edge e ∈ E. The network supports a set of L
distinct network functions, NF = {NF1, NF2, . . . , NFL},
and each network function NFl is deployed (instantiated) at a
subset Vl ⊆ V of the network nodes. In addition, each network
node may support an arbitrary number of the NFs. We assume
that the placement of NFs on network nodes (i.e., the sets
Vl, l = 1, . . . , L) is provided as input to the problem.

B. Service Chain Request

We model the service chain request Ci as a tuple Ci =
(srci, dsti, di(k),Fi), where srci and dsti are the source
and destination nodes for the service chain and Fi =

A DNF

A

C

B

D E

1 1

1

1

1

1

N
F

Fig. 1. A service chain request (top) and corresponding walk on the topology
graph (bottom)

{
f
(1)
i , f

(2)
i , . . . , f

(ki)
i

}
, f (k)i ∈ NF , is the set of network

functions that the traffic of this request must traverse in the
given order. We use ki to represent the number of NFs in the
service chain Ci. Similar to the work in [18], we assume that
some network functions (e.g., an encoder or WAN optimizer)
may have traffic changing effects, such that the amount of
traffic coming out of the network function be different than
the amount of traffic that went in. As a result, the amount
of traffic on each segment of the path may vary, and we use
di(k) to represent the amount of traffic on the k-th segment.

In this work, we assume that requests are permanent, i.e.,
once a request arrives it will never terminate; extending the
algorithm to the scenario whereby requests have a certain
holding time after which they release resources and leave the
network is the subject of ongoing research.

C. Problem Formulation

Service requests are routed in an online fashion, such that
each request is routed without any information about the
arrival time, traffic volume, or network functions of future
requests. Observe that the route of a request is a walk on
the graph G. We use Wi to denote the set of all valid walks
for request Ci, i.e., the walks that start at node srci, traverse
the required set of network functions in the given order, and
terminate at node dsti. We denote the walk selected by the
routing algorithm for service request Ci as wi ∈ Wi. If the
request is routed along the walk wi, then the amount of
traffic along each edge e of the walk may be determined
from quantities di(k) of the request tuple. This is illustrated
in Figure 1, where the service request shown at the top of
the figure requires one unit of traffic from node A to the
network function NF and from NF to node D. The dotted
line on the bottom of Figure 1 shows a walk that represents a
valid embedding of this service chain on the network topology,
assuming that the network function is located at node E. From
this walk, we determine that one unit of traffic goes through
the edges (A,B) and (B,D), while two units of traffic are
placed on edge (D,E). We use tri(e, w) to denote the amount
of traffic from request Ci that travels along edge e of walk w.

Our objective is to route a new request Ci so as to minimize
the maximum congestion. We define the congestion metric af-
ter we route the request Ci as Ui = maxe

∑
j trj(e, wj)/c(e),

where c(e) is the capacity of edge e.

Based on the above definitions, we formulate the online
congestion minimization problem as the following integer
linear programming problem (ILP), where the binary variable
xwi indicates whether service request Ci is routed along walk
w ∈Wi.

minimize UR (1)

s.t.

R∑
i=0

∑
w∈Wi

xwi tri(e, w) ≤ URc(e) ∀e ∈ E (2)∑
w∈Wi

xwi = 1 ∀i ≤ R (3)

xwi = {0, 1} ∀i ≤ R, w ∈Wi (4)

Expression (1) represents the objective of minimizing the
maximum congestion at the time request CR is routed. As we
are solving an online problem, the same objective must have
been applied to all earlier requests Ci, i < R.

Constraint (2) specifies that the total amount of traffic
carried by any edge will not exceed the product of the
edge capacity times UR. Consequently, by minimizing UR
in the objective function we minimize the maximum edge
congestion. Constraint (3) guarantees that all the traffic of
request Ci will be routed along a valid walk. Combined with
constraint (4) that enforces a binary value for the decision
variable, the formulation ensures that all traffic of the request
will be routed along a single walk.

The above walk-based formulation is compact and intuitive
but it leads to a vast solution space. Specifically, there exists an
exponential number of walks for each service request, resulting
in an exponential number of decision variables. Therefore, the
above problem of determining the route of a single request
is computationally intractable to solve. However, we do not
solve the ILP formulation directly. Instead, we build upon
the shortest path tour concept to develop an efficient online
algorithm, as we describe in the next section.

IV. ONLINE ROUTING ALGORITHM

We propose an online service request routing algorithm
which achieves an asymptotically optimal competitive ratio
of O(logm). The algorithm is inspired by the virtual circuit
routing problem [19] and routes each incoming request along
the shortest walk under a customized length function. In the
following, we first define a set of concepts used in developing
the algorithm, and then provide the algorithm details and
evaluate its performance.

A. Definitions

Penalty function. The penalty function serves as an indicator
for the congestion of an edge e. For each edge e, we define
the penalty function after we route request Ci as:

pi(e) = γ
li(e)

c(e)L∗ , (5)

where L∗ is the optimal congestion of the network in hind-
sight, γ is a constant (more details on L∗ and γ shortly), and

li(e) is the load on edge e after we route the first i requests,
namely, li(e) =

∑
j trj(e, wj).

Potential function. We use the potential function φ(i), defined
as the sum of the edge penalty functions after we route the
request Ci,

φ(i) =
∑
e∈E

pi(e), (6)

to capture the overall cost of placing the first i requests.
Shortest path tour. The shortest path tour problem
(SPTP) [6], [7] has been studied extensively in the literature
in various contexts. The input to the problem is a weighted
graph G, source src and destination dst nodes, and multiple
subsets of nodes {T1, T2, . . . , TK}. An algorithm for SPTP
finds a walk (i.e., one or more edges may be traversed multiple
times as part of the walk) from src to dst that visits at least
one of the nodes in each set Tk, 1 ≤ k ≤ K, sequentially.
Additionally, the algorithm must construct a walk whose
weighted length is shortest among all valid walks.

We note that, assuming subsets Tk represent the sets of
nodes Vl where instances of each network function NFl are
placed, then an (online) algorithm for SPTP will find a walk
for routing an incoming service chain request. Therefore, our
goal is to define a length function len(e) for each edge such
that the online SPTP algorithm will have a low competitive
ratio with respect to congestion minimization. To this end,
we first examine how congestion minimization is related to
the potential function, and in turn how it translates into an
appropriate length function len(e) for SPTP.

Our first observation is that the log value of the potential
function, log(φ(i)), is an upper bound for the competitive
ratio. Specifically, the potential function is the sum of all
penalties, and therefore greater than any single penalty value.
More formally:

φ(i) =
∑
e∈E

pi(e) ≥ max
e
pi(e) = max

e
γ
∑

i tri(e,wi)/c(e)L
∗
. (7)

By taking the logarithm of both sides, and given the earlier
definitions of γ and L∗, it follows that the competitive ratio
is bounded by log(φ(i)).

Furthermore, notice that the value of φ(i − 1) is constant
since the routing of all previous service requests is given
(i.e., it is fixed and may not change). Therefore, minimizing
the increment of the potential function, φ(i) − φ(i − 1), is
inherently equivalent to minimizing the potential function φ(i)
for this online problem. Now, we also observe that when
service request Ci is routed along the walk wi, only the penalty
function for the edges e ∈ wi will change. Thus, the increment
to the potential function can be rewritten as:

φ(i)− φ(i− 1) =
∑
e∈wi

(pi(e)− pi−1(e))

=
∑
e∈wi

γ
li−1(e)

c(e)L∗ (γ
tri(e,wi)

c(e)L∗ − 1) (8)

We conclude that minimization of the potential function re-
duces to finding the shortest valid walk on G whose length is
defined by (8).

A D

B

A

C

B

D

C

c(e1) = 2

c(e2) =1

c(e3) =3

c(e4) =2

c(e5) =6
c(e1) = 2

c(e2) =1

c(e3) =3

c(e4) =2

c(e5) =6

Fig. 2. Walks under the two length functions for the example of Section IV-A.

However, the penalty associated with walk w depends on
both the number of times and the order in which w traverses
an edge e. This is a crucial difference with SPTP, as the traffic
is in the exponent of the second factor in (8), i.e., γ

tri(e,w)

c(e)L∗ . In
other words, if w traverses e multiple times, we cannot simply
add the cost to obtain the penalty of the walk. This raises the
question of what value to assign to each edge if we are to use
an algorithm for SPTP to find the walk. In particular, we face
a crucial dilemma: apparently, tri(e, w), the amount of traffic
we put on e, depends on the actual walk w, but we do not
have knowledge of the walk until we find out the route.
Length function. To address the above issue, we must define
the length function so that it is independent of the walk
selected for a service request. Specifically, we define the length
function for edge e that is part of the walk for request Ci as:

leni(e, k) = γ
li−1(e)

c(e)L∗ (γ
di(k)

c(e)L∗ − 1) (9)

With this definition, the length function depends on the number
k of segments of the walk (a value that is provided as input
to the problem), as the amount of the traffic will change on
different segments, but not on the specific walk selected.

Nevertheless, the length function (9) introduces another
challenge. Specifically, a solution to SPTP (i.e., the shortest
walk) using (9) as the length function may not be optimal un-
der the function (8), since the length of the walk is inherently
different. An example is shown in Figure 2, where we assume
the new request is for one unit of traffic to be routed from
source A to destination D after passing a network function
located at node C and the capacity of each edge is as shown
on Fig. 2. For this example, the utilization li−1(e)

c(e)L∗ is assumed
the same for all edges e prior to routing this new request, and
also we assume L∗ = 1. In this case, the solution to SPTP
under length function (9) is the walk shown with a dotted line
on the left side, while the optimal walk that minimizes the
increase in potential function of (8) is different and shown in
the right side.

Let us now assume that the maximum congestion cannot
be the result of any one request, i.e.,

∑
k di(k)

c(e) ≤ L∗, ∀i, e.
This is a reasonable assumption that is satisfied in practice in
the common scenario that the capacity of each edge is large
compared to the traffic demand of any single request. Under
this assumption, we can state the following result regarding the
walk selected by an SPTP algorithm with length function (9):

Lemma 1. For a request Ci, the shortest path tour wi under
the length function (9) is a γ-approximation to the optimal
walk which minimizes (8).

Proof. The proof to this lemma is in the Appendix.

B. Online Algorithm

Before we describe our online algorithm, let us explain
how to circumvent the fact that the value of L∗, the optimal
congestion in hindsight, is unknown. Since we do not have any
prior knowledge, we use λ as an estimate for L∗. Initially, we
set λ set to be the minimum possible congestion for the first
request, and we use this value in the length function (instead
of the unknown L∗). For request Ci, after we map it using the
initial value of λ, we examine all the edges. If there exists an
edge e such that

tri(e, wi) + li−i(e) ≥ logγ(4m)λ, ∀e ∈ wi (10)

then we double the value of λ and remap the request Ci. This
approach does not affect the asymptotic competitive ratio. The
proof to the correctness of this approach is in [19].

With the proper concepts defined, our online algorithm is
presented as Algorithm 1 below. We first build a graph using
the length function (9), based on the link load from previous
requests, the demand of the new request, and the estimate for
the optimal congestion λ. Then, we route the request using a
shortest path tour algorithm to find the walk wi based on this
graph. For all edges e ∈ wi along this walk, we examine if
the inequality (10) holds. If so, this suggests that our estimate
of L∗ is low; in this case,. we double the value of the estimate
λ, recompute the length function, and reroute the request Ci.
Otherwise, we route the request along walk wi and update the
load of the corresponding edges.

C. Performance Analysis

1) Time Complexity: Building a weighted graph can be
completed in O(m) time, hence the time complexity of
Algorithm 1 is dominated by finding the shortest path tour,
which can be completed in (Km log n) time [13], where K
is the number of network functions in the request (i.e., the
number of segments of the walk).

Due to the potential underestimation of L∗, the SPTP
algorithm may have to be run multiple times for a single
request. For each request, this will happen at most log2(KDC)

Algorithm 1 Online service chain routing
Input:

li−1(e): existing load on edge e
Ci: new service chain to be routed.
λ: estimation for the optimal congestion in hindsight.

Output:
wi: selected route for service chain i

1: Construct a weighted undirected graph G with edge length
set according to (9), with λ in place of L∗.

2: Compute the shortest path tour w.
3: if ∃e ∈ w, li−1(e) + tri(e, w) ≥ λ logγ(4m) then
4: λ← 2λ, goto Step 1
5: end if
6: Update the load on each link.

times, where D is a ratio of the maximum to minimum traffic
demand, and C is the ratio of the maximum to minimum
edge capacity. This follows from the fact that the minimum
value that λ takes is λ =

mini,k di(k)
maxe c(e)

, while a maximum value

in (10) is maxi
∑

k di(k)

mine c(e)
. As the estimate doubles each time,

the number of estimates is upper bounded by O(log(KDC)).
Thus, the overall time complexity of this online algorithm

is in O(Km log n log(KDC)).
2) Competitive Ratio: We now prove that our algorithm

achieves a competitive ratio that is asymptotically optimal.
First, we prove that the growth of the potential function φ(i)
is bounded.

Lemma 2. The potential function is upper-bounded by φ(i) ≤
4m, ∀i, where m is the number of edges of the network graph.

Proof. The proof to this lemma is in the Appendix.

Theorem 1. The competitive ratio of Algorithm 1 is O(logm),
which is asymptotically optimal for congestion minimization.

Proof. First, we show that O(logm) is a lower bound on the
competitive ratio. Observe that in the special case of K = 0,
i.e., when the service does not request any network function
between the source and destination nodes, the service chain
routing problem reduces to the virtual circuit routing problem
in [19], the optimal competitive ratio of which is O(logm).
This suggests that O(logm) is the asymptotically optimal
competitive ratio for Algorithm 1.

Next, we show that the competitive ratio achieved by
our algorithm is O(logm). Combining inequality (7) and
Lemma 2 and taking the logarithm on both sides, we obtain

maxe∈E
li(e)

c(e)L∗
≤ logγ(4m) (11)

which shows that the algorithm is logm-competitive.

V. CONCLUDING REMARKS

We have developed an efficient online algorithm for the
service chain routing in a NFV environment. The algorithm
aims at minimizing the network congestion and achieves an
optimal competitive ratio. Our work demonstrates that virtual
networks may be operated effectively by routing online service
chain requests along walks of near-optimal length (as shown in
Lemma 1) that achieve near-optimal congestion (as Theorem 1
indicates). The focus of our current research efforts is to extend
this algorithm to the case when (a) requests have a finite
holding time after which they release resources and depart,
and (b) the service chain is not necessarily a path.

APPENDIX

A. Proof to Lemma 1

From (8), we observe that the load on each edge is link-
specific. For the sake of simplicity, we assume, without loss
of generality, that all edges have capacity c(e) = 1. Also,
for ease of presentation, we first denote as lenna(e, wi) the
non-additive length function in (8), and as lenwna(wi) the

corresponding length of a walk under this non-additive edge
length :

lenna(e, wi) = γ
li−1(e)

L∗ (γ
tri(e,wi)

L∗ − 1) (12)

lenwna(wi) =
∑
e∈wi

lenna(e, wi). (13)

We also define an additive length for a walk:

lenwa (wi) =

ki∑
k=0

∑
e∈sk

leni(e, k), (14)

where the leni(e, k) is the length function defined in Sec-
tion IV. The total contribution of edge e to the walk is given
by: lena(e, wi) =

∑
k:e∈sk leni(e, k).

In order to prove the Lemma 1, we first prove the following
lemma.

Lemma 3. For any walk wi, the non-additive length of the
walk is (a) bounded below by the additive length, and (b)
bounded above by γ times the additive length, i.e.

lenwa (wi) ≤ lenwna(wi) ≤ γlenwa (wi) (15)

Proof. We have the following observation: for a walk wi, the
ratio of the non-additive cost to the additive cost is bounded
below and above by the minimum and maximum ratio of each
edge, respectively:

min
e∈wi

lenna(e, wi)

lena(e, wi)
≤ lenwna(wi)

lenwa (wi)
≤ max

e∈wi

lenna(e, wi)

lena(e, wi)
(16)

The two length function is different when and only when w
traverses e multiple times. As wi stands for the routing of the
request, the traffic placed on edge e is the same, regardless
of the penalty function. Without loss of generality, we assume
that the walk traverses the edge for the first k times. Then, the
ratio of the two functions is:

lenna(e, wi)

lena(e, wi)
=

γ
li−1(e)

L∗ (γ
tri(e,wi)

L∗ − 1)∑
k γ

li−1(e)

L∗ (γ
di(k)

L∗ − 1)

=
γ

∑
k di(k)

L∗ − 1∑
k(γ

di(k)

L∗ − 1)
(17)

First, we prove that the non-additive cost is bounded below
by the additive cost. Using the Taylor expansion of the expo-
nential function, one may verify that γ

∑
i xi−1 ≥

∑
i(γ

xi−1)
for all γ ≥ 1 and xi ≥ 0, leading to the desired result:

lenna(e, wi)

lena(e, wi)
=

γ
∑

k di(k)

L∗ − 1∑
k(γ

d(k)
L∗ − 1)

≥ 1 (18)

Next, we prove that the non-additive cost is bounded above
by γ times the additive cost. The difference between the two
costs on any edge e is:

lenna(e, wi)

lena(e, wi)
=

γ
∑

k di(k)

L∗ − 1∑
k(γ

di(k)

L∗ − 1)
≤

(γ − 1)
∑

k di(k)

L∗∑
k(γ

di(k)

L∗ − 1)
(19)

Inequality (19) holds due to two reasons: first, it is our
assumption that a single request may not cause the most
congestion, i.e.,

∑
k di(k)

L∗ ≤ 1; second, γx − 1 ≤ (γ − 1)x,
for 0 ≤ x ≤ 1 and γ ≥ 1.

Using the Maclaurin series γx =
∑
m

(lnγ)m

m! xm, one may
verify that γx−1 ≥ γxlnγ for γ ≥ 1, leading to the following
inequality:

lenna(e, wi)

lena(e, wi)
≤

(γ − 1)
∑

k di(k)

L∗∑
k(γ

d(k)
L∗ − 1)

≤
(γ − 1)

∑
k di(k)

L∗∑
k lnγ

d(k)
L∗

(20)

=
γ − 1

γlnγ
γ ≤ γ (21)

The last inequality (21) stems from the fact that γ−1
γlnγ is

a monotonically decreasing function with respect to γ, and
limγ←1

γ−1
γlnγ = 1.

Combining (18) with (21) we obtain the stated lower and
upper bounds for the non-additive length of any walk.

We are now ready to prove Lemma 1.

Proof. Denote the shortest valid walk with respect to the
additive length lenwa (w) as wa, and the optimal walk with
respect to the non-additive length lenwna(w) as w∗. Applying
the lower and upper bounds of Lemma 4, we have the
following two inequalities:

1

γ
lenwna(w

a) ≤ lenwa (wa), lenwa (w
∗) ≤ lenwna(w∗) (22)

Since wa is the shortest walk under the additive function,
we have that:

lenwa (w
a) ≤ lenwa (w∗) (23)

Combining the last inequality with the two in (22), we obtain:

lenwna(w
a) ≤ γ lenwna(w∗) (24)

proving Lemma 1.

B. Proof to the Lemma 2
Proof. Denote the shortest path walk as wai , and the optimal
walk in hindsight as w∗i . The increase to the potential function
is:

φ(i)− φ(i− 1) = lenwna(w
a) ≤ γ lenwna(w∗) (25)

The sum of the differences above is given by:

φ(R)−φ(0) =
R∑
i=1

(φ(i)− φ(i− 1)) ≤ γlenwna(w∗) (26)

= γ

R∑
i=0

∑
e∈C∗

i

γ
li−1(e)

L∗ (γ
∑

k di(k)

L∗ − 1) (27)

≤ γ
R∑
i=0

∑
e∈C∗

i

γlR(e)(γ − 1)
∑
k

di(k)/L
∗ (28)

= γ(γ − 1)
∑
e∈C∗

i

γlR(e)
R∑
i=0

∑
k

di(k)/L
∗ (29)

≤ γ(γ − 1)
∑
e∈C∗

i

γlR(e) = γ(γ − 1)φ(R) (30)

Inequality (28) results from the fact that li(e) is non-
decreasing with respect to i, and γx − 1 ≤ (γ − 1)x.
Inequality (30) holds as L∗ ≤

∑R
i=0

∑
k di(k, j) is the optimal

congestion, in hindsight, for e for the first R requests.
By setting γ = 3/2, we have the desired result: φ(R) ≤

4φ(0) = 4|E| = 4m.

REFERENCES

[1] Kaustubh Joshi et al. Network function virtualization. IEEE Internet
Computing, 2016.

[2] Bo Han et al. Network function virtualization: Challenges and oppor-
tunities for innovations. IEEE Communications Magazine, 2015.

[3] NFVISG ETSI. Gs nfv-man 001 v1. 1.1 network function virtualisation
(nfv); management and orchestration, 2014.

[4] Mijumbi et al. Network function virtualization: State-of-the-art and
research challenges. IEEE Communications Surveys & Tutorials, 2016.

[5] Awerbuch et al. The price of routing unsplittable flow. In Proceedings
of STOC. ACM, 2005.

[6] Paola Festa. The shortest path tour problem: problem definition,
modeling, and optimization. In Proceedings of INOC, 2009.

[7] Festa et al. Solving the shortest path tour problem. European Journal
of Operational Research, 2013.

[8] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV:
A comprehensive survey. IEEE Transactions on Network and Service
Management, 13(3):518–532, 2016.

[9] Jian-Jhih Kuo et al. Service chain embedding with maximum flow in
software defined network and application to the next-generation cellular
network architecture. In Proceedings of INFOCOM. IEEE, 2017.

[10] Zichuan Xu, Weifa Liang, Alex Galis, Yu Ma, Qiufen Xia, and Wen-
zheng Xu. Throughput optimization for admitting NFV-enabled requests
in cloud networks. Computer Networks, 2018.

[11] Ming Xia, Meral Shirazipour, Ying Zhang, Howard Green, and Attila
Takacs. Network function placement for NFV chaining in packet/optical
datacenters. Journal of Lightwave Technology, 33(8):1565–1570, 2015.

[12] Tachun Lin, Zhili Zhou, Massimo Tornatore, and Biswanath Mukherjee.
Demand-aware network function placement. Journal of Lightwave
Technology, 34(11):2590–2600, 2016.

[13] Shireesh Bhat et al. Service-concatenation routing with applications to
network functions virtualization. In Proceedings of ICCCN. IEEE, 2017.

[14] Xincai Fei, Fangming Liu, Hong Xu, and Hai Jin. Adaptive vnf scaling
and flow routing with proactive demand prediction. In INFOCOM
2018-The 37th Annual IEEE International Conference on Computer
Communications, pages 1–9, 2018.

[15] Zichuan Xu, Weifa Liang, Meitian Huang, Mike Jia, Song Guo, and
Alex Galis. Approximation and online algorithms for NFV-enabled
multicasting in SDNs. In Distributed Computing Systems (ICDCS), 2017
IEEE 37th International Conference on, pages 625–634. IEEE, 2017.

[16] Tamás Lukovszki and Stefan Schmid. Online admission control and
embedding of service chains. In International Colloquium on Structural
Information and Communication Complexity, pages 104–118. Springer,
2015.

[17] Guy Even, Matthias Rost, and Stefan Schmid. An approximation
algorithm for path computation and function placement in SDNs. In
International Colloquium on Structural Information and Communication
Complexity, pages 374–390. Springer, 2016.

[18] Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and Niki
Pissinou. Traffic aware placement of interdependent NFV middleboxes.
In INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE, pages 1–9. IEEE, 2017.

[19] James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts.
On-line load balancing with applications to machine scheduling and
virtual circuit routing. In Proceedings of the twenty-fifth annual ACM
symposium on Theory of computing, pages 623–631. ACM, 1993.

