
A Practical and Efficient Implementation of WF2Q+
George N. Rouskas, Zyad Dwekat

Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206

Abstract— The WF2Q+ scheduler combines all three properties
that are important to a fair queueing algorithm: a tight delay
bound, a small worst-case fair index value, and a relatively
low worst-case complexity of O(log n) for a link with n flows.
We present a new implementation of WF2Q+ in which both
the number of packet sorting operations and the computation
of the virtual time function are independent of the number
n of flows. Our implementation exploits two widely observed
characteristics of the Internet, namely that service providers
offer some type of tiered service with a small number of service
levels, and that a small number of packet sizes dominate. Our
scheduler combines provably good performance with amenability
to hardware implementation in high-speed routers.

I. INTRODUCTION

In packet-switched networks, the scheduling algorithm is
central to the QoS architecture. A scheduler is desirable to
possess three important properties [8]: fairness, to provide
isolation among competing flows and ensure that each flow
receives its fair share of the link bandwidth; bounded delay,
so as to guarantee a bounded end-to-end delay to interactive
applications; and low complexity, so as to be possible to
implement in hardware and operate at wire speeds.

In general, packet schedulers can be classified as either
timestamp-based or frame-based. Timestamp schedulers emu-
late the ideal but unimplementable generalized processor shar-
ing (GPS) algorithm by maintaining a virtual time function.
Packets are assigned a timestamp based on the virtual time
value at the time of their arrival, and are transmitted in increas-
ing order of timestamp. In general, timestamp schedulers have
good delay and fairness properties, but high implementation
complexity, hence there has been limited deployment of such
schedulers in high-speed routers.

The complexity of timestamp schedulers arises from two
factors. First, it is necessary to select among the head-of-line
packets of the n backlogged flows the one with the smallest
timestamp to serve next; this operation takes time O(log n) us-
ing a priority queue. Whereas current router technology makes
it possible to support millions of flows, each with its own
queue, the logarithmic complexity and the fact that the priority
queue structure is not suited to hardware implementation
pose significant challenges. Second, the worst-case complexity
of computing the virtual time function of GPS, as required
by weighted fair queueing (WFQ) [7] and worst-case fair
weighted fair queueing (WF2Q) [3], is O(n) [5]. WF2Q+ [2]
uses a different virtual time function that can be computed in
O(log n) time [2]; since it also provides tight delay bounds
and achieves worst-case fairness, WF2Q+ is the best known

This work was supported by the NSF under grant CNS-0434975.

packet fair algorithm. Other schemes, including self-clocked
fair queueing [5], use simplified virtual time functions that
are more efficient to compute, but still require that packets be
sorted in increasing order of timestamp. Furthermore, it has
been shown that achieving a delay bound relative to GPS that
is independent of the number of flows is impossible if the
scheduler has a complexity below O(log n) [13].

Frame-based schedulers typically operate by dividing time
into frames. Within each frame, flows are mapped to time
slots of fixed or variable length and are served in a round-robin
manner. By eliminating the need for packet sorting, schedulers
such as deficit round robin (DRR) [9], are easy to imple-
ment and have been widely deployed in high-speed routers.
However, frame-based schedulers have poor delay bound and
output burstiness properties. More recently, schedulers such
as stratified round robin [8] incorporate some elements of
timestamp schedulers into a frame-based scheme, so as to
improve the delay and output burstiness while maintaining low
implementation complexity.

The main contribution of our work is a new implementation
of the WF2Q+ scheduler which ensures that the two main
operations, namely, computing the virtual time function and
selecting the next packet to be transmitted, can be performed
in time that is independent of the number n of flows. Our
work is motivated by two important observations. First, most
Internet service providers offer some type of tiered service, in
which users may select only from a small set of service tiers.
Service tiers are either based on the bandwidth hierarchy of the
underlying infrastructure (e.g., DS-1, DS-3, OC-3, etc.), or are
determined in some ad-hoc manner (e.g., the various ADSL
tiers available through different providers). The practical im-
plication of a tiered-service is that the rates assigned to flows
(equivalently, the flow weights in the fair queueing system) are
not arbitrary, but are limited to a small set of predetermined
values. We emphasize that tiered-service is different from
the approach in [8]; there, flows with arbitrary weights are
“stratified” into classes using exponential grouping, while we
assume that all flows within a service tier are assigned the
same weight. The second observation is that in the Internet,
the vast majority of packets have a fixed length that takes
one of a small number of values [10], [12]. As we explain
later, the low sorting complexity of this scheduler does not
contradict the findings of [13] regarding the tradeoffs between
complexity and delay bounds of scheduling algorithms.

Following a brief review of important concepts in Section II,
in Section III we introduce the intra-tier and inter-tier structure
of our scheduler. In Section IV, we first consider a network
with fixed size packets and present an intra-tier scheduler

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

172

of constant-time complexity. In Section V, we generalize the
scheduler structure to variable-size packets by exploiting the
observed Internet packet length distribution to keep complexity
low. We conclude the paper in Section VI.

II. THE WFQ, WF2Q, AND WF2Q+ SCHEDULERS

A virtual time function V (t) was proposed in [7] to track
the progress of GPS. The rate of change of V (t) is:

ϑV (t + τ)
ϑτ

=
1∑

i∈B(t) φi
(1)

where B(t) denotes the set of backlogged flows at time t and
φi is the weight assigned to flow i. Let r be the rate of the link
(server). In GPS, if flow i is backlogged at time t, it receives a
rate of ϑV (t+τ)

ϑτ φir; in other words, V (t) is the marginal rate
at which backlogged flows receive service in GPS.

Suppose that the k-th packet of flow i arrives at time ak
i ,

and has length Lk
i . Let Sk

i and F k
i denote the virtual times at

which this packet begins and completes service, respectively
Letting F 0

i = 0 for all flows i, we have [7]:

Sk
i = max{F k−1

i , V (ak
i)} (2)

F k
i = Sk

i +
Lk

i

φi
(3)

The WFQ scheduler serves packets in increasing order of
their virtual finish times F k

i , a policy referred to as “smallest
virtual finish time first (SFF)” [2]. This policy can be imple-
mented in time O(log n), where n is the number of flows,
using a priority queue data structure. In addition, there is the
cost of maintaining the virtual time function V (t). The worst-
case complexity of computing V (t) can be O(n), although
the average-case complexity is O(1) [5]. WFQ provides a
delay bound that is within one packet transmission time of
that provided by GPS [7]. However, WFQ may introduce
substantial unfairness relative to GPS in terms of the worst-
case fairness index (WFI), a metric introduced in [3] to
represent the maximum time a packet arriving to an empty
queue will have to wait before receiving its guaranteed service
rate. Specifically, GPS has a WFI of zero, but the WFI of WFQ
increases linearly with the number of flows n.

The WF2Q algorithm introduced in [3] improves on WFQ in
terms of WFI by employing a “smallest eligible virtual finish
time first (SEFF)”policy for scheduling packets. A packet is
eligible if its virtual start time is no greater than the current
virtual time; hence, the WF2Q scheduler only considers the
packets that have started service in GPS to select the one
to be transmitted next. It has been shown [3] that WF2Q is
work-serving, provides the same tight delay bound as WFQ,
and is worst-case fair in the sense that its WFI is a constant
independent of the number n of flows. However, the worst-
case complexity of WF2Q is O(n), identical to that of WFQ,
as both schedulers need to compute the function V (t).

A lower-complexity scheduler, WF2Q+ was introduced
in [2]. WF2Q+ provides the same delay bound and WFI as

WF2Q, but uses a different virtual time function which can be
computed in O(log n) time. The new function is [2]:

VWF 2Q+(t+ τ) = max
{

VWF 2Q+(t), min
i∈B(t)

{
S

hi(t)
i

}}
(4)

where hi(t) is the sequence number of the packet at the head
of flow i’s queue at time t, and S

hi(t)
i is the virtual start time

of that packet. The minimum operation in the right-hand side
of (4) can be performed in time O(log n) in the worst-case
using a priority queue structure, hence the overall complexity
of WF2Q+ is O(log n), significantly lower than the O(n)
complexity of WFQ and WF2Q.

III. TIERED SERVICE FAIR QUEUEING (TSFQ)

We consider a link which serves n flows and employs per-
flow queueing, i.e., it allocates a FIFO buffer to each flow. The
link supports p distinct tiers of service, where p � n is a small
constant (e.g., p ≈ 10 − 15). The l-th tier is characterized by
a positive real weight φl, l = 1, . . . , p. Each flow i is mapped
to one of the p service levels, i.e., it is assigned one of the
p weights φl; we assume that this assignment remains fixed
throughout the duration of the flow. The mapping of flows to
service tiers is performed at the time the flow is admitted to the
network by taking into account the QoS requested by the user.
In this paper we assume that the link is configured with the
number p of service tiers and the associated weights φj ; these
parameters are determined in advance by the network operator
using information about the user demands. Our research group
has developed techniques based on discrete location theory to
select an optimal set of service tiers for a given stochastic
distribution of user requests [1], [6].

Similar to WF2Q+, our tiered service fair queueing (TSFQ)
scheduler uses the virtual time function in (4), and also em-
ploys the SEFF policy to serve packets. The TSFQ scheduler
logically consists of two parts, as shown in Figure 1. The
first part comprises of p identical intra-tier schedulers, while
the second part is a single inter-tier scheduler. The l-th intra-
tier scheduler is responsible for using the SEFF policy to
select the eligible packet with the minimum virtual finish
time within the flows in the l-th service tier, l = 1, . . . , p.
The inter-tier scheduler simply serves the packet with the
smallest virtual finish time among the p packets selected by
the corresponding intra-tier schedulers. Since p is a small
constant for the given link, the packet to be transmitted next
can be determined in time that is independent of the number of
flows, and in fact, this operation can be performed in constant
time in hardware. Hence, the implementation of the inter-tier
scheduler is straightforward and does not require any priority
queue data structure to be maintained.

IV. INTRA-TIER SCHEDULER: THE FIXED-PACKET CASE

The l-th TSFQ intra-tier scheduler, l = 1, . . . , p, serves
flows belonging to the l-th service tier and have been assigned
the same weight φl. The p intra-tier schedulers are identical
and operate independently of each other. Therefore, in this and
the next section we make the assumption that all flows have

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

173

Tier p

...
...

...

Intra−tier scheduler

scheduler
Inter−tier

...

Tier 1

Tier 2

Fig. 1. Logical diagram of the TSFQ scheduler with p service tiers

identical weights. For simplicity, we let φ denote the weight
assigned to all the flows served by the scheduler.

In this section we make the additional assumption that all
packets of all flows have constant size L (i.e., Lk

i = L ∀ i, k).
We will remove this assumption in the next section; however,
we note that the implementation we present in this section is
of practical importance to ATM networks.

In a system with fixed-size packets and flows of identical
weight, sorting packets according to their virtual start times
produces an identical order to sorting them according to their
virtual finish times. This property is formally expressed in the
following lemma (note that the property is trivially true for
packets belonging to the same flow).

Lemma 4.1: Consider flows i and j with φi = φj = φ and
packets of fixed size L. Let Sk

i be the virtual start time of the
k-th packet of flow i, and Sl

j be the virtual start time of the
l-th packet of flow j. Then:

Sk
i ≤ Sl

j ⇔ F k
i ≤ F l

j (5)

Proof. Under the assumption of fixed packet size and identical
weights, the second term of expression (3) is constant, hence:

Sk
i ≤ Sl

j ⇔ Sk
i +

L

φ
≤ Sl

j +
L

φ
⇔ F k

i ≤ F l
j (6)

Queue structure and operation. The intra-tier scheduler
for fixed-length packets consists of a simple FIFO scheduler,
as illustrated in Figure 2, and operates as follows. Arriving
packets of new or previously idle flows are inserted at the tail
of the FIFO immediately upon arrival; from (2), the virtual
time at the arrival instant is the virtual start time of such
packets. A head-of-line packet of a backlogged flow, however,
is not released to the FIFO queue at the instant the previous
packet of the same flow leaves the system. Instead, the packet

scheduler

...

Flow queues

1

2

m

FIFO queue
Intra−tier scheduler

To inter−tier

Fig. 2. Queue structure of the intra-tier scheduler for fixed-size packets

is held in the flow queue until the instant the virtual time
becomes equal to its virtual start time, and then inserted into
the FIFO queue. This operation is identical to that of the
WF2Q+ scheduler [2], and ensures that no packet will start
service before it is eligible for service under GPS.

We have the following results.
Lemma 4.2: For the flows of a given tier, the intra-tier

scheduler of Figure 2 is identical to the WF2Q+ scheduler [2].
Proof. Since packets are released to the FIFO queue at their
virtual start times, packets in the FIFO queue are sorted
in increasing order of their virtual start times. Because of
Lemma 4.1, the queue is sorted in increasing order of the
packet virtual finish times, which is the order in which
packets are served under WF2Q+. Since arrivals to the FIFO
queue take place at exactly the same instants these arrivals
take place under WF2Q+ and the order of service is identical,
the two schedulers are identical under the assumption of
flows with fixed-size packets and identical weights.

Lemma 4.3: The TSFQ scheduler consisting of p intra-tier
schedulers and one inter-tier scheduler is identical to WF2Q+.
Proof. Each of the p intra-tier schedulers is identical to
WF2Q+ and the inter-tier scheduler serves the p packets at
the head of the p intra-tier FIFO queues in increasing order
of their virtual start (equivalently, finish) times. Consequently,
the TSFQ scheduler is identical to WF2Q+.

Lemma 4.4: In the TSFQ scheduler, the virtual time func-
tion (4) can be computed in O(1) time.
Proof. Since virtual finish time order is equivalent to virtual
start time order, the packet with the smallest start time
within a given tier is the one at the head of the respective
FIFO queue. Thus, the minimum operation in (4) reduces to
selecting the packet with the smallest finish time among the
ones at the head of the p intra-tier queues; as we mentioned
earlier, this operation can be performed in constant time.

Hence, in addition to possessing the worst-case fairness and
delay properties of WF2Q+, the TSFQ (intra- and inter-tier)
scheduler has algorithmic complexity of O(1). This result does
not contradict the findings of [13] which suggest that the
O(log n) time complexity is fundamental to achieving good
delay bounds. The analysis in [13] assumes that flow weights
and packet sizes can take arbitrary values, whereas the result
of Lemma 4.3 only holds under the specific assumptions of

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

174

fixed flow weights and packet lengths.

V. INTRA-TIER SCHEDULER: VARIABLE-PACKET CASE

We now remove the assumption we made in the previous
section that all packets have a fixed size. As in the previous
section, we consider the problem of scheduling flows within
a given service tier, therefore we assume that all flows are
assigned the same weight φ. In a network with variable-size
packets, the statement of Lemma 4.1 is no longer true, since
the second term in the right-hand side of (3) is not constant.
Hence, in such a network, fair queueing schedulers in general
require some form of packet sorting.

In the Internet, however, it is well known that certain
packet sizes dominate [10], [12]. Specifically, the study in [12]
found that packets of one of three common sizes make up
more than 90% of all Internet traffic; the three common
packet sizes identified in the study were 40, 576, and 1500
bytes, corresponding to TCP acknowledgments, the default
IP datagram size, and Ethernet frames, respectively. A more
recent study [10] shows that (1) Internet traffic is mostly
bimodal at 40 and 1500 bytes, (2) there is a shift away from
576 bytes due to the proliferation of Ethernet, and (3) a new
mode is forming around 1300 bytes which the authors theorize
is due to widespread use of VPNs. Similar studies, which can
be found on CAIDA’s web site (http://www.caida.org), confirm
that the length of the vast majority of Internet packets takes
one of a small number of constant values. We can exploit
these facts regarding the Internet packet length distribution
to modify the intra-tier TSFQ scheduler we presented in the
previous section so that it handle Internet traffic efficiently,
i.e., by performing a number of packet sorting operations that
is independent of the number of flows.
Queue structure. Instead of maintaining a single FIFO queue,
as is the case for fixed-size packets shown in Figure 2, the
intra-tier scheduler for variable packet size networks maintains
a small number k of queues. The queue structure of this
scheduler is illustrated in Figure 3 for the trimodal packet
length distribution reported in [12]; the queue structure can be
modified in a straightforward manner to reflect any similar
distribution. In this case, the scheduler maintains k = 7
queues. Three of the queues are dedicated to packets of a
common size, i.e., 40, 576, and 1500 bytes, respectively, which
define the three modes of the distribution in [12]. The other
four queues are for packets of size between the common
values; as seen in Figure 3, there is one queue for packets of
size less than 40 bytes, one for packets of size 41-575 bytes,
one for packets of size 577-1499 bytes, and one for packets
of size greater than 1500 bytes).
Operation. The operation of the intra-tier scheduler is identi-
cal to the one we described in Section IV, with one difference:
when a head-of-line packet moves from some flow’s queue to
a scheduler queue, it is inserted in the queue corresponding
to its size. Since each of the p inter-tier schedulers maintains
k queues, the inter-tier scheduler selects the packet to serve
next as the one with the smallest virtual finish time among
the pk candidate packets at the head of the pk queues. Since

41−575 bytes

. . .

1

2

3

4

5

m

576 bytes

40 bytes

<40 bytes

1500 bytes

577−1499 bytes

>1500 bytes

Flow queues Intra−tier scheduler
queues

To inter−tier
scheduler

Fig. 3. Queue structure of the intra-tier scheduler for Internet packet traffic

both p and k are small integers and their values are constant
for a given system, this operation takes constant time as in the
fixed-size packet case.
Packet sorting operations. Note that Lemma 4.1 holds true
for packets of a common size. Hence, the queues dedicated
to these packets operate in a FIFO manner, and packets are
simply inserted at the tail of these queues. Since packets of a
common size make up more than 90% of Internet traffic [12],
no sorting operations are necessary for the large majority of
packets. On the other hand, queues dedicated to packets of size
between the common values must be sorted appropriately at
the time of a packet insertion. These sorting operations take
place infrequently (less than 10% of the time), and involve
relatively short queues (since less than 10% of the packets are
spread over several such queues at p different service levels).
Moreover, the time complexity of the sorting operations is
independent of the number m of flows in the given service
tier, and is a function only of the network load and the ratio
of packets with a non-common size.

We have the following results.
Lemma 5.1: The TSFQ scheduler for variable packet sizes,

consisting of p intra-tier schedulers as in Figure 3 and one
inter-tier scheduler, is identical to WF2Q+.
Proof. The proof of Lemmas 4.2 and 4.3 also holds in this
case, hence the scheduler is equivalent to WF2Q+. (Note also
that, although consecutive packets of the same flow i may
be inserted to different queues in Figure 3, they will always

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

175

be transmitted in order, since the second packet has a larger
virtual finish time.)

Lemma 5.2: In the TSFQ scheduler for variable packet
sizes, the virtual time function (4) can be computed in O(1)
time.
Proof. Each intra-tier scheduler needs to maintain a variable
that represents the minimum virtual start time over all packets
of the flows in the given tier. This variable is updated every
time an eligible packet is inserted to any of the scheduler’s
queues, or whenever a packet is selected by the inter-tier
scheduler for transmission; updating this variable takes
constant time. Hence, the minimum operation in (4) reduces
to selecting the minimum of p such variables, and can be
performed in constant time in hardware.
Elimination of packet sorting. The operation of the intra-
tier scheduler may be further simplified by eliminating packet
sorting even for queues holding packets of size between
the common values. Doing so may cause some packets to
be served in incorrect order of virtual finish time, hence
introducing a small degree of unfairness. However, the overall
impact is likely to be small. Indeed, observe that packets of a
non-common size represent only a small fraction of the overall
traffic seen by the server, and are distributed over a number of
different queues across p service tiers. Consequently, the ar-
rival rate to each of these queues is likely to be low, especially
under typical operating conditions when the load offered to the
server is not too high. Now note that, since all flows within
a service tier have the same weight φ in expression (3), the
order of packets in such a queue will depend on the relative
values of their virtual start time and length. Therefore, even
when a small packet arrives to find larger packets in the queue
(i.e., packets with a larger value for the second term in the
right-hand side of (3)), the elapsed time since the previous
arrival (which affects the first term of (3)) may be sufficiently
large so that the queue remain sorted. This intuition is further
supported by the coarse manner in which the leap forward
virtual clock [11] algorithm computes timestamps, and the
mechanism employed by bin sort fair queueing [4] to sort
packets. The results in [4], [11] indicate that approximate
sorting can be as good as exact sorting; moreover, in the
case of our TSFQ scheduler, approximate sorting is limited
to a small fraction of all packets. To verify this intuition,
we have simulated the operation of the two variants of the
TSFQ scheduler (with and without sorting the packets of a
non-common size) using the ns-2 simulator. We have indeed
found that the effect of eliminating the sorting operations has
negligible effect on the delay bound and fairness properties
of the scheduler; due to space constraints, the results of the
simulations are omitted.

We emphasize that the queue structure shown in Figure 3
is for illustration purposes only and is simply meant to
convey the idea underlying the structure of the scheduler for
Internet packet traffic; we do not imply that routers have to
be configured in exactly this manner. Network operators may
configure this queue structure to reflect the specific packet
distribution observed in their networks, and update it over time

as traffic conditions evolve. Similarly, they may optimize the
number of service tiers and the flow weights associated with
them (e.g., with the techniques developed by our research
group [1], [6]) by taking into account the prevailing user
demands. Therefore, our framework of fair queueing sched-
ulers for tiered-service networks is quite flexible. Network
providers may adapt the specific elements of the framework to
differentiate their offerings, and to provide users with a menu
of customized services.

VI. CONCLUDING REMARKS

We have proposed a new tiered service fair queueing TSFQ
scheduler. Our work was motivated by two key observations:
that providers typically offer a small number of service levels,
and that the Internet packet length distribution exhibits a
small number of prominent modes. Within each tier, the
schedulers employ a fixed number of queues to handle packets
with few or no sorting operations. The intra-tier scheduler
simply serves the packet with the smallest timestamp among
a constant number of packets at the front of the intra-tier
queues. The simple structure and operation of the schedulers
are practically realizable and especially attractive for hardware
implementation. The TSFQ scheduler is equivalent to WF2Q+
with the additional property that the virtual time function
can be computed in O(1) time. Therefore, we believe that
employing TSFQ scheduling within high-speed routers will
enable network operators to enhance significantly their ability
to offer and guarantee a wide range of services.

REFERENCES

[1] Nikhil Baradwaj. Traffic quantization and its application to QoS routing.
Master’s thesis, North Carolina State University, Raleigh, NC, August
2005. (2006 Graduate School Nancy G. Pollock MS Thesis Award).

[2] J. C. R. Bennett and H. Zhang. Hierarchical packet fair queueing
algorithms. In Proc. ACM SIGCOMM ’96, pages 143-156, Aug. 1996.

[3] J. C. R. Bennett and H. Zhang. WF2Q: worst-case fair weighted fair
queueing. In Proceedings of IEEE INFOCOM ’96, pages 120–128, 1996.

[4] S. Cheung and C. Pencea. BSFQ: bin sort fair queueing. In Proceedings
of IEEE INFOCOM ’02, 2002.

[5] S. Golestani. A self-clocked fair queueing scheme for broadband
applications. In Proc. of IEEE INFOCOM ’94, pages 636–646, 1994.

[6] Laura E. Jackson. The Directional p-Median Problem with Applications
to Traffic Quantization and Multiprocessor Scheduling. PhD thesis,
North Carolina State University, Raleigh, NC, December 2003. (2004
College of Engineering Nancy G. Pollock PhD Dissertation Award).

[7] A. K. Parekh and R. G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: The single-
node case. IEEE/ACM Transactions on Networking, 1(3):344–357, June
1993.

[8] S. Ramabhadran and J. Pasquale. Stratified round robin: A low
complexity packet scheduler with bandwidth fairness and bounded delay.
In Proceedings of ACM SIGCOMM ’03, pages 239–249, August 2003.

[9] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit
round robin. In Proceedings of ACM SIGCOMM ’95, 1995.

[10] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet packet size dis-
tributions: Some observations. http://netweb.usc.edu/̃ rsinha/pkt-sizes/,
October 2005.

[11] S. Suri, G. Varghese, and G. Chandranmenon. Leap forward virtual
clock: An O(log log N) queueing scheme with guaranteed delays and
throughput fairness. In Proceedings of IEEE INFOCOM ’97, 1997.

[12] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet traffic
patterns and characteristics. IEEE Network, 11(6):10–23, Nov/Dec 1997.

[13] J. Xu and R. Lipton. On fundamental tradeoffs between delay bounds
and computational complexity in packet scheduling algorithms. In
Proceedings of ACM SIGCOMM ’02, 2002.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

176

