
Design and Implementation of an Economy Plane for the
Internet

Xinming Chen, Tilman Wolf
ECE Department

University of Massachusetts
Amherst, MA, USA

Jim Griffioen, Onur Ascigil
CS Department

University of Kentucky
Lexington, KY, USA

Rudra Dutta, George Rouskas, Shireesh Bhat
CS Department

North Carolina State Univ.

Raleigh, NC, USA

Ilya Baldin
RENCI

University of North Carolina
Chapel Hill, NC, USA

Ken Calvert
CS Department

University of Kentucky

Lexington, KY, USA

ABSTRACT

Deployment of innovative new networking services requires

support by network providers. Since economic motivation

plays an important role for network providers, it is critical

that a network architecture intrinsically considers economic

relationships. We present the design of a protocol that asso-

ciates access to network services with economic contracts.

We show how this protocol can be realized in fundamentally

different ways, using out-of-band signaling and in-band sig-

naling, based on two different prototype implementations.

We present results that show the effectiveness of the pro-

posed protocol and thus demonstrate a first step toward real-

izing an economy plane for the Internet.

1. INTRODUCTION

A key problem in deploying innovative features in the
network core is that many protocols and services need
support by providers throughout the network. Since
network operators are justifiably driven by business
goals, there need to be clear incentives to support new
network features. The need for the network architec-
ture to associate innovation with economic motivation
is reflected in the work by Clark et al. [7] that empha-
sizes the importance of tying real-world tussles to the
network architecture. An example of misalignment be-
tween protocol design and economic motivation is mul-
ticast, which has experienced limited deployment in the
current Internet [8].
To address these challenges and expose economic

tussles within the architecture, an “economy plane,”
complementing the data and control planes, has been
proposed for the Internet [16, 17]. This economy
plane enables entities (e.g., users or their applications,
providers, etc.) to dynamically set up fine-grained,
short-term economic contracts for network services.
These network services are offered and sold through a
marketplace and can range from simple connectivity be-
tween end-points (à la pathlets [10]) to complex process-
ing and storage services (e.g., caching for NDN [12]).

While the principles and architecture of an economy
plane for the Internet have been described in [16, 17],
there has been no comprehensive implementation and
evaluation of protocols and prototypes to enable such
functionality. In this paper, we provide these insights.
In particular, we present a protocol design that consid-
ers economic relationships as an integral part of com-
munication. The contributions of our paper are:

• Design of a service access protocol based on the
establishment of economic relationships between
entities.

• Design of economy plane functionality using two
fundamentally different approaches, one based on
out-of-band signaling and one based on in-band
signaling, highlighting the versatility of the pro-
posed protocol.

• Results from prototype implementations of both
types of approaches.

The remainder of the paper describes the ChoiceNet
architecture, the design of a protocol to related economy
plane interactions with data and control plane opera-
tions, and two implementations on the GENI platform.

2. CHOICENET ARCHITECTURE

The principle idea of ChoiceNet [16, 17] is to enable
an explicit representation of economic relationships be-
tween entities in the network. In the current Inter-
net, these relationships are based on long-term, “paper-
based” service agreements. In ChoiceNet, the economy
plane of the network enables automated contracts for
network services at various time scales.
The goal of dynamic contracts is to enable market-

based competition among providers of network services,
which improves quality of offerings and reduces cost to
customers. To enable a dynamic and competitive mar-
ket, ChoiceNet is based on three components:
Services. Network services represent any functionality

that can be provided in a network ranging from a

1



simple bitpipe between two end-points (e.g., path-
let) to complex data storage (e.g., caching) or
lookup (e.g., DNS) services. In order to create a
competitive market for services, it is necessary to
specify the semantics of services such that service
offerings can be compared.

Contracts. Contracts relate economic exchanges (e.g.,
payments) with operations within the network
(e.g., access to a service). To be effective, contracts
require enforcement. Thus, a customer needs to
be able to verify that a service has been rendered
to specification (e.g., as discussed in [3]) and a
provider needs to be able to perform access con-
trol to limit services to those customers who have
established economic relationships. The latter is
one aspect of this paper.

Marketplaces. Marketplaces provide functionality to
match provider offerings with customer requests.
These marketplaces also may act as trusted inter-
mediaries for economic transactions and provide
functionality to compose complex service offerings
from simpler components (e.g., as discussed in [9]).

The steps taken to set up connections (or more com-
plex service offerings) in ChoiceNet are: (1) Providers
advertise their services in one or marketplaces. (2)
An end-system application (e.g., movie streaming app)
queries the marketplace for available service offerings
(e.g., QoS pipes, cached content). (3) The user (or a del-
egated entity, such as the operating system) makes a de-
cision on which service to “purchase.” (4) The providers
involved in the service offerings set up their services in
return for “consideration.” (5) The end-system applica-
tion uses the provided service.
A key challenge in this context is to connect the eco-

nomic relationship among entities to the network ser-
vices offered/purchased. In this paper, we describe a
protocol that establishes this connection, and we de-
scribe two prototype system implementations that il-
lustrate specific instantiations of these mechanisms.

3. NETWORK SERVICES

At the heart of the ChoiceNet architecture is the
concept of a network layer service and the ability to
compose services together. Although composed services
have been explored in other contexts before [6,11], past
work has focused on the problem of integrating func-
tionality, rather than that of compensating the oper-
ators of those services. In other words, a ChoiceNet
network layer service not only needs to define “what
the service does” so that it can be used/composed, but
it must also specify “what a user of the service must do
to compensate the provider of the service.”
Here, we present our network layer service abstrac-

tion for ChoiceNet and describe how it can be composed
to form complex/tailored services.

3.1 Consideration

In ChoiceNet, all network layer services require some
form of consideration along with each service request.
Consideration is the medium of exchange of value; that
is, consideration is used by one party to convince an-
other to provide a good or service. For practical reasons,
the system must admit a variety of forms of consider-
ation.1 Some connection to a system for transferring
money may be required (e.g., a credit card number or
bitcoin transaction [1]); in other cases a user may simply
need to prove membership in some group (e.g., being a
faculty member at a particular univeristy). A receipt
(proof of purchase) might also be accepted as consid-
eration. In short, consideration in ChoiceNet can be
any form that the customer and provider agree on for
exchanging value.

3.2 Service Description and Composition

A network layer service description contains infor-
mation about a service’s characteristics. It is used to
advertise the service in the marketplace, and is also
used by planning services to compose services together.
There are six parts to an network layer service de-
scription: (1) the data transformation/operation, (2)
the type of input require, (3) the type of output gen-
erated, (4) the input location, (5) the output location,
and (6) the consideration required. The first three
components—the operation, input specification, and
output specification—are similar to other interface de-
scription languages, web service definition languages,
remote procedure calls, etc. The other three compo-
nents are needed by the economy plane to sell/purchase
services and compose them together.
One can think of a network layer service as a chan-

nel with one or more input endpoints and one or more
output endpoints. When the specified consideration is
given along with request for service, the channel per-
forms the specified operation, (possibly) transforming
data arriving on the input endpoint(s) into data leav-
ing on the output endpoint(s). The operation may also
have side-effects (e.g., changing the state of the chan-
nel).
Composition is achieved by connecting the output

from one channel to the input of another channel. How-
ever, it is not sufficient to know that a service’s out-
put type matches another service’s input type. Chan-
nel endpoints need to be in the same location so that
they can be connected. Locations are simply identi-
fiers (names) selected from some namespace (i.e., scope)
meaningful to the network layer service (e.g., ID of a
switch, a port on switch, an AS number, an IP address,
an ISP provider name, a geo-location, etc.). Endpoints
sharing a location are composable, with ChoiceNet pro-

1In some cases a network layer service might be offered for
free and not require any particular consideration.

2



viding the functionality to connect output to input.
Network layer service descriptions are “advertised”

by the network layer service to the marketplace, where
the marketplace is itself a set of marketplace services
that allow applications to browse or search the set of
available services. Like all services, access to market-
place services requires consideration. Given the ability
to discover available services (in the marketplace), one
can implement planning services, which, given a partic-
ular request for service, identify (plan) a composed ser-
vice that will meet the requirement. The planning ser-
vice might then invoke provisioning services that “pur-
chase” the planned set of composed services (i.e., pro-
viding the necessary consideration to each service), or
it might return the plan to the user who would invoke
a provisioning service to “purchase” the composed ser-
vice. This ability to hierarchically compose services en-
ables a variety of different business models including
resellers, aggregators, brokers, etc.

3.3 ChoiceNet Protocol for Network Services

Conceptually, ChoiceNet services are “purchased” in
the economy plane and “used” in the use plane (i.e.,
control and/or data plane). One of the challenges is
to develop suitable protocols that enable both invo-
cation of economy plane services and use plane ser-
vices. For example, communication in the economy
plane is likely to resemble conventional request/reply,
client-server communication. Communication in the
use plane, on the other hand, may take various forms,
such as a client pushing data through a series of trans-
formation services. Thus, it might seem that ChoiceNet
should support two distinct communication protocols:
one for customers purchasing services from providers,
and another for applications using services.
While the economy plane/use plane distinction is con-

ceptually useful, the services that are implemented in
practice often cannot be easily classified as economy
plane or use plane services. A path service, for exam-
ple, may collect information from forwarding services
to construct and sell paths and thus be considered a
marketplace (economy plane) service, but at the same
time be considered a use plane service because it com-
putes and returns a set paths along with the “proof of
purchase” needed to use those paths. In other words, it
both sells forwarding service and computes paths, and
this combination may be necessary to dynamically de-
termine/set prices.
To embrace ChoiceNet’s conceptual distinction be-

tween the economy plane and the use plane, but allow
services to play both roles at the same time, we designed
a ChoiceNet communication protocol that is usable by
services regardless of the plane to which they belong (or
fall between). When communicating in both the econ-
omy plane and the use plane, the sender is requesting

Service Flags
Service Identifier
Service Arguements
Service Consideration
Data/Payload

(a)

Service Flags
Service Identifier
Service Output
Tokens (proof-of-purchase)
Accountability
Data/Payload

(b)

Figure 1: Basic components of a ChoiceNet (a)
Request and (b) Output message.

service from the destination. In the economy plane, the
request is to purchase access to another service. In the
use plane, it is a request to actually perform the ser-
vice. In both cases, the recipient of the request will
not perform the service without proof that it is in its
interest to do so (i.e., payment or proof of payment).
Similarly, in both cases the service may produce output.
In the economy plane, the output might be “proof-of-
purchase” needed to use a service in the use plane. In
the use plane, the output will be the result of executing
the service.
To meet these combined requirements, we designed a

ChoiceNet protocol suitable for both economy and use
planes. Services are invoked with a service request and
may produce an output. Figure 1 shows the general
structure of a request and output.
The request message is similar to a remote proce-

dure call, indicating which service should be invoked
at the server and a list of arguements to be passed to
the server. Unlike remote procedure calls, a ChoiceNet
request also carries consideration. A generic service
flags field carries flags understood by all services (e.g.,
a “price check” flag that allows a customer to learn the
precise cost of performing tasks with a certain set of
parameters). The flags field can also be used to indi-
cate that certain fields will be carried in the payload,
rather than the header; this allows larger values to be
conveyed. Like the request message, the output mes-
sage indicates for which service it is providing results.
The message may also carry the output from the service
(e.g., a list of “proof-of-purchase” tokens for use with a
forwarding service).
To support composability, both the request and re-

sponse message formats can contain multiple requests
or responses, respectively. A current request pointer
indicates the request currently being processed.

3.4 Specifying Service Semantics

Having defined a common message structure for mes-
sages in both the economy and use planes, we ultimately
need to define precisely what goes into each field of the
messages shown in Figure 1. Depending on the target
service, the information exchanged in these messages
may range from simple flags and identifiers (similar to
fields in an IP header) for forwarding services to com-
plex XML structures for services that process packet
payloads. Clearly, the customers and providers must

3



agree on the meaning/semantics of the data carried in
these fields. Much like there exist protocol standards
for the network and transport layers of the current In-
ternet, we expect similar standard will be defined for
use/data plane services in ChoiceNet. However, ser-
vices in the economy plane may rely instead on agreed
upon vocabularies to define the semantics of messages.
To support a variety of different (extensible) vocabu-

laries, we adopted a triple { Attribute Name, Attribute
Value, Vocabulary URL } as the general structure for
information being exchanged in the economy plane. At-
tribute Name identifies the import of the field, and is a
literal that must be interpreted the same way by enti-
ties that exchange messages containing this attribute.
That is, such entities must share a common vocabulary.
A vocabulary, in this context, may be a simple dictio-
nary of literals; the meaning or import of such literals
is embedded in the logic of the entities exchanging the
message. More generally, it is an ontology, where some
of the rules for manipulation of such literals is embedded
in the vocabulary itself. Examples of Attribute Name
values are ChoiceNet Version or Message Type.
Attribute Value is a literal that provides the value of

the attribute named by the Attribute Name. It may
be a number, a string, a list, or it may nest a single,
or multiple, other fields (whose values, in turn, may
nest others). This allows ChoiceNet entities to ignore
entire hierarchies of fields if they are not relevant to
the entity’s current role or interaction. In other words,
an entity may understand the import of a message com-
pletely at the top level, without understanding all of the
detail structure (but being able to pass them on, say,
to another entity). For example, the concept of consid-
eration can simply be represented by an attribute field
with Attribute Value set to Consideration. Its value
can be a nested structure, representing many different
methods of transferring consideration such as mecha-
nisms like PayPal, or previously established contexts
like an account number to charge, or credit mechanisms
like credit card numbers. Similarly, complex concepts
like tokens can be encapsulated in single attribute fields
with internal structure that can vary from use to use.
Finally, Vocabulary URL provides the basis for an ex-

tensible vocabulary, by allowing the sender of the mes-
sage to indicate where the vocabulary being used for
the value of the Attribute Value is available. It may
well be that this vocabulary is the same as that needed
to understand this field’s Attribute Name itself, but the
ability to specify a different vocabulary for any field’s
Attribute Value allows providers of innovative services
to immediately start using existing ChoiceNet market-
places and other mechanisms, and incrementally build
an ecosystem of other entities who understand the new
custom vocabulary.
From the above, it is clear that services that rely

Switch 2

Host 2

Host 1

10Mbps

1Mbps

Controller 2

Controller 1

Switch 4

Switch 1

Switch 3

Data path

Control path

Market Place

Figure 2: SDN-based prototype topology.

on vocabularies must a priori understand all top-level
attribute field Attribute Name values – this represents
the bootstrapping vocabulary, and can be considered
the common core vocabulary. This common core can
be minimal. Further, we reasonably expect that the
core vocabulary will grow over time, as practice makes
it clear what vocabularies are most helpful to the
ChoiceNet user community.

4. PROTOTYPE IMPLEMENTATION

To evaluate the ChoiceNet protocol, we developed
two GENI [5] prototypes. Both prototypes add new
ChoiceNet services to the IP protocol to leverage and
maintain compatibility with existing applications. A
fundamental requirement of ChoiceNet is to support
alternative paths. In particular, ChoiceNet needs
to support per-flow dynamic routing based on the
user/application’s requirements. Legacy static routing
and adaptive routing does not meet these requirements,
so we solved the dynamic routing problem using two
approaches. The first one uses SDN-based pathlets to
compose end-to-end paths, while the second one uses a
set of link-to-link packet forwarding services to compose
end-to-end paths.

4.1 SDN-Based Prototype

Software Defined Networking (SDN) is an approach
that decouples network systems into the control plane
and the data plane [14]. Using SDN, we can allocate
the path for each flow by installing flow entries on the
switches along designated path. This approach allows
providers in ChoiceNet to specific path services to users.
We build a minimal SDN-based prototype of

ChoiceNet on ExoGENI [4] as shown in Figure 2. The
two ASes and the marketplace are in three different
locations. The two links between these two ASes are
throttled to 1Mbps and 10Mbps, respectively, and un-
labeled links are 1Gbps. In our prototype, we use pox2

as the SDN controller, and OpenvSwitch3 as the SDN

2http://www.noxrepo.org/pox/about-pox/
3http://openvswitch.org/

4



Table 1: Example pathlet service.
Attribute Name Attribute Value

Service ID 10.1.0.2 0 10.3.0.2
Service Type NetworkLink1000
Controller ID 192.168.0.15
Controller IP 192.168.0.15
Endpoint 1 ID 10.1.0.2
Endpoint 1 IP 10.1.0.2
Endpoint 2 ID 10.3.0.2
Endpoint 2 IP 10.3.0.2
Service Bandwidth 1Mbps
Service Latency 15 ms
Service Cost 0.001 USD

switch. The SDN protocol is OpenFlow 1.0. The hosts
are running Ubuntu 12.04.

4.1.1 Marketplace Design

In this prototype, the marketplace is a server writ-
ten in Python. It uses Pyro4 to communicate with the
controllers and user apps. The marketplace currently
only offers one type of service—the pathlet service. The
pathlet service is a directional path defined by the loca-
tion of source and destination, which are IP addresses.
An example of pathlet service is shown in Table 1.
The marketplace is responsible for handling users’

service requests and notifying the control plane to do
the provisioning. It also serves as an agent for charg-
ing users and paying the providers. The marketplace
constructs a directional multi-graph from the pathlet
services advertised by the controllers. When the mar-
ketplace receives a service planning request, it takes the
source IP and the destination IP, and starts a modi-
fied Breadth First Search on the graph. The search at-
tempts to find multiple Pareto-optimal solutions using
a branch and bound method as it traverses the network
graph. Finally, the Pareto-optimal subset of paths is
presented to users for selection.
To handle payments, there is a web server co-located

with the marketplace to perform authentication with
PayPal. This server interacts with the marketplace by
sharing its database and exposes a JSON API to user
applications for PayPal payments.

4.1.2 Use Plane Design

The use plane consists of the controllers and the
switches. The controller is an SDN controller with
customized control logic. It detects the topology of
switches with LLDP packets and detects hosts by their
DHCP, ARP, and IP packets. When a new host or a
new link has been detected, the controller update the
new pathlet service to the marketplace, thus the mar-
ketplace knows all the services in all ASes. Another task
of the controller is provisioning: once a provisioning re-
quest is received, the controller installs flow entries on

4http://pythonhosted.org/Pyro4/

Figure 3: ChoiceNet interactions on end-system.

the switches along the designated path.

4.1.3 User App Design

To enable the user to make choices, a program
(ChoiceNet app) needs to be deployed on the user’s sys-
tem. The function of this app is shown in Figure 3. It
uses NetFilter Queue 5 to intercept the initial packet
of each connection (except the connections that goes to
the marketplace). The app then contacts the market-
place, asking for a path service to the destination IP.
After the marketplace returns a list of available service
combinations, the app prompts the user to select one
service. After the selection, the user is be redirected to
a PayPal payment page. After receiving the payment
notification from PayPal, the marketplace transfers the
money to the account of the controller(s) and notifies
the latter to provision the services. After the provision-
ing, the app releases the intercepted packet and traffic
will traverse along the assigned path.
It may be impractical for the user to select and pay

for each network connection. Instead, network services
can be made more granular (e.g., encompassing all con-
nections to a video service provider for a week) and
preferences can be specified in the ChoiceNet app to
automate the service payment process.

4.2 A Packet Forwarding Service

Our second prototype introduced a per-node packet
forwarding service (PFS) to support user-selected end-
to-end paths. The topology is similar to that of Fig-
ure 2, except that SDN switches were replaced with
programmable Click [13] routers, each programmed to
offer a PFS that advertises the ability to relay pack-
ets between every possible ingress-to-egress combina-
tion of links attached to the router. Each adver-
tisement includes information about the most recent
performance (latency and bandwidth) of the links so
users/applications can select the path that best meets
their needs. We used IPv6 extension headers to en-
code the series of forwarding services a packet should
traverse end-to-end—similar to carrying a source route
5
http://www.netfilter.org/projects/libnetfilter_queue/

5



in the packet, but with the addition of the ChoiceNet
header components (notably consideration).
The PFS’s on the Click routers understand IPv6 ex-

tension headers and use the next forwarding specifica-
tion (i.e., the next ingress/egress pair) in the packet to
determine the outgoing link. Prior to forwarding the
packet, the forwarding service verifies, via the consid-
eration, that forwarding has been paid for in the econ-
omy plane. Because this check is performed on every
packet, it must be efficient. Consequently, we used dele-
gated capabilities similar to those used in Platypus [15],
which simply involves a cryptographic comparison (i.e.,
HMAC operation) as opposed to a complex transfer of
consideration in the use plane.

4.2.1 The Marketplace

To help find appropriate end-to-end paths, we de-
veloped a path service that applications can contact to
request paths that satisfy their requirements. The path
service registers itself with a marketplace listing ser-
vice where users/applications can go to learn about,
and purchase access to, the path service. Having pur-
chased the ability to use the path service (i.e., sending
it the appropriate consideration), the sender’s machine
is given a token (proof-of-purchase) that is used as con-
sideration when contacting the path service.
To allow legacy applications to select paths, we de-

veloped a “wrapper library” that is loaded at runtime
along with an application (via the LD PRELOAD en-
vironment variable in Unix) to intercept all networking
calls made to the OS such as socket(), bind(), connect(),
send(), recv(), etc. The wrapper library uses the pre-
viously acquired token to request a set of paths from
the path service. The path service then returns a set of
“paths” (i.e., a series of packet forwarding services) to
the wrapper library along with the consideration (del-
egated capabilities) needed to use the forwarding ser-
vices. The set of paths that are returned also include
information about the performance of the path that can
be used by the wrapper library to select the most ap-
propriate path. To determine which path is the most
appropriate, the wrapper library consults a local pol-
icy file that contains a policy entry for each wrapped
applications (e.g., “ssh: low latency” or “scp: high
bandwidth”). The wrapper selects the best path and
includes it in the IPv6 extension headers for packets
originating from the application.
To compute the best routes, the path service collects

the routing advertisements issued periodically by the
packet forwarding services. A single service collecting
performance information and computing paths may not
appear to scale well, but our recent analysis of current
Internet paths shows that the processing can be easily
parallelized to produce a scalable service [2]. To enable
efficient consideration checking in the use plane, the

Table 2: Breakdown of Connection Setup Times.
Task SDN PFS

Resolve DNS name to IP address 1.46 ms 1.46 ms
Contact marketplace/path service 17.93 ms 0.25 ms
Plan (SDN only) and select paths 24.59 ms 0.00 ms
Provision the path 44.67 ms 0.00 ms
Total connection setup time 88.65 ms 1.71 ms

path service periodically “purchases” the right to use
the forwarding services by providing consideration to
the forwarding service and in return receives a (time-
limited) delegated capability that it can further delegate
to customers of the path service.

4.3 Performance Results

Although the ChoiceNet marketplace enables choice,
it also introduces additional overhead when originating
a flow. To quantify the additional overhead, we measure
the average time it takes to perform each step of setting
up a flow (see Table 2).
Note that planning (path computation) and pur-

chasing overhead is included in the cost of accessing
the path service for PFS, while planning and pur-
chasing is performed by the ChoiceNet client machine
for SDN (note: our results here assume the choice is
made programatically—not by a human). The two
approaches represent different business models. PFS
precomputes paths (in parallel) and repeatedly pre-
purchases paths for short periods of time so most paths
queries can be answered immediately. The SDN ser-
vice, on the other hand, includes the application in this
planning/selection process giving the user/application
greater control of what is purchased/used, but also in-
creasing the setup overhead. The provisioning step for
SDN also increases delay, but packets flow through the
use plane without any added overhead. The PFS has
no provisioning costs, but requires a consideration check
(an HMAC operation, which takes on average 11 usecs
on a Xen Click router) at every router along the path.
Also note that when compared with the time to do the
DNS lookup (which IP already requires), consulting the
path service adds relatively little to the overall connec-
tion setup time.

5. SUMMARY AND CONCLUSIONS

Economic relationships between entities in the net-
work are a critical driver for operation of the Internet.
In this paper, we have presented the design of a pro-
tocol that can associate economic contracts with net-
work layer services. We have shown that this general
approach can be instantiated in two fundamentally dif-
ferent prototypes, one using out-of-band signaling and
one using in-band signaling. We have presented results
from implementations on GENI to illustrate the effec-
tiveness of our protocol design.

6



6. REFERENCES
[1] Bitcoin. https://bitcoin.org/.
[2] Ascigil, O., Calvert, K. L., and Griffioen, J. N. On

the scalability of interdomain path computations. In IFIP
Networking 2014 (June 2014).

[3] Babaoglu, A. C., and Dutta, R. A verification service
architecture for the future internet. In Proc. of the 22nd
IEEE International Conference on Computer
Communications and Networks (ICCCN) (Nassau,
Bahamas, Aug. 2013).

[4] Baldine, I., Xin, Y., Mandal, A., Ruth, P., Heerman,

C., and Chase, J. Exogeni: A multi-domain
infrastructure-as-a-service testbed. In Testbeds and
Research Infrastructure. Development of Networks and
Communities. Springer, 2012, pp. 97–113.

[5] Berman, M., Chase, J. S., Landweber, L., Nakao, A.,

Ott, M., Raychaudhuri, D., Ricci, R., and Seskar, I.

Geni: A federated testbed for innovative network
experiments. Computer Networks (2014).

[6] Calvert, K. L., and Zegura, E. W. Composable active
network elements.
http://www.cc.gatech.edu/projects/canes/.

[7] Clark, D. D., Wroclawski, J., Sollins, K. R., and

Braden, R. Tussle in cyberspace: defining tomorrow’s
Internet. SIGCOMM Computer Communication Review
32, 4 (Oct. 2002), 347–356.

[8] Diot, C., Levine, B. N., Lyles, B., Kassem, H., and

Balensiefen, D. Deployment issues for the IP multicast
service and architecture. IEEE Network 14, 1 (Jan. 2000),
78–88.

[9] Dwaraki, A., and Wolf, T. Service instantiation in an
Internet with choices. In Proc. of the 22nd IEEE
International Conference on Computer Communications
and Networks (ICCCN) (Nassau, Bahamas, Aug. 2013).

[10] Godfrey, P. B., Ganichev, I., Shenker, S., and Stoica,

I. Pathlet routing. In Proc. of the ACM SIGCOMM
Conference on Data Communication (Barcelona, Spain,
Aug. 2009), pp. 111–122.

[11] Huang, X., Shanbhag, S., and Wolf, T. Automated
service composition and routing in networks with data-path
services. In Proceedings of the IEEE ICCCN 2010
Conference (2010).

[12] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass,

M. F., Briggs, N. H., and Braynard, R. L. Networking
named content. In Proceedings of the 5th international
conference on Emerging networking experiments and
technologies (CoNEXT) (Rome, Italy, Dec. 2009), pp. 1–12.

[13] Kohler, E., Morris, R., Chen, B., Jannotti, J., and

Kaashoek, M. F. The Click modular router. ACM
Transactions on Computer Systems 18, 3 (Aug. 2000),
263–297.

[14] Open Networking Foundation. Software-Defined
Networking: The New Norm for Networks. White paper,
Open Networking Foundation, Palo Alto, CA, USA, Apr.
2012.

[15] Raghavan, B., Verkaik, P., and Snoeren, A. C. Secure
and policy-compliant source routing. IEEE/ACM Trans.
Netw. 17, 3 (2009), 764–777.

[16] Wolf, T., Griffioen, J., Calvert, K. L., Dutta, R.,

Rouskas, G. N., Baldine, I., and Nagurney, A. Choice
as a principle in network architecture. In Proc. of ACM
Annual Conference of the Special Interest Group on Data
Communication (SIGCOMM) (Helsinki, Finland, Aug.
2012), pp. 105–106. (Poster).

[17] Wolf, T., Griffioen, J., Calvert, K. L., Dutta, R.,

Rouskas, G. N., Baldine, I., and Nagurney, A.

ChoiceNet: toward an economy plane for the Internet.
ACM SIGCOMM Computer Communication Review 44, 3
(July 2014).

7


