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ABSTRACT
Advances in the development of large scale distributed com-
puting systems such as Grids and Computing Clouds have
intensified the need for developing scheduling algorithms ca-
pable of allocating multiple resources simultaneously. In
principle, the required resources may be allocated by se-
quentially scheduling each resource individually. However,
such a solution can be computationally expensive, hence in-
appropriate for time-sensitive applications, and may lead to
deadlocks. In this work we present an efficient online algo-
rithm for co-allocating resources that also provides support
for advance reservations. The algorithm utilizes data struc-
tures specifically designed to organize the temporal avail-
ability of resources, and implements co-allocation through
efficient range searches that identify all available resources
simultaneously. We use simulations driven by real work-
loads to show that the co-allocation algorithm scales to sys-
tems with large numbers of users and resources, and we
perform an in-depth comparative analysis against existing
batch scheduling mechanisms. Our findings indicate that the
online scheduling algorithms may achieve higher utilization
while providing smaller delays and better QoS guarantees
without adding much complexity.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Design, Performance

Keywords
resource co-allocation, scheduling, advance reservation

1. INTRODUCTION
The development of large scale distributed computing sys-

tems such as Grids and Computing Clouds has experienced
enormous growth in recent years. Furthermore, technologi-
cal advances in virtualization and new programming paradigms
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such as MapReduce [11] have catalyzed the adoption of such
systems as the de facto infrastructure for computing service
provisioning in academia and corporate R&D environments.
At the same time, we are witnessing the emergence of a
wide range of applications that capitalize on the availabil-
ity of distributed computing to perform complex tasks with
strong temporal and spatial requirements. For instance,
several scientific workflow applications [23, 13, 26] involve
the orchestration of multiple computation and data trans-
fer stages. These stages normally have strong dependency
on completion times; thus the ability to co-schedule and
synchronize resource usage becomes crucial. Within this
group, an emerging class of deadline-driven scientific appli-
cations such as severe weather modeling [31] require simul-
taneous access to multiple resources and predictable com-
pletion times.

More recently, MapReduce [11] has been introduced and
widely adopted within the Cloud Computing community as
a programming framework for massively parallel jobs. This
new paradigm harnesses the aggregation of computing power
across networks to process large amount of unstructured
data in time scales never envisioned before. To this end, the
MapReduce middleware (e.g., Hadoop [28]) allocates mul-
tiple compute nodes to run multiple instances of a set of
functions defined by the user. Consequently, the ability to
allocate efficiently multiple resources from a large pool is
crucial for this paradigm to achieve its full potential. The
importance of such applications has been recognized by re-
search, industry and government communities through the
support of several initiatives, including several that focus on
developing infrastructures that enable sharing of resources
across research and academic institutions [29, 14, 4], as well
as an industry-academia partnership [1] aiming to prepare
the next generation of computer scientists to program at an
Internet-scale using the MapReduce paradigm.

The design and development of scheduling techniques for
co-allocating multiple resources plays a crucial role in the
full realization of these initiatives and it is the main focus
of this work. Much of the work done in co-allocation of
resources in the Grid community has focused on the admin-
istrative aspects resulting from having resources distributed
across multiple sites (domains). Under this assumption ad-
ditional infrastructure and architectural solutions are cru-
cial [36]. In our work we aim at developing generic schedul-
ing algorithms that can be applied to distributed environ-
ments with different characteristics. Note that in principle,
the simultaneous allocation of computing resources can be
achieved sequentially, i.e, considering the request for each
resource as an atomic transaction. Nevertheless, such a so-
lution can be computational expensive and incurs in delays,
and hence inappropriate for time sensitive applications [10].
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In one of the preliminary works in this area [10] authors pre-
sented DUROC, a generic resource management framework
to support co-allocation of resources in multi-site Grids.
The main focus of this work was to develop mechanisms
to handle the monitoring, control and configuration of dis-
tributed resources. The mechanisms presented as part of
this framework were investigated by means of simulation
in [5] under the assumptions that jobs have a (starting)
deadline. Although we do not focus on providing deadline
support for co-allocation of resources, our work can be eas-
ily extended to support deadlines as explained later in Sec-
tion 5.2. In [36] a set of adaptive selection strategies are
introduced to co-allocate resources. In this study authors
utilize a batch scheduler with backfilling support to sched-
ule incoming jobs. As explained later in this section, batch
scheduling techniques typically implement first-come-first-
serve (FCFS) policies and are difficult to extend to support
advance reservations. Pure FCFS policies lead to high frag-
mentation of resource, low utilization of resources and lim-
ited scheduling flexibility [17]. An heuristic based on the
well known list scheduling heuristic HEFT has been pro-
posed in [12] to co-allocate resources for Grid workflows.
Since HEFT is a list scheduling technique each resource re-
quest is treated atomically and hence its running time is
linear to the number of slots available in the system. In our
work we consider large-scale distributed systems; therefore,
scalability is a key parameter in the design of our algorithm.

One problem that shares much similarities with the co-
allocation problem in Grids is scheduling in parallel com-
puting [18, 19] since it also involves the allocation of mul-
tiple processors to execute a given job. As a consequence
the problem of co-allocating computing nodes in large scale
distributed environments is often tackled using techniques
similar to the ones applied to parallel job scheduling–relying
on batch schedulers to scheduling incoming jobs–. In fact,
most resource managers in existing Grid infrastructures in-
teract with batch schedulers such as LSF [30] and Maui [7]
(via Torque [27]). Furthermore, Hadoop-on-demand [28] has
also followed this approach by adopting Torque [27] and its
batch scheduler Maui [7] to allocate computing nodes for
MapReduce jobs. The framework has also been extended
to use the batch scheduler Condor [2]. Much work has
been done in parallel computing [18, 19]. Existing parallel
scheduling mechanisms can be classified as resource-driven
or job-driven. Batch schedulers [25, 34, 35, 24] fall into the
resource-driven category since incoming jobs are queued as
they arrive in a first-come, first-serve fashion and considered
for scheduling whenever resources become available. With
additional functionality (e.g., backfilling, priority queues)
the scheduler can leverage knowledge about jobs currently
executing (e.g., their completion times) to make schedul-
ing decisions that optimize for system utilization or user’s
priority. Similarly, in [17] the author investigated the perfor-
mance impact of multiple packing schemes in gang schedul-
ing. Slots are considered serially, however and hence, the
duration of the algorithm can be significantly long in large
distributed environments. Online schedulers [22, 21], on the
other hand, fall into the job-driven category as new jobs are
scheduled to resources as soon as they arrive into the sys-
tem. The algorithm we present in this paper attempts to
combine the best of both worlds: it schedules incoming jobs
as soon as they arrive (providing users with time guarantees
and finer control of their applications) and keeps a look-
ahead until the horizon of the schedule (allowing for better
scheduling decisions).

We also believe that advance reservations, i.e., the ability
to allocate resources in advance, is one mechanism that can

be used to address the lack of QoS support in batch sched-
ulers; furthermore, such a feature also enables support for
workflow applications – key applications for automation of
computing distributed infrastructure. Nevertheless, design-
ing scheduling algorithms that support advance reservations
in Grid environments has proven difficult, with scalability
being the main challenge faced in their design. More specif-
ically, as systems increase in size and complexity it becomes
harder to organize and maintain efficiently the large number
of reservations. We refer the reader to [8, 32, 9, 20, 15] for
some of the most recent and relevant work in this field.

In this work we present an online co-allocation algorithm
that is effective in co-allocating resources while providing
support for advance reservations and temporal range search;
the latter feature allows users to easily retrieve all the re-
sources available within a specified time window. The nov-
elty of our approach lies in organizing the resource avail-
ability in a data structure consisting of specially designed
2-dimensional trees, in a manner that allows a single search
operation to identify all required resources efficiently. The
rest of the paper is organized as follows. In Section 2 we de-
scribe the online scheduling problem we study in this work.
A set of applications suitable for the problem in consider-
ation are presented in Section 3. In Section 4 we provide
additional details on the implementation of the scheduling
algorithm and of the data structure related to managing the
temporal availability of resources. In Section 5 we present
simulation results to evaluate the various strategies in terms
of several performance metrics, and we conclude the paper
in Section 6.

2. PROBLEM DESCRIPTION
Consider a scheduler S for a computing system with N

servers that may be geographically distributed in a network.
A user with a job requiring service submits a request r to
S. The request is characterized by a four-parameter tuple
(qr, sr, lr, nr), where:

• qr is the request time, i.e., the time the request is sub-
mitted by the user;

• sr ≥ qr is the earliest time the job can start execu-
tion, with sr > qr permitted if and only if the system
supports advance reservations;

• lr is the temporal size of the reservation, i.e., the esti-
mated duration of the job; and

• nr is the spatial size of the reservation, i.e., the number
of servers required for the given job.

We assume that S maintains a schedule that records, for
each of the N servers, the time periods in the future during
which the server is reserved for requests that have already
been accepted by the system. In essence, this schedule repre-
sents the set of commitments that the system has made, and
in the absence of preemptive actions (as we assume here),
it guarantees that server resources will be available to the
accepted jobs at specific future times. We let H denote the
time horizon of the system, denoting how far in the future
the system may schedule resources. The value of H depends
on the type of applications that the system supports, and
may be in the order of weeks or months. Note that the a
priori knowledge of the temporal size of a job is a common
practice in most current Grid like environments. The accu-
racy of this parameter has been widely investigated in the
past and is out of the scope of this paper.

Figure 1 shows an example schedule for a 4-server system
with a horizon of H = 42 time units. The schedule shows
that at the current time (i.e., time t = 0 in the figure), there
are two jobs scheduled for server 1: job A which is currently
in service and will end at time t = 4 and job B which has
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reserved the server from time t = 25 to t = 34; similarly, two
jobs have been scheduled for server 2, server 3 and server 4,
respectively.
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Figure 1: Sample schedule for a 4-server system with
co-allocations and advance reservations

When a service request r = (qr, sr, lr, nr) for a new job ar-
rives, S immediately runs an algorithm to determine whether
it is feasible to schedule the job starting at time t = sr. If
so, S selects a set of nr servers that can handle this job, up-
dates its schedule, and returns a reference to the nr servers
to the user. If, on the other hand, sufficient resources are
not available starting at time t = sr, the system makes an
attempt to reserve resources for this request at a time t > sr.
To this end, the scheduler runs the same algorithm to de-
termine whether it is feasible to schedule the job starting
at time t = sr + ∆t, where ∆t is a configurable parame-
ter. The scheduler repeats this process by incrementing the
previous starting time by ∆t time units until either a fea-
sible starting time is found, or a maximum number Rmax

of scheduling attempts has been reached, whichever occurs
first. The quantity Rmax is also a configurable parameter,
and is such that Rmax∆t is an upper bound on the delay
that applications may tolerate.

The scheduling decision influences the performance per-
ceived by users as reflected by (1) the fraction of jobs ac-
cepted by the system, and (2) the turnaround time of the
jobs (which includes any delays in their starting time intro-
duced by the operation of the scheduler described above).
It also impacts the overall system utilization, which is a
measure of how well the overall capacity of the system is
being used. The challenge, therefore, is to develop efficient
co-allocation algorithms that minimize the fraction of de-
layed jobs, maximize utilization, and allocate resources fairly
among users.

3. APPLICATIONS
Resource co-allocation is of interest to many applications.

In this section, we discuss two applications within the con-
text of distributed computing systems. These applications
are being introduced in real working environments but their
wider deployment and ultimate success depends critically on
the existence of efficient co-allocation mechanisms.

3.1 The Virtual Computing Laboratory (VCL)
Computing over the Internet is becoming increasingly pop-

ular. Due to emerging infrastructures such as Grids and
Computing Clouds, it is possible to develop applications that
support various Internet-wide collaborations by seamlessly
harnessing appropriate resources. The virtual computing
laboratory (VCL) [4], an initiative established at North Car-
olina State University, aims to provide all K-20 institutions
across the state of North Carolina with access to a wide array
of distributed, high performance computing and network-
ing resources, in support of research and education. Given

the large number of resources and users to be accommo-
dated, scalable management and provisioning of resources
has emerged as a major challenge for this project.

The VCL infrastructure is designed to provide a suite of
distributed applications to the state’s educational institu-
tions. Two applications directly related to our work in-
clude desktop virtualization and high performance comput-
ing (HPC), both of which require efficient tools for auto-
mated reservation and scheduling of resources. Desktop
virtualization consists of dispatching virtual desktops, cus-
tomized to a set of specific requirements, for in-class and
laboratory instruction. This initiative provides schools with
access to cutting-edge technology that can be leveraged to
support advance educational techniques (e.g., learn by play-
ing, virtual environments) and that would otherwise be im-
possible for individual schools to afford or deploy. The sec-
ond major application of VCL, namely the provisioning of
HPC resources for large-scale jobs, targets more sophisti-
cated and demanding users such as graduate students, sci-
entists and faculty who rely on computationally intensive
experiments to carry out their research.

In both applications, users submit requests to obtain ex-
clusive use of multiple resources over a specific time win-
dow based on class schedules and/or job-specific deadlines.
The resource manager then runs an algorithm to determine
the availability of the resources and informs the user. If
the request is granted, the manager sends the authentica-
tion information required for the user to gain access to the
resources. Otherwise, it suggests alternative times at which
the resources are available. The algorithm we develop in this
work supports both on-demand requests (appropriate for
workloads with best-effort requirements) and advance reser-
vations requests (appropriate for guaranteeing the availabil-
ity of resources at specific future times, e.g., during class
hours). Therefore, it is suitable for the VCL and similar
environments that are characterized by mixed workloads.

3.2 Lambda Scheduling for Grid Applications
Current research practices tend towards collaboration among

institutions across countries that require high bandwidth
connections to use multiple network-connected resources.
This need has been recognized by the government and sev-
eral initiatives have been funded and established to promote
such collaboration [14]. The realization of this vision de-
pends on (1) the deployment of infrastructure that provides
automated and rapid establishment of lambdas across ad-
ministrative domains, and (2) the development of scheduling
mechanisms that allow researchers to request and manage
network resources on demand.

Critical to this vision is the scheduling of link wavelengths
within each administrative domain along an end-to-end net-
work path. One proposal that has gained popularity is the
deployment of a path computation element (PCE) [16, 6]
as a (semi-)centralized entity to handle the scheduling of
link wavelength resources. This scheduling problem can be
informally expressed as follows: Given a request consisting
of a source-destination node pair, a range of wavelengths,
a time window, and the estimated length of the connection,
find a path and associated wavelength (or wavelengths, if
wavelength conversion is available) from the source to the
destination nodes to satisfy the request.

Since the wavelengths(s) on all links of the path must be
allocated and de-allocated simultaneously, this problem falls
in the class of resource co-allocation problems.
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4. RESOURCE CO-ALLOCATION
ALGORITHM

The algorithm we describe in this section has three im-
portant features of value to applications similar to the ones
we described above. First, its low complexity enables the
resource manager to provide short response times, which
in turn improves the overall efficiency of the system. Sec-
ond, the operation of the algorithm is based on performing
a range search for identifying the available resources. The
range search returns all the resources available within the
specified time window. Third, it supports advance reserva-
tions and can be easily extended to support deadlines. As
a result, users may use sophisticated post-processing tech-
niques to optimize the selection of resources based on their
requirements or other criteria. For instance, a Grid applica-
tion may run customized routing algorithms to select among
the available paths and wavelengths based on cost, data rate,
or other considerations.

In the rest of this section, we first describe the data struc-
ture used to maintain and update the availability of re-
sources, and we then describe the range search algorithm
and analyze its complexity.

4.1 Data Structure for Temporal
Resource Availability

We define an idle period as a time period during which a
server is idle and hence available for service. Our objective
is to organize the idle periods in a way that enables efficient
search and update operations. To this end, we partition the
temporal space into a set of Q slots of size τ , where Q = dH

τ
e

and H is the time horizon of the system. Quantity τ is taken
as the unit of time. Without loss of generality, we assume
that τ is equal to the minimum temporal size of reservation
requests. (Note that jobs of size smaller than τ may be
packed together and submitted through a single request of
size at least equal to τ .) The significance of imposing a
minimum temporal size is discussed shortly.

The temporal availability of servers (i.e., the collection of
the corresponding idle times) is organized in a data structure
that consists of Q 2-dimensional trees Tq, q = 1, . . . , Q, one
for each slot within the time horizon H. We let T s

q and T e
q

denote the tree corresponding to the first and second dimen-
sion, respectively, of tree Tq. Tree T s

q stores in its leaf nodes
all the idle periods that span slot q in descending order of
their starting time. Specifically, the leaf node corresponding
to idle period i records the following information for i:

• its starting time sti;

• its ending time eti; and

• an identifier idi that is used to identify the server on
which this idle period occurs.

On the other hand, each internal node u of tree T s
q stores

the following information:

• the median starting time of the idle periods stored in
the subtree of T s

q rooted at u;

• the size of the subtree rooted at u; and

• a pointer to a secondary binary search tree T e
q (u).

Trees T e
q (u), where u is an internal node of tree T s

q , cor-
respond to the second dimension of the 2-dimensional tree
structure. The leaf nodes of T e

q (u) store the idle periods
in u’s subtree of the primary tree T s

q , in ascending order of
their ending time. Each internal node v of tree T e

q (u) records
the following information:

• the median ending time of the idle periods stored in
the subtree te

q(u) rooted at v; and

• the size of the subtree rooted at v.

Figure 2 provides an example to illustrate these concepts.
Figure 2(a) shows the idle periods, denoted by X, Y, Z, and
V , of the 4-server system shown in Figure 1, and a slot size
τ = 10. For instance, idle period X has starting time stX =
4, ending time etX = 25, and corresponds to server idX = 1.
Figure 2(b) shows the 2-dimensional tree for slot q = 2 that
corresponds to the time interval [10,20]. Since all four idle
periods overlap (at least partially) with this slot, the primary
tree T s

2 stores all four in its leaves in decreasing order of their
starting times. Since the median of the starting times of
these idle periods is 7, this is the value stored in the root A
of the tree. The secondary tree T e

2 (A) corresponding to the
root A of the primary tree also stores all four idle periods in
its leaf nodes, but in increasing order of their ending times.
The median (=25) of the four ending times is stored in the
root of this tree. Similarly for the secondary tree T e

2 (B)
corresponding to node B of the primary tree (the secondary
tree Te

2(C) corresponding to node C of the primary tree is
not shown in the figure).

Note that in this data structure, an idle period is stored
in the trees of all slots with which it overlaps; for instance,
idle period V in Figure 2 appears in the trees for slots q = 1
and q = 2. Furthermore, if the slot length τ is equal to the
minimum spatial job size, then the number of idle periods
stored in each tree is bounded to the number of servers in
the system N , i.e., each tree will include at most one idle
period per server.

Finally, we note that as the time advances, the tree cor-
responding to the just expired time slot is discarded, and
a new tree is created (initialized) for the new slot at the
end of the system’s time horizon; as a result, the system
always maintains Q trees, with each tree containing at most
N idle periods. These discard and initialization operations
are repeated every τ time units and take O(1) time.

4.2 Online Scheduling Algorithm
We now present the online scheduling algorithm by de-

scribing how it handles a reservation request r = (qr, sr, lr, nr),
where the four parameters were defined in Section 2; we also
denote the ending time of r as er = sr + lr. Given this re-
quest, the algorithm needs to find nr feasible idle periods
for the corresponding job. An idle period i = (sti, eti) is
feasible for request r if and only if sti ≤ sr and eti ≥ er.
On the other hand, we will refer to an idle period i that
meets only the first condition of feasibility (i.e., sti ≤ sr) as
a candidate idle period.

Let q be the slot within which the starting time sr of the
request lies, and T s

q the primary tree containing all the idle
periods overlapping with this slot. To find nr feasible idle
periods, the algorithm proceeds in two phases as follows.
Phase 1. The algorithm first searches tree T s

q to locate
every candidate idle periods in slot q. To this end, the al-
gorithm starts at the root of the tree and follows the left
or right subtree based on the value of sr. Specifically, if
the median starting time at the current node is greater than
sr, the algorithm ignores the left subtree and continues to
search recursively the right subtree. This is because all the
idle periods contained in the left subtree have starting times
that are larger than sr, hence they are not candidates for
this request. If, on the other hand, the median starting time
at the node is smaller than sr, the algorithm marks the right
subtree and continues to search in the left subtree in a re-
cursive fashion. Note that, in this case, all the idle periods
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Figure 2: (a) Idle periods X, Y, Z and V in a 4-server system, and (b) 2-dimensional tree containing the idle
periods in slot q = 2 corresponding to the time interval [10,20]; the secondary tree corresponding to node C
is not shown

contained in the right subtree start earlier than sr, there-
fore they are all candidates. The algorithm stops when it
reaches a leaf node; if the idle period stored in this leaf is a
candidate, it is also marked.

At each step of the tree search, the algorithm keeps track
of the number of candidate idle periods by adding up the
sizes of all marked subtrees (recall that each internal tree
node stores the size of its subtree). If at the end of this
phase the algorithm has found at least nr candidate idle
periods, it proceeds to the next phase. Otherwise, it can
be concluded that no sufficient resources exist for the job
to start at time sr. Rather than rejecting the request, our
approach in this case is to repeat Phase 1 for a modified
request with starting time sr +∆t in an attempt to schedule
the job after a delay of ∆t units. The value of ∆t may be
tuned by the administrator so as to optimize system and ap-
plication performance. For instance, applications with tight
delay requirements may request the scheduler to be aggres-
sive in scheduling their workloads, i.e., use small values of
∆t. Nevertheless, the algorithm may take longer to find a
schedule. The algorithm repeats Phase 1 a maximum of
Rmax times, each time increasing the starting time of the
request by ∆t.

Let us return to the example presented in Figure 2, and
consider a request r = (qr = 17, sr = 17, lr = 12, nr = 2).
The algorithm searches the tree T s

2 in Figure 2(b) starting
at the root A. Since the median starting time value stored
in A (=7) is smaller than sr, the right subtree containing the
candidate idle periods X and V is marked. The algorithm
continues its search in the left subtree rooted at node B,
marks the tree containing candidate idle period Z, and stops
when it reaches the leaf containing idle period Y (which is
also a candidate idle period and hence is marked as well).
Since the algorithm has found 4 > nr = 2 candidate idle
periods, it proceeds to Phase 2.
Phase 2. Having found a set of at least nr candidate idle
periods in Phase 1, the algorithm next searches for those idle
periods i in the set that also meet the condition eti ≥ er

and are thus feasible for the given request r. To do this,
the algorithm searches the secondary trees T e

q (u) associated
with the nodes (subtrees) u of the primary tree T s

q marked
in Phase 1; these subtrees are searched in reverse order in
which they were marked.

The search algorithm for tree T e
q (u) proceeds as follows.

Starting at the root, if the median ending time stored there
is larger than er then the right subtree is marked and the

search continues recursively in the left subtree; in this case,
all candidate idle periods in the right subtree are also feasi-
ble. If the median ending time is smaller than er, the algo-
rithm ignores the left subtree (since all idle periods contained
therein are not feasible) and proceeds to search recursively in
the right subtree. The algorithm stops whenever it reaches
a leaf node or whenever it has identified at least nr feasible
idle periods, whichever happens first. If nr feasible idle pe-
riods are found, an in-order traversal of the subtrees marked
in this phase is invoked to retrieve the feasible idle periods.
Otherwise, the search fails; in this case, if the maximum
number Rmax of scheduling attempts has not been reached,
the algorithm continues from Phase after incrementing the
starting time of the request by ∆t time units.

Returning to the example in Figure 2 with request r =
(qr = 17, sr = 17, lr = 12, nr = 2), recall that the search of
the primary tree marked the subtrees rooted at A, Z, and
Y , in this order (the latter two nodes are leaves). Hence, in
Phase 2, the algorithm searches node Y first, and confirms
that it is a feasible idle period; it then repeats the process
with node Z, which also corresponds to a feasible idle pe-
riod. At this point, the algorithm has found nr = 2 feasible
periods and returns them.

For each feasible idle period allocated to a new job, the
algorithm needs to update the data structure so as to: (1)
remove the idle period from the trees of all slots it overlaps;
and (2) add any new idle period created. Note that if an
idle period i = (sti, eti) is allocated to a request r with
starting and ending times sr and er, respectively, at most
two new idle periods will be created: j = (sti, sr) and k =
(er, eti). Inserting or removing an idle period takes time that
is logarithmic in the size of the corresponding tree, and this
size is bounded by the number N of servers. Note also that
this update process may be implemented in the background
to minimize its impact on the performance of the scheduler.
Range Searches. As we mentioned earlier, this algorithm
makes it possible to perform a range search for resources.
This is a desirable feature as it permits users to strategically
select resources that optimize their applications and/or meet
specific preferences. For example, a user that is interested in
reserving resources within a time window [ta, tb] may submit
a request such that sr = ta, lr = (tb − ta) and nr ≥ 1. The
scheduler runs a simplified version of the algorithm and re-
turns the set of resources available (if any) in this window,
without updating the tree data structures. The user may
then run an application-specific algorithm to select a subset
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of these resources that optimize some aspect of the appli-
cation, and contact the scheduler to commit the resources
resulting from this selection. Due to space constraints we
do not investigate this feature of the scheduling algorithm
in this paper.

4.3 Algorithm Complexity
Each invocation of Phase 1 of the algorithm takes time at

most O(log N) since the binary search tree T s
q may contain

at most N idle periods, one for each server. In this phase,
the algorithm marks at most log N subtrees to be searched
in Phase 2. Searching each of the log N secondary trees
in Phase 2 takes time O(log N); hence, in the worst case,
the search in Phase 2 takes time O((log N)2). Assuming
that the algorithm finds nr feasible idle periods, it invokes
an in-order traversal to retrieve them in time O(nr). In
addition, the algorithm needs to update each of the trees
containing the nr feasible idle periods that are now allocated
to the current job. This update operation takes O(nr×Q×
(log N)2) time, and takes place only when the scheduling
attempt is successful. Therefore, the overall complexity of
the algorithm for a successful scheduling attempt is O(nr ×
Q × (log N)2). Note that the algorithm may make up to
Rmax unsuccessful scheduling attempts, each of which takes
O((log N)2) time in the worst case.

5. PERFORMANCE EVALUATION
We use simulation experiments to evaluate the perfor-

mance of the co-allocation algorithm we described in the
previous section and to compare it to batch scheduling algo-
rithms that are typically used to allocate resources in Cloud
and Grid computing systems. To this end, we use three real
workloads, obtained from the parallel workload archive [3],
to drive the simulations. Table 1 summarizes the pertinent
features of the three workloads; these are representative of
medium-size Grid systems in use today, have been fully san-
itized, and have been used in numerous research studies [3].

All three systems shown in Table 1 implement some vari-
ant of a batch scheduler where jobs are placed into one or
multiple queues waiting for resources to become available be-
fore execution. Each log entry in the traces corresponds to
a single job and contains information about the job such as
starting time, expected running time, submission time, end-
ing time, number of processors, user id, computer id, and
waiting time. Recall that in our model a request r is rep-
resented by the four-parameter tuple (qr, sr, lr, nr). There-
fore, for the purpose of this study we extracted the same
four parameters from each log entry. We note that events
such as servers going down for maintenance are difficult to
infer from the workload traces. Nevertheless, we feel that
such events have little impact on the results overall due to
the variety of workloads and their large size. We also set
the maximum number of scheduling attempts Rmax = Q/2,
i.e., equal to one-half the number of slots in the time hori-
zon, and the increment by which the starting time of a job
increases in subsequent scheduling attempts to ∆t = 15 min-
utes. The value of ∆t may impact the overall performance of
the system and therefore should be tuned as we mentioned
earlier. Its value in our experiments was set empirically, i.e.,
no major gain was found for smaller values of ∆t.

In our study we use three performance metrics:

• Waiting time, Wr, is a measure of the QoS perceived
by the user, and refers to the time between the earliest
time the job can start execution (= sj) and the actual
time it starts execution under a given scheduler.

• Temporal penalty, P l
r, is a measure of the fairness ex-

perienced by the user and is defined as: P l
r = Wr

lr
. In

other words, P l
r is the value of the waiting time normal-

ized to the duration of the job. Intuitively, lower values
correspond to a more fair treatment of jobs. Ideally,
values P l

r < 1.0 are desirable. In practice, however,
this usually does not hold for small jobs.

• Spatial Penalty, P n
r , is also a measure of the fairness

experienced by the user and is represented by the av-
erage Wr as a function of the spatial size (= nr) of
the job. Intuitively, the larger the number of resources
needed by a given job, the harder it is for S to schedule
the job and therefore, the longer the penalty in terms
of waiting time.

We organize our performance evaluation in two parts.
First, we investigate the performance of our online algorithm
against the performance deduced from the traces where batch
scheduling is used. Second, we study the impact of intro-
ducing support for advance reservations in our algorithm
against batch scheduling algorithms.

5.1 Online Co-Allocation of Resources vs.
Batch Scheduling

Let us first investigate the difference in performance be-
tween our online co-allocation algorithm and the batch schedul-
ing algorithms used for the workloads shown in Table 1. For
a fair comparison, we let qr = sr for every job request so
that the co-allocation algorithm attempts to schedule each
job as soon as the corresponding request is received. If no
sufficient resources are found starting at time t = sr, the al-
gorithm makes up to Rmax additional scheduling attempts,
each time incrementing sr by ∆t time units, as described in
Section 4.2.

Figure 3(a) plots the temporal penalty P l
r experienced

by jobs of the KTH workload under the batch and online
scheduling algorithms. We observe that small jobs experi-
ence a higher temporal penalty, an order of magnitude or
more, under the batch scheduler compared to our online co-
allocation algorithm. A more careful look at the mid-tail
of both curves (for jobs of size between 2 to 10 hours) in
Figure 3 (b), on the other hand, reveals that our algorithm
penalizes larger jobs more heavily. Similar results were ob-
tained for the other two workloads, and are omitted due
to space constraints. These results are somewhat counter-
intuitive considering that most batch schedulers implement
some sort of backfilling, i.e., allow small jobs to leap ahead
in the queue as long as they don’t delay the job at the head
of the queue, and therefore it is expected that small jobs
would experience a relative lower degree of penalty. A more
detailed analysis of the traces reveals that our algorithm is
more efficient in finding idle periods to allocate incoming
small jobs without delaying them much. This is reflected
by the small number of times that the algorithm needs to
reschedule (by increasing sr) small jobs as observed in our
simulations; we further discuss this observation later in this
section. On the other hand, batch schedulers find it difficult
to identify resources available to fit small jobs due to the
high fragmentation of resources and the dominant presence
of jobs that are large in spatial and temporal dimension.

Figure 4(a) plots the waiting time distribution for both al-
gorithms under two workloads, CTC and KTH. Let us first
consider the curves for the CTC workload. Under our on-
line scheduler most jobs have a waiting time smaller than
2 hours. This is an improvement of nearly a factor of two
when compared to the batch scheduler. Furthermore, the
tail lengths of the two curves differ by hundreds of hours,
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Table 1: Features of workloads used in the performance evaluation.
Workload No. of processors (N) No. of jobs Avg. estimated lr (hours)

CTC 512 39,734 5.82
KTH 128 28,481 2.46

HPC2N 240 202,825 4.72
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Figure 3: Temporal penalty P l
r for the KTH workload: (a) all jobs, (b) medium-size jobs

with the maximum waiting times being 19 hours for our on-
line scheduler and a much higher 674 hours for the batch
scheduler. The results for the KTH workload are slightly
different in that more jobs wait for less than 1 hour under
the batch scheduler as compared to our algorithm. However,
the waiting time distributions even out before 2 hours. Sim-
ilar to the CTC workload, the length of the tails differ by
two hundred hours, with the maximum waiting time for the
online and batch schedulers being 75 hours and 272.5 hours,
respectively.

We make two major observations from these results. First,
as shown in Figure 4(b), most jobs in the KTH workload
have a duration smaller than 2 hours. This results in higher
resource fragmentation, impeding the scheduling algorithm
from finding feasible idle periods to allocate for incoming
jobs. This is in contrast to the CTC workload where at
most 14% of all jobs are smaller than 2 hours. This suggests
that the performance of our algorithm is not oblivious to the
workload, which is a common observation in most scheduling
algorithms. Second, the large difference in the tail length for
both workloads suggests that by keeping a look-ahead view
till the time horizon H, our algorithm can pack incoming
jobs more efficiently and hence improve the utilization of
the system.

In Figure 5 we plot the average waiting time Wr as a func-
tion of job spatial size for two workloads. We observe that
the waiting time increases with the spatial size for both on-
line and batch algorithms. However, our algorithm achieves
smaller average waiting time compared to the batch algo-
rithm for both workloads. This observation follows from the
results presented in Figure 4 and can be explained similarly:
our algorithm can pack jobs efficiently by taking advantage
of the look-ahead view till the horizon H.

We conclude this part of our evaluation by presenting in
Table 2 the number of scheduling attempts that our algo-
rithm makes per request, as a function of the spatial size for
workloads CTC and KTH. In order to obtain results that
are statistically significant, we calculate the average num-
ber of scheduling attempts as a function of nr in groups of

50 servers. For instance, the first column of the table cor-
responds to the average number of scheduling attempts for
jobs such that 0 < nr ≤ 50. Empty spaces in the table
represent the case in which there were no requests with nr

values within the corresponding range. It can be observed
from the table that, as nr increases, the number of schedul-
ing attempts increases as well. This can be explained from
the fact that as jobs demand more resources, the fragmen-
tation in the system increases and it becomes harder for the
algorithm to schedule incoming requests. We also observe
a larger number of scheduling attempts for the KTH work-
load as compared to CTC workload. This is due to the fact
that KTH exhibits higher fragmentation as a result of the
temporal size distribution observed in Figure 4(b).

5.2 Online Co-Allocation of Resources vs.
Batch Scheduling with Support for
Advance Reservations

Due to the fact that advance reservations are not widely
implemented in existing systems, there are no workload traces
in the Parallel Workload Archive [3] that represent the ad-
vance reservation model. In order to evaluate the perfor-
mance of our algorithm we generated advance reservation
requests by randomly selecting jobs from the workload traces
according to a desired proportion of advance reservations in
the experiment. We denote the fraction of jobs with ad-
vance reservations in the system by ρ ≤ 1. For any advance
reservation request we randomly set its requested start time
(sr) to be within zero to three hours in the future, as in
the study presented in [33]. Note that the algorithm can
be easily extended to support user’s deadline by setting the
starting time to the earliest time a given job needs to start
to meet the deadline imposed by the user.

Figures 6(a) and (b) show the waiting time distribution
for different values of ρ for workloads CTC and KTH, respec-
tively. In both graphs we observe a peak around 3 hours:
this is a consequence of setting the requested start time to
be between zero and three hours as mentioned earlier. We
observe that as ρ increases, the distribution of waiting times
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Figure 4: (a) Waiting time (Wj) distribution (CTC and KTH). (b) Temporal-size distribution (lr) for work-
loads CTC and KTH.
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Figure 5: Average waiting time (Wr) as a function of job spatial size: (a) CTC workload, (b) KTH workload

changes in the range [0:3] hours for both CTC and KTH.
However, the tail lengths for both remain the same. We
also note that under the CTC workload our algorithm out-
performs the batch scheduling algorithm for multiple values
of ρ. This is in contrast to the results plotted in Figure 6 (b)
for KTH where batch scheduling performs better than our
co-allocation algorithm for all values of ρ. Nevertheless, as
we mentioned in our discussion of Figure 4, the tail for the
batch scheduler is significantly longer than for the online
algorithm.

Figure 7(a) presents the average waiting time against ρ, 0 ≤
ρ ≤ 1, where ρ = 0 corresponds to the case of no advance
reservations while ρ = 1 represents the case in which all
jobs use advance reservations. We observe that the waiting
time increases as ρ increases. This result is in agreement
with intuition since by increasing ρ we effectively increase
the waiting time of a larger fraction of jobs.

To evaluate the scalability of our algorithm in the pres-
ence of advance reservations, Figure 7(b) depicts the aver-
age number of computational operations performed by the
scheduling algorithm to schedule a request r as a function
of ρ, under the three workloads. The graph shows that our
algorithm scales well as the fraction of advance reservations
increases. The reasoning behind this observation is that
when performing advance reservations, it is more likely that
the algorithm will find resources available without having

to search in multiple slots, resulting in fewer scheduling at-
tempts. On the other hand, when scheduling incoming jobs
immediately, i.e., sr = qr the scheduler is more likely to
search additional slots after searching in the slot contain-
ing sr. Therefore, even though increasing ρ increases re-
source fragmentation in the system, and hence the size of
the binary search trees is expected to increase, the number
of operations remains relatively constant due to the smaller
number of slots searched and the balancing feature of the
binary search trees being used.

6. CONCLUSIONS
In this paper we considered the problem of co-allocation

of resources in large-scale distributed systems. We have de-
veloped an online co-allocation algorithm that is effective in
co-allocating resources while providing support for advance
reservations and range searches. Our approach combines an
efficient data structure of multiple 2-dimensional trees to
organize the temporal availability of system resources with
efficient searches to locate all available resources simultane-
ously. We also performed an in-depth comparative analy-
sis of our algorithm against conventional batch schedulers
under real workloads. Our results provide some insightful
conclusions indicating that, under typical conditions, our
scheduling algorithm achieves high utilization and provides
smaller delays without adding much complexity. We also
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Table 2: No. of scheduling attempts as a function of spatial size, CTC and KTH workloads
Workload / nr (0:50] (50:100] (100:150] (150:200] (250:300] (350:400]

CTC 2.96 5.34 7.22 13.25 — 127.44
KTH 10.27 60 120 — — —
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Figure 6: Waiting time distribution: (a) CTC workload, (b) KTH workload
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Figure 7: (a) Average waiting time for workloads CTC, KTH and HPC2N, (b) Number of operations as a
function of ρ for workloads CTC, KTH and HPC2N

showed that our co-allocation algorithm scales to systems
with large number of resources and heavy workloads.

Our co-allocation algorithm has numerous applications,
from allocating multiple desktop machines for classroom in-
struction in a VCL-like computing infrastructure, to schedul-
ing link-wavelength resources in optical Grids, to middle-
ware such as MapReduce that need to allocate compute
nodes to handle multiple map and reduce instances.
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