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Abstract— We consider the problem of providing absolute QoS
guarantees to multiple classes of users of an OBS network in
terms of the end-to-end burst loss. We employ Markov decision
process (MDP) theory to develop wavelength sharing policies that
maximize throughput while meeting the QoS guarantees. The
randomized threshold policies we obtain are simple to implement
and operate, and make effective use of statistical multiplexing.

I. INTRODUCTION

As optical burst switching [2] technology becomes more
mature, supporting end-to-end quality of service (QoS) guar-
antees in OBS networks is arising as an important yet chal-
lenging issue. Most recent research in this area has focused
on relative service differentiation, and a variety of schemes
have been proposed, such as assigning an additional offset
to higher priority bursts [13], intentionally dropping non-
compliant bursts [5], and allowing in-profile bursts to preempt
out-of-profile ones [9]. A study of absolute QoS guarantees in
OBS networks can be found in [14], where two mechanisms
were proposed to enforce a loss probability threshold for guar-
anteed traffic while reducing the loss rate of non-guaranteed
traffic: an early dropping mechanism to selectively drop non-
guaranteed traffic, and a wavelength grouping strategy to
allocate wavelengths to priority traffic. Finally, the study in [8]
differs from the above in that it considers delay, rather than
burst drop probability, as the QoS parameter to be guaranteed.

We consider the problem of providing absolute QoS guaran-
tees to multiple classes of users of an OBS network in terms of
end-to-end loss. We employ Markov decision process (MDP)
theory to develop wavelength sharing policies that maximize
throughput while meeting the QoS guarantees. The random-
ized threshold policies we obtain are simple to implement and
operate, and make effective use of statistical multiplexing.

In Section II, we describe our assumptions regarding the
OBS network. In Sections III and IV we study a single link
of an OBS network, and we apply MDP theory to obtain link
wavelength sharing policies. In Section V, we show how to
extend the results to an OBS network. We present numerical
results in Section VI, and we conclude in Section VII.

II. THE OBS NETWORK UNDER STUDY

We consider an OBS network with N nodes. Each link in
the network can carry burst traffic on any of W wavelengths.
We assume that OBS nodes are capable of full wavelength
conversion, but the network does not use any other contention
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resolution mechanism. Specifically, nodes do not employ any
buffering, either electronic or optical, in the data path, and
they do not utilize deflection routing or burst segmentation.

The network supports P classes of traffic, where P is a
small integer. Each class i, i = 1, · · · , P − 1, is characterized
by a worst-case end-to-end loss guarantee Be2e

i . Parameter
Be2e

i represents the long-run fraction of bursts from class i
that are dropped before reaching their destination. Without
loss of generality, we assume that bursts of class i have more
stringent loss requirements than bursts of class j, when i < j:

Be2e
i < Be2e

j , 1 ≤ i < j ≤ P (1)

Bursts of class P are not associated with any worst-case
loss guarantee; we refer to class P as the best-effort class,
and, for convenience, we let Be2e

P = 1.0. In addition, class
j is associated with a weight rj , which is a measure of
the importance of this class to the network. We assume that
rj > rj+1, 1 ≤ j ≤ P − 1, a reasonable assumption since
higher priority users are likely to pay more for service.

Once assembled, a burst is assigned to one of the P classes;
the mechanism for assigning bursts to traffic classes is outside
the scope of our work. The class to which a burst belongs
is recorded in the setup (control) message that precedes
the burst transmission. We assume that intermediate nodes
make forwarding decisions by taking into account both the
availability of resources (e.g., the number of free wavelengths
at an output port) and the class of a burst. Specifically, an
intermediate node may drop a burst of a lower priority class
even when there are wavelengths available at its outgoing link.

The objective we consider is to ensure that the loss rate of
class i, i = 1, · · · , P − 1, does not exceed its worst-case loss
guarantee Be2e

i , and at the same time maximize the weighted
throughput in the network. In order to achieve this objective,
the network nodes need to employ appropriately designed
mechanisms to allocate wavelength resources to bursts of each
class based on its load and worst-case loss requirement. Next,
we use MDP theory to develop such mechanisms.

III. MODEL OF A SINGLE OBS LINK

Let us first consider a single link of an OBS network with
W wavelengths. Class j bursts arrive to the link according to
a Poisson process with rate λj . The service time of bursts is
assumed to have an exponential distribution with mean 1/µ
that is independent of the class of the burst. Let nj denote the
number of class j bursts in progress (i.e., receiving service) on
the link. Since the service rate does not depend on the traffic
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class, we can use the total number of bursts n =
∑P

j=1 nj to
describe the system state at any point in time [1]. Intuitively,
since there is no difference in the service rates, once a burst is
admitted to service, the future system evolution is not affected
by the class of this burst. Therefore, the evolution of the system
is described by the Markov model {n(t), t ≥ 0}; for the sake
of simplicity, we will omit the index t whenever there is no
ambiguity. Transitions in the state are either due to an arrival
or a service completion event. We will use αj (respectively,
δj) to denote the arrival (resp., departure) of a class-j burst.

A control policy determines the action to be taken at arrival
events. We let A(n, αj) ∈ {0, 1} denote the set of actions
when a class-j burst arrives to find the system in state n.
Action a = 0 means that the arrival is rejected, and a = 1 that
the arrival is accepted. If the system is full (all wavelengths
are occupied), then the only action available is a = 0, thus

A(W,αj) = 0 j = 1, · · · , P. (2)

If the system is not full, an arriving burst may be dropped if
the free wavelengths are reserved for other classes of traffic:

A(n, αj) ∈ {0, 1} n = 0, · · · ,W − 1, j = 1, · · · , P. (3)

There is no control at departure epochs, hence we let

A(n, δj) = 0, n = 1, · · · ,W, j = 1, . . . , P. (4)

We consider the set of stationary control policies in this
work. The definition of a stationary policy can be found
in [7]. In essence, the controls of the stationary policy at
each state are history-independent and do not change with
time t. There are two commonly used types of stationary
policies [7]. A randomized stationary policy π, defined on the
state space S, is such that the policy probabilistically selects
one of a set of actions at each state. We let π(a|s) denote the
probability that an action a ∈ A(s) is chosen at state s; clearly,
π(A(s)|s) = 1, s ∈ S. A randomized stationary policy π is
called k-randomized stationary, k = 0, 1, · · · , if∑

s∈S

∑
a∈A{s}

1 {π(a|s) > 0} ≤ |S| + k. (5)

In other words, there exist at most k states at which the number
of control actions chosen by π is greater than 1.

A deterministic stationary policy is equivalent to a 0-
randomized stationary policy: A(s) reduces to a singleton, and
we use the action π(s) at each state s to describe the policy.

IV. THROUGHPUT MAXIMIZATION SUBJECT TO QOS
CONSTRAINTS: THE SINGLE LINK CASE

Consider a single OBS link �, and let B�
j denote the loss

guarantee for class-j traffic on this link. The quantities B�
j

should not be confused with the end-to-end guarantees Be2e
j

in (1); we will discuss shortly how to obtain B�
j from Be2e

j .
Our objective is to determine an optimal stationary control

policy that maximizes the expected sum of the class-based
rewards earned by the system, subject to the constraints that
the fraction of type j customers rejected is no greater than
B�

j , 1 ≤ j ≤ P − 1. Miller [10] studied the problem

of maximizing the expected sum of class-based awards in
a M/M/c/N system (similar to our OBS link), without
imposing any constraints on the blocking probabilities. He
showed that, for each class, the optimal policy is of threshold
form, i.e., for each class j there is a critical level Mj such that
no customers of class j are admitted if the total occupancy
n ≥ Mj ; he also showed that Mj ≥ Mi, j < i, i.e.,
higher priority classes have higher thresholds. Feinberg and
Reiman [6] extended Miller’s study by adding the constraint
that the blocking probability of type-1 customers not exceed
a given value. They showed that for this single-constraint
problem, the optimal policy has a threshold structure similar to
that in [10], but one of the thresholds may be randomized: for
a particular state s, the optimal policy chooses the threshold
M with probability p and the threshold M +1 with probability
1 − p. We discuss these works in more detail later.

A. Constrained MDP (CMDP) Formulation

The P -class problem we study is more general than that
in [6] when P > 2, as there are P −1 constraints, one for each
of the P − 1 guaranteed classes. In this section we formulate
the problem as a constrained Markov decision process.

Since our system does not block departures, the state
n = 0 (corresponding to an empty system) can be reached
from any other state with probability 1. Therefore, the system
satisfies the unichain condition [7], which requires for every
stationary policy π, the transition matrix defined by π to form
a Markov chain on the state space with one ergodic class
and a (possibly empty) set of transient classes. Consequently,
the optimal policy is independent of the initial distribution [7].

Let us define the one-step reward and cost for the controls
taken at each state. There is no reward for the departure
state η = 0, · · · ,W − 1. Define r((n, αj), a), a ∈ A(n, αj)
as the reward collected by the system in the arrival state
(n, αj). Specifically, we have that r((n, αj), 0) = 0 and
r((n, αj), 1) = rj . We define the one-step cost function cj for
class j as cj((n, αj), 0) = 1, and cj(η) = cj((n, αj), 1) =
0, 1 ≤ j ≤ P . Thus, for each rejected class-j burst, the system
accumulates one unit of cost. We also define the cost function
Cj as the fraction of class j bursts being rejected. Since the
MDP satisfies the unichain condition, the reward and cost
functions are independent of the initial state.

Define the long-run average reward earned by the system:

T (π) = lim inf
t→∞ t−1Eπ


N(t)−1∑

i=0

r(n[i], a[i])


 (6)

where π is a stationary policy, Eπ is the expectation operator
for the policy π, and N(t) is the number of events by time t.
The fraction of rejected type-j bursts, j = 1, · · · , P − 1, is:

Cj(π) = lim sup
t→∞

Eπ


N−1

j (t)
N(t)∑
i=0

cj(n[i], a[i])


 (7)

where Nj(t) is the number of arrivals of type j bursts by
time t. Recall that B�

j , j = 1, · · · , P − 1, is the loss rate to
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be guaranteed at this link �. Then, the problem of maximizing
the constrained weighted throughput can be formulated as:

maximize T (π) (8)

subject to Cj(π) ≤ B�
j , 1 ≤ j ≤ P − 1. (9)

One might be tempted to apply the uniformization technique
in [3, Chapter 6] to the continuous-time MDP we defined
earlier in this section in order to obtain a discrete-time
MDP; and then apply the Policy-Iteration algorithm [3] to
obtain the optimal policy. Unfortunately, we cannot apply the
uniformization approach here, since our constraints may lead
to randomized policies, under which the uniformization tech-
nique does not apply, as explained in [4]. The uniformization
introduces fictitious transitions from a state to itself in the
new Markov chain X̂ , which do not exist in the original
process X . The randomization allows for the possibility of
changes in the action at fictitious transitions in X̂ which are
not available in X . Thus, there is the possibility that the usual
uniformization technique fail to yield the same reward for X̂
as for X . In the next section, we show how to make use of
Linear Programming (LP) to solve the MDP problem in (8)-
(9). The advantage of the LP approach is that we can add
additional constraints easily [11].

B. Linear Programming Formulation

First, let us introduce the following notations: p(n, η, a) is
defined as the transition probability from state n to η if action
a is taken; zn,a denotes the probability that action a is taken
at state n per unit of time; and τ(n, a) denotes the sojourn
time of state (n, a). Our objective is to find the probability
π(a|n) that an action a ∈ A {n} is chosen at state n ∈ N , as
dictated by the optimal stationary policy.

A similar constrained optimization problem was considered
in [7], in which a (P + 1)-class system with finite state space
S and finite action set A was studied. Rewards rj(s, a) are
collected during sojourn times for each class j = 0, · · · , P at
state s ∈ S. The problem studied in [7] was to maximize the
reward T0 from class-0 customers, subject to the constraints
that the reward Tj from class-j customers is no less than a
given level lj , j = 1, · · · , P . If s0 ∈ S is the initial state, then
this problem can be expressed as:

maximize T0(s0, π) (10)

subject to Tj(s0, π) ≥ lj , 1 ≤ j ≤ P. (11)

To solve (10)-(11), the following LP was formulated [7]:

maximize
∑
s∈S

∑
a∈A(s)

r0(s, a)zs,a (12)

subject to∑
a∈A(s′)

zs′,a −
∑
s∈S

∑
a∈A(s)

p(s, s′, a)zs,a = 0, s′ ∈ S (13)

∑
s∈S

∑
a∈A(s)

rk(s, a)zs,a ≥ lk, k = 1, · · · ,K (14)

∑
s∈S

∑
a∈A(s)

τ(s, a)zs,a = 1 (15)

zs,a ≥ 0, s ∈ S, a ∈ A(s) (16)

It was shown that if z is the optimal solution for LP (12)-
(16), then there exists a P−randomized stationary policy π in
the form of π(a′|s) = zs,a′/

∑
a∈A{s} zs,a which is optimal

for problem (10)-(11). In addition, [6] studied the problem
of maximizing the expected average reward of a P−class
system subject to the blocking probability constraint on class-1
customers. That is,

maximize T (π) (17)

subject to C1(π) ≤ B�
1. (18)

Since the departure process will not be blocked, as pointed out
in [6], the problem defined in (17)-(18) satisfies the unichain
condition. Replacing T0 with T and setting r1(s, a) =
−c(s, a)/λ1 and l1 = −B�

1, make the formulation in (17)-
(18) the same as in (10)-(11), thus problem (17)-(18) is a
special case of problem (10)-(11).

Returning to our problem, define Λ =
∑P

j=1 λj ; then:

p(n, η, a) =




λj

nµ+Λ , η = n, a = 0, 0 ≤ n ≤ W
λj

nµ+Λ , η = n + 1, a = 1, 0 ≤ n ≤ W − 1
nµ

nµ+Λ , η = n − 1, a = 0, 1 ≤ n ≤ W

(19)

The first case corresponds to an arriving burst being dropped,
the second to an arriving burst being admitted, and the third
to a burst departure. Regarding sojourn times, we have:

τ(n, a) =
{

(nµ + Λ)−1, a = 0, 0 ≤ n ≤ W
((n + 1)µ + Λ)−1, a = 1, 0 ≤ n ≤ W − 1 (20)

Then, the LP corresponding to (8)-(9) can be formulated as:

maximize
∑
n∈N

∑
a∈A(n)

r(n, a)zn,a (21)

subject to∑
a∈A(η)

zη,a −
∑
n∈N

∑
a∈A(n)

p(n, η, a)zn,a = 0, η ∈ N (22)

∑
n∈N

∑
a∈A(n)

cj(n, a)zn,a ≤ B�
j × λj , j = 1, 2 (23)

∑
n∈N

∑
a∈A(n)

τ(n, a)zn,a = 1 (24)

zn,a ≥ 0, a ∈ A(n), n ∈ N (25)

Equation (21) represents the objective to maximize, i.e., the
weighted expected throughput. Equation (22) maintains the
flow balance for each state, while expression (23) represents
the constraints in terms of the time-average burst drop rate
for each class. Note that the left hand side of (23) is the cost
for each class over the time t, while the term in the right
hand side represents the imposed threshold on the time-average
cost. Expression (24) simply states that the summation of the
selection probability over all states and controls is equal to 1.
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We now see that our problem defined in (8)-(9) is also a
special case of (10)-(11), and satisfies the unichain condition.
Thus, there exists an optimal policy π� in the form of (26),
where z is optimal for the LP (21)-(24), stating the probability
π(a|n) for each action a ∈ A {n} chosen at state n. The
optimal policy is P -randomized, thus there are at most P states
such that 0 < π(a|n) < 1.

π(a = 1|n) =
{

zn,a=1/
∑1

a=0 zn,a,
∑1

a=0 zn,a �= 0
1 {a′ = a} , any a′ ∈ A(i), otherwise

(26)

and π(a = 0|n) = 1 − π(a = 1|n). (27)

The optimal policy π� works as follows. If the system state
is n and a class-j burst arrives, the burst will be admitted if
π[(n, αj), a = 1] = 1; it will be rejected if π[(n, αj), a = 0] =
1. If 0 ≤ π[(n, αj), a = 1] ≤ 1, then we draw a random
number θ uniformly in [0, 1]; the burst will be admitted if
θ ≤ π[(n, αj), a = 1], otherwise it will be rejected.

C. Structure of the Optimal Policy

In [6], the authors analyzed the structure of the optimal
policy which maximizes the expected average reward subject
to the constraint that the blocking probability of type 1 cus-
tomers is no greater than a given threshold. They proved that
the probabilities π dictated by the optimal policy conform to
expressions (28)-(30). For our problem, we have also noticed
that the optimal policy has the same properties described
in (28)-(30); however, we have not been able to prove this
result yet.

π[(n, α1), a = 1] = 1, n = 0, · · ·W − 1, (28)

π[(n, αj), a = 1] ≥ π[((n + 1), αj), a = 1],
n = 0, · · · ,W − 2 and j = 1, · · · , P (29)

π[(n, αj), a = 1] ≥ π[(n, αj+1), a = 1],
n = 0, · · · ,W − 1 and j = 1, · · · , P − 1. (30)

Expression (28) states that bursts of class 1 (the highest pri-
ority class) are always admitted as long as there are available
resources in the system. According to expression (29), the
optimal policy is such that the probability that a class-j burst
will be admitted (i.e., action a = 1 is taken) is a non-increasing
function of the system occupancy n. Finally, expression (30)
states that the probability that an arriving burst is admitted
at a given state n is a non-increasing function of the burst
class (i.e., bursts of lower priority have lower probability to
be admitted than bursts of higher priority at a given state).

Expression (29) implies that for each class j, there is at most
one state Mj < W where 0 < π[(Mj , αj), a = 1] < 1; we
refer to this as the threshold state for class j. If a class-j burst
arrives to find fewer than Mj bursts in the system, the burst is
always accepted, and if it arrives to find more than Mj bursts,
it is always rejected. If, on the other hand, the burst arrives to
find exactly Mj bursts being served, then it is accepted with
probability π[(Mj , αj), a = 1], and it is rejected otherwise.
Similarly, expression (30) implies that the threshold states are
such that Mj ≥ Mj+1, j = 1, · · · , P − 1, i.e., higher priority
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Fig. 1. Class thresholds, link load = 32 Erlang

bursts are accepted in a larger number of states than lower
priority ones.

To illustrate the structure of the optimal randomized thresh-
old policy, we consider a single OBS link with W = 32
wavelengths and P = 3 classes of traffic. Classes 1 and 2
require a link loss guarantee of B�

1 = 10−3 and B�
2 = 10−2,

respectively. We assume that class-1 (respectively, class-2)
bursts represent 20% (respectively, 30%) of the traffic, and
the remaining traffic is best-effort. We let the rewards rj for
admitting a class-j burst take the values: r1 = r2 = 2, r3 = 1.

Figure 1 plots the thresholds for each class when the overall
link load ρ = 32 Erlang. As we can see, the threshold for class
1 is M1 = 31 and π[(M1, α1), a = 1] = 1.0; therefore, as
long as there is a free wavelength in the system, class 1 bursts
are always admitted. The threshold for class 2 is M2 = 31,
and π[(M2, α2), a = 1] = 0.121. Hence, class-2 burst will be
always admitted if the number of bursts being served is less
than 31; if there are exactly 31 bursts in service at the time a
class-2 burst arrives, it is admitted with probability 0.121, and
it is rejected with probability 0.879. The threshold for class
3 is the lowest, M3 = 23, and π[(M3, α3), a = 1] = 1; thus
class 3 bursts are admitted if n ≤ M3.

Figure 2 plots the class thresholds as a function of link load.
Since the threshold of class 1 is always M1 = 31, we only
plot the thresholds of class 2 and 3, respectively. As expected,
the thresholds of both classes decrease with the increase in
traffic load, in order to ensure that the loss rate for class 1
does not exceed the given threshold B�

1.

V. THROUGHPUT MAXIMIZATION SUBJECT TO QOS
CONSTRAINTS: THE OBS NETWORK

Typically, users (applications) are interested in the end-to-
end loss, rather than loss at individual links. Assuming that the
end-to-end loss guarantees Be2e

j are given for all guaranteed
classes j, we have developed an algorithm for obtaining
the link rate guarantees B�

j for all links � in the network;
due to space constraints, we omit a detailed description of
the algorithm, which can be found in [12, Chapter 4]. The
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Fig. 2. Class 1 and 2 thresholds vs. link load

algorithm takes into account the routing paths to determine
the link rate guarantees such that the end-to-end guarantees
are satisfied regardless of the specific path taken by the bursts.
Once the values of B�

j are obtained for all links �, we use the
method we described in the previous section to obtain the
optimal randomized policy for each link in the network. This
approach for tackling the problem for the network as a whole,
while sub-optimal, is necessitated by the fact that the state
space of the Markov process describing the whole network
increases exponentially with the number of links, making the
problem of determining an optimal policy intractable.

VI. NUMERICAL RESULTS

A. A Single OBS Link

Consider a link with W = 32 wavelengths, P = 3 classes
of traffic, and the same loss rate guarantees, traffic mix, and
reward values as in the example we used in Section IV-C for
the results in Figures 1 and 2. We compare the following two
policies in terms of the overall weighted throughput that they
achieve, subject to the QoS (loss rate) constraints:

1) CMDP policy. This is the optimal randomized threshold
policy obtained through the constrained MDP (CMDP)
formulation we developed in Section IV.

2) Wavelength partitioning (WP) policy. The WP policy
partitions the set of wavelengths into P sets (in this
case, P = 3), and each class is given exclusive use of
all wavelengths in its own subset. We consider the WP
policy which maximizes

∑3
j=1 rjλj(1 − bj)/µ, subject

to b1 ≤ B�
1 and b2 ≤ B�

2, where bj is the blocking
probability for guaranteed class j under this policy.

Figure 3 plots the weighted throughput against the link load.
The CMDP policy throughput is 15-40% higher than that of
the WP policy. This result is due to statistical multiplexing:
the CMDP policy makes effective use of multiplexing, but the
WP policy does not allow any sharing of wavelengths among
classes. Also, the CMDP throughput increases smoothly and
almost linearly with the link load, whereas the WP throughput
curve is non-monotonic. The latter is due to the fact that the
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Fig. 3. Single link with W = 32 wavelengths and P = 3 traffic classes

WP policy has a granularity of one wavelength; as the load
increases, it may have to shift one or more wavelengths to
higher priority classes, resulting in a decrease in throughput as
these wavelengths may not be utilized efficiently. The CMDP
policy, on the other hand, has a much finer granularity, as it
can appropriately adjust the probabilities of the threshold states
for each class, giving it much more flexibility and increased
efficiency in utilizing the available resources.

B. The NSF Network

We now compare the CMDP and WP policies in terms of
weighted throughput on the NSF network. Each link carries
W = 32 wavelengths, and there are P = 3 classes of traffic.
Classes 1 and 2 require an end-to-end loss guarantee of Be2e

1 =
10−3 and Be2e

2 = 10−2, respectively; class 3 is the best-effort
class and does not require any guarantees. We let the reward
values be r1 = 100, r2 = 30, r3 = 1. We assume shortest path
routing, and we consider two traffic patterns: under the uniform
pattern, the traffic from each node is uniformly distributed
to other nodes, while under the distance-dependent pattern,
the amount of traffic between a pair of nodes is inversely
proportional to the distance between them.

Figures 4-5 plot the weighted throughput for the WP and
CMDP policies with the uniform traffic pattern, against the
network load. As Figure 4 shows, the throughput for the
guaranteed classes is almost identical under the two policies.
The main difference between the policies is in the throughput
of the best-effort class, which is 30-100% higher under the
CMDP policy, as shown in Figure 5. This result is due to the
statistical multiplexing gains of the CMDP policy, as well as
the finer granularity with which it can allocate wavelengths
among the traffic classes. Also note that with the WP policy,
class 3 throughput decreases as the load increases from 240-
312 Erlang, and starts to increase after that. This behavior
is due to the saturation of the bottleneck links: as the load
increases, an increasing number of links have no wavelengths
available for class-3 bursts, as resources are reserved to
satisfy the QoS of guaranteed classes. Beyond 312 Erlang,
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the throughput increase along paths with no bottleneck links
begins to dominate, and throughput starts to increase again.
On the other hand, due to statistical multiplexing, the CMDP
policy can provide service to the best-effort traffic even at high
loads; however, class-3 throughput saturates at very high loads,
as resources are needed for the guaranteed classes. Similar
observations regarding the relative performance of the CMDP
and WP policies can be made from Figures 6-7 which plot the
weighted throughput with the non-uniform traffic pattern.

VII. CONCLUDING REMARKS

We have developed wavelength sharing policies for OBS
networks to maximize throughput while providing absolute
QoS guarantees in terms of the end-to-end burst loss. Our
randomized threshold policies are practical to implement and
operate in a distributed manner.
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