
Experimental Evaluation of a Symmetry-Free
Parallel Algorithm for Spectrum Allocation

George N. Rouskas, Shubham Gupta, Priya Sharma
North Carolina State University

Abstract—Recursive First Fit (RFF) is an optimal algorithm for
the offline spectrum allocation (SA) problem that we developed
recently [1]. To the best of our knowledge, RFF is the first
algorithm for networks of general topology that is spectrum
symmetry-free, i.e., it does not consider any equivalent solutions
that are the result of spectrum slot permutations. The algorithm
applies the first-fit (FF) heuristic to solve the SA problem,
and hence it can be readily implemented. In this work, we
present two strategies for parallelizing the execution of RFF,
and we evaluate them experimentally using a comprehensive set
of metrics. Our experiments indicate that the RFF algorithm
explores a vast number of symmetry-free solutions and, for
moderate-size networks, it takes mere seconds to yield solutions
that are either optimal or very close to the lower bound.

I. INTRODUCTION

Spectrum allocation (SA) is integral to optical network
design and has been studied extensively for decades in a vari-
ety of contexts, usually coupled to other objectives including
routing [2]–[4], traffic grooming [5], network survivability [6],
and virtual topology design [7], [8]. The SA problem is
known to be intractable even when considered in isolation,
i.e., separately from other aspects of network design [9]. Yet
spectrum symmetry, an aspect unique to SA, makes the prob-
lem especially challenging to optimal algorithms, including
integer linear programming (ILP) solvers.

Spectrum symmetry arises from the fact that slices of
optical spectrum are interchangeable [10]. Hence, by simply
permuting the spectrum slots, every solution (optimal or not)
to the SA problem yields an exponential number of equivalent
solutions [11]. Conventional ILP solvers encompass this vast
number of distinct yet equivalent solutions, and hence their
running time is unnecessarily long [11]. A decade ago, we
developed an ILP formulation based on maximal indepen-
dent sets (MIS) [12] for the offline routing and wavelength
allocation (RWA) problem in ring networks. The formulation
does not suffer from the symmetry problem and can obtain
optimal solutions for large rings in seconds. Unfortunately,
the number of variables in MIS-based formulations increases
exponentially with the network size, and they cannot be
applied practically to networks of general topology. Thus, an
optimal solution approach that avoids spectrum symmetry has
eluded the research community until recently.

This work was supported by the National Science Foundation under Grant
CNS-1907142.

The first-fit (FF) algorithm is a simple heuristic for the
SA problem that has been shown to be effective across a
wide range of network topologies and traffic demands [13]–
[15]. Recently, we have proved an optimality property of
the FF heuristic [1] that allows for the design of symmetry-
free algorithms. Specifically, we showed that there exists a
permutation of the traffic demands such that applying the FF
heuristic to the traffic demands in the order implied by this
permutation yields an optimal solution to the SA problem. This
optimality property implies that, to find an optimal solution it
is sufficient to consider only the demand permutations, and it
is not necessary to account for any assignment of spectrum
slots other the one determined by the FF heuristic.

Following up on this insight, we also developed recursive
first-fit (RFF), an optimal branch-and-bound algorithm [1].
RFF searches the space of demand permutations and applies
the FF heuristic as it incrementally builds each permutation
during the search. While the demand permutation space is
itself exponential in size, RFF represents a significant improve-
ment over existing approaches as it completely sidesteps the
spectrum symmetry challenge.

In this work we present two parallel implementations of the
RFF algorithm and evaluate them experimentally using a com-
prehensive set of metrics. In Section II we introduce briefly the
RFF algorithm and discuss the two parallel implementations.
We discuss our experimental setup and results in Section III,
and we conclude the paper in Section IV.

II. THE SYMMETRY-FREE RFF ALGORITHM AND ITS
PARALLEL IMPLEMENTATION

The RFF algorithm is described in detail in [1]. For the
sake of completeness, in this section we first explain the basic
operation of RFF and then we present two approaches to
executing the algorithm in parallel.

Consider an instance of the SA problem with K traffic
requests, each request corresponding to one node-pair in the
network. A request consists of a path and demand (i.e., number
of spectrum slots) for the traffic between two nodes; we
assume that the path between the two nodes is predetermined,
i.e., a routing decision has already been made. The objective is
to assign along the path of each request a block of contiguous
and continuous spectrum slots of size equal to its demand, so
as to minimize the index of the highest slot assigned on any
link of the network.



Fig. 1. Tree of RFF calls on a set of four requests. The root of the tree
represents the initial call with initial permutation P = [A,B,C,D].

Due to the FF optimality property we discussed earlier,
an optimal solution to the SA problem can be obtained by
applying the FF heuristic to all permutations of the K requests
and selecting the best one. RFF [1] is a recursive branch-
and-bound algorithm that searches the space of K! demand
permutations efficiently. RFF starts with an initial permutation,
P , applies the FF heuristic on P to obtain an initial solution
to the SA problem, and records this solution as the best one
it has found so far. Then, RFF calls itself recursively and
modifies the initial permutation to create additional ones. Each
call incrementally builds a new permutation one request at
a time. A recursive call also applies the FF heuristic to the
partial permutation built so far. Once RFF has built a complete
permutation (i.e., one consisting of some ordering of all K
requests), if the solution of this permutation is better than the
best one it has found so far, it records it as the new best
solution. If at any point during the recursion RFF determines
that the solution to the current partial permutation is not better
than the best known solution, it abandons further exploration
along the current path and backtracks.

Figure 1 shows the tree of recursive calls that RFF makes
on an instance with four requests, starting with the initial
permutation P = [A,B,C,D], shown as “tentative” in the
figure. Starting with the initial call at the root of the tree, RFF
procedes in a depth-first manner along the leftmost path of
the tree. The call representing the leftmost child of the root
fixes (finalizes) the first request (A) in the permutation, and
proceeds recursively to finalize the remaining three requests.
The leaves of the tree represent the distinct permutations, and
hence, there are K! leaves. In the example of Figure 1, the
leftmost subtree of the root has 3! = 6 leaves corresponding to
the six permutations in which request A is in the first position
(as in the root of this subtree). The other three subtrees also
have six leaves (not shown in the figure), for a total of 4! = 24
permutations.

We say that RFF directly explores a permutation if it reaches
the leaf of the tree representing this permutation. In this
case, RFF computes the FF solution on the permutation and
compares it to the current best solution to determine whether it
is better. However, branch-and-bound algorithms such as RFF
do not need to visit all leaves and explore directly all possible
solutions. As we mentioned earlier, while traversing a path
to a leaf, RFF may determine that the partial permutation it

has constructed cannot improve on the current best solution.
Then, RFF abandons further direct exploration of the current
subtree and backtracks to start on a different permutation. In
this case, we say that RFF has indirectly explored all the leaves
(permutations) of the abandoned subtree, as it has made a
determination that they do not represent better solutions than
the one it has recorded. The number of permutations (i.e.,
leaves of the subtree) indirectly explored at the time RFF
backtracks can be calculated by keeping track of the height
of the node where the backtracking occurred.

We also observe from Figure 1 that the sequences of
recursive calls that belong to non-overlapping subtrees do
not interact with each other, with one exception: calls that
reach a leaf node check, and possibly update, the value of
the current best solution. Therefore, RFF may be parallelized
by 1) locking access to the variable holding the best known
solution, and 2) assigning recursive calls in non-overlapping
subtrees to different threads. These threads will execute in
parallel and will interfere with each other only when they
reach a leaf node and need to access or update the locked
variable. Importantly, when one thread finds a better solution
and updates the variable, it allows all threads to eliminate
subtrees of solutions earlier; in turn, this property leads to
faster than linear indirect exploration of the permutation space
as the number of threads increases.

Based on this discussion, the RFF algorithm represents a
significant improvement over existing methods in searching
for an optimal solution to the SA problem because of three
features:

1) it is spectrum symmetry-free, i.e., it does not consider
any equivalent solutions that are the result of spectrum
slot permutations;

2) it uses indirect exploration to eliminate whole subtrees
of the solution space without explicitly visiting all the
permutations they contain; and

3) it can be executed in parallel.
Next, we discuss two parallel implementations of RFF.

A. Parallel Implementation of RFF

Consider an instance of the SA problem with K requests
to be solved using RFF, and assume that we may deploy at
most M threads in parallel. The limit on the number of threads
may be imposed by the operating system or the computational
budget (i.e., the amount of computational resources available
for tackling the problem). We also assume that there is an
upper bound T on the amount of time that the algorithm
is allowed to run. Note that the number K of requests
corresponds to the number of node pairs in the network, and
hence K is O(N2), where N is the number of network nodes.
Hence, for network topologies encountered in practice, we
assume that M < K. The objective is to determine how
to deploy the M threads so that the algorithm will return a
solution of good quality within T time units. To this end, we
must ensure not only that the algorithm explores the largest
possible subset of the solution (permutation) space, but also



that the subset explored is representative of the entire state
space and is not limited to the neighborhood around the initial
permutation provided as input.

As we mentioned earlier, a recursive call of RFF that starts
at the root of a subtree (refer to Figure 1) will initially follow
the leftmost path to a leaf. After reaching a leaf or abandoning
the current path because it will not lead to a better solution,
the algorithm backtracks and follows the path immediately
to the right of the one it was previously on. Therefore, RFF
visits the leaves (or subtrees) of the current subtree in the
order from left to right. Consequently, if the time alotted is
not sufficient for RFF to visit the whole subtree, it will visit the
leftmost subtrees and leave the rightmost subtrees unexplored;
the relative fraction of visited and unexplored subtrees depends
on the time the algorithm is allowed to run. Furthermore, our
initial findings in [1], which we will confirm in the following
section, indicate that when exploring a particular part of the
solution space, RFF in general finds good solutions quickly
and spends most of the remaining time exploring subtrees that
do not improve on the early solutions. Finally, we note that,
given our assumption that M < K, and often that M �
K, it is generally difficult to divide the permutation space
in M roughly equal and non-overlapping subsets that can be
explored independently and in parallel.

Based on these observations, our parallelization strategy is
to deploy multiple batches of M threads, each batch running
for an amount of time t < T , such that 1) collectively all the
batches cover many diverse areas of the solution space, and 2)
the total running time is equal to T . Specifically, we consider
two strategies to parallelizing RFF which differ in the depth
of the RFF recursion call tree, shown in Figure 1, at which
threads are deployed to execute in parallel.

Depth-0 Parallelization Strategy. Note that the subtrees
of the root divide the solution space into K non-overlapping
subsets (K = 4 in Figure 1), and hence this is a natural point
to introduce parellelism. Since we assume that M < K, we
run RFF as follows. Let m = dK/Me and t = T/m. We run
m batches of threads, where each batch consists of M threads
(the m-th batch may have fewer than M threads) running in
parallel for t units of time. The first batch consists of threads
starting at the M leftmost subtrees (children) of the root. When
the first batch completes after t time units, the best solution
found by this batch is passed to the next batch of threads that
start at next M subtrees of the root; and so on, until the last
batch of threads starting at the rightmost subtrees of the root
complete at time T .

Depth-1 Parallelization Strategy. While the above is a
natural and straightforward parallelization strategy, the thread
at each subtree of the root will run for a relatively small time
and, for values of K corresponding to typical networks, it
will not be able to explore the whole subtree. Based on our
earlier discussions, this strategy will not explore the rightmost
parts of any subtree of the root, and hence it will miss many
regions of the solution space. Our second strategy introduces
parallelism at depth 1 of the tree, i.e., each thread explores a

subtree of a child of the root. The root has K children, each
of which has K−1 subtrees for a total of K(K−1) subtrees.
Similar to the first strategy, we deploy n = dK(K − 1)/Me
batches of threads, each batch running for s = T/n time units.
Since each thread starts at a lower level of the tree, the subset
of solutions explored will be more evenly distributed across
the entire space than for the first strategy.

III. NUMERICAL RESULTS

A. Simulation Setup

We have carried out a large number of experiments to
evaluate the performance of the RFF algorithm under the
two parallel execution strategies we discussed in the previous
section. We run the experiments on the Henry2 Linux HPC
cluster at NC State University [16] which consists of more
than 1,000 compute nodes and over 10,000 cores.

The experimental setup is similar to the one we used in
our original work on RFF in [1]. Specifically, we consider
two topologies, the 14-node, 21-link NSFNet and the 32-
node, 54-link GEANT2 networks, and shortest path routing.
We create SA problem instances by generating traffic requests
between all node pairs in each network. Specifically, we
assume that data rates may take values (in Gbps) from the
set {10, 40, 100, 400, 1000}, and for each problem instance
we generate a random value for the demand between a
pair of nodes based on one of three distributions: 1) Uni-
form: each of the five rates is selected with equal prob-
ability; 2) Skewed low: the rates above are selected with
probability 0.30, 0.25, 0.20, 0.15, and 0.10, respectively; or
3) Skewed high: the five rates are selected with probability
0.10, 0.15, 0.20, 0.25, and 0.30, respectively. Given the traffic
rates between each node pair, we calculate the corresponding
spectrum slots by assuming that the slot width is 12.5 GHz,
and adopting the parameters of [20] to determine the number
of spectrum slots that each demand requires based on its
data rate and path length. For each traffic distribution, we
generate 100 random problem instances.

As in [1], we consider the highest index of allocated
spectrum slots on any network link as the performance metric
of interest. To allow for a meaningful comparison between
different problem instances, we normalize the solutions with
respect to the lower bound; in other words, we divide the
absolute value returned by the algorithm with the lower bound
for the corresponding instance. We obtain a lower bound
LB on the optimal objective value by ignoring the spectrum
contiguity and continuity constraints and simply counting the
spectrum slots required by all traffic demands on the most
congested link.

In all experiments we deployed M = 32 parallel threads,
the maximum number available to us on the Henry2 cluster.
NSFNet problem instances have K = 91 requests, and we set
T = 270 min as the bound on the running time. Hence, for
the Depth-0 strategy we deployed m = 3 batches of threads,
each batch running for 90 min. For the Depth-1 strategy, there
are n = 90×91/32 = 256 batches, and we let each batch run



for 1 min; with this arrangement, RFF runs for approximately
the same amount of time under both strategies. In the case of
GEANT2, we have K = 496. The Depth-0 strategy requires
16 batches of 32 threads; therefore, we set T = 80 min as the
bound on running time and let each batch run for 5 min. The
Depth-1 strategy, on the other hand, would need to explore
495 ∗ 496 = 245, 520 subtrees and, hence, it would require
7,673 batches of 32 threads; each batch would then need to
run for less than one second for the total running time to be no
more than 80 min. Instead, we decided to modify the strategy
as follows. Rather than considering all children nodes of the
root, we only consider 80 children uniformly spaced apart, i.e.,
children 1, 7, 13, · · · , 475. For each of these children we create
a batch of 32 threads, each thread exploring a subtree of the
child node, and wil let each batch run for 1 min. Although this
approach does not explore the whole space at Depth-1 of the
tree, it allows us to compare the two strategies without having
to use a very long running time. Clearly, there are various
approaches for sampling the solution space at Depth-1, but
considering such approaches is outside the scope of our work.

B. Results and Discussion
We evaluate the RFF algorithm using several performance

measures: 1) the solution quality relative to the FF heuristic
and the lower bound LB; 2) the number of permutations (i.e.,
amount of solution space) it explores; and 3) the amount of
time it takes to reach the best solution.

Tables I and II summarize the results we have obtained for
the NSFNet and GEANT2 topologies, respectively. The tables
show how far the solutions obtained by the FF, RFF Depth-0,
and RFF Depth-1 algorithms are from the lower bound. Each
value in the tables represents an average over 100 problem
instances for the stated network, algorithm, and traffic distri-
bution. We first observe that, on average, the FF algorithm
produces solutions that are within 9-12% (respectively, 3-7%)
of the lower bound for the NSFNet (respectively, GEANT2)
topology. This is consistent with earlier research indicating
that FF finds solutions of good quality.

Turning our attention to the RFF algorithm, we notice that
the Depth-0 strategy yields solutions that are noticeably better,
on average, than the FF solutions across all network topologies
and traffic distributions we used in our experiments. Again,
this result is in agreement with our findings in [1], despite
the fact that those results were obtained using a different
implementation of the algorithm than the one we used here.
The improvement in solution quality is particularly impressive
for the GEANT2 network as it was achieved even though the
FF solutions are very close to the lower bound.

Finally, we see that, on average, the Depth-1 strategy yields
a further improvement on solution quality, for both networks
and the three traffic distributions. In all our experiments we
have observed that the Depth-1 strategy consistently outper-
forms the Depth-0 strategy; we discuss this result in more
detail at the end of the section.

Tables III and IV present a different perspective regarding
the quality of the solutions for the NSFNet and GEANT2

TABLE I
FF AND RFF SOLUTION QUALITY AS % FROM LB, NSFNET

Traffic FF RFF
Depth-0 Depth-1

Uniform 10.12% 4.49% 3.20%
Skewed Low 11.73% 6.01% 5.04%
Skewed High 9.28% 3.74% 2.95%

TABLE II
FF AND RFF SOLUTION QUALITY AS % FROM LB, GEANT2

Traffic FF RFF
Depth-0 Depth-1

Uniform 2.88% 0.56% 0.39%
Skewed Low 6.57% 2.15% 1.58%
Skewed High 2.66% 0.41% 0.23%

TABLE III
RFF SOLUTIONS RELATIVE TO FF AND LB, NSFNET

Traffic # instances <FF # instances = LB
Depth-0 Depth-1 Depth-0 Depth-1

Uniform 63 74 34 51
Skewed Low 58 64 28 44
Skewed High 77 80 41 56

TABLE IV
RFF SOLUTIONS RELATIVE TO FF AND LB, GEANT2

Traffic # instances <FF # instances = LB
Depth-0 Depth-1 Depth-0 Depth-1

Uniform 92 93 62 77
Skewed Low 86 86 28 50
Skewed High 93 94 51 79

TABLE V
NUMBER OF PERMUTATIONS EXPLORED, NSFNET

Traffic Reached LB Did not reach LB
Depth-0 Depth-1 Depth-0 Depth-1

Uniform 9.9E+109 7.4E+114 8.9E+116 3.0E+120
Skewed Low 3.9E+124 2.4E+130 9.9E+126 2.6E+127
Skewed High 1.0E+93 5.7E+109 2.9E+108 2.0E+116

TABLE VI
NUMBER OF PERMUTATIONS EXPLORED, GEANT2

Traffic Reached LB Did not reach LB
Depth-0 Depth-1 Depth-0 Depth-1

Uniform 2.4E+289 1.9E+320 2.5E+363 9.2E+409
Skewed Low 4.2E+305 9.0E+325 9.9E+518 5.7E+475
Skewed High 7.5E+286 6.6E+199 7.9E+384 2.2E+327



TABLE VII
TIME (SEC) TO REACH THE BEST SOLUTION, NSFNET

Traffic Depth-0 Depth-1
Min Median Avg Max Min Median Avg Max

Uniform 4 4 4 5 4 5 108 1,205
Skewed Low 4 4 4 5 5 5 71 664
Skewed High 4 4 10 77 4 5 98 1505

TABLE VIII
TIME (SEC) TO REACH THE BEST SOLUTION, GEANT2

Traffic Depth-0 Depth-1
Min Median Avg Max Min Median Avg Max

Uniform 33 42 130 1133 33 41 161 1,241
Skewed Low 34 42 54 398 41 42 216 1421
Skewed High 42 42 194 2247 33 41 198 2501

topologies, respectively. Specifically, the two tables list the
number of problem instances for which the Depth-0 and
Depth-1 solutions are 1) either better than the corresponding
FF solution or 2) equal to the lower bound LB of the
corresponding instance. To interpret the results in the two
tables we note that a solution that is equal to LB is an
optimal one; furthermore, the RFF algorithm starts with the
FF solution, and hence, for any instances that it cannot find a
better solution it returns the FF solution.

Overall, we observe that RFF with the Depth-0 strategy
improves upon the FF solution in 58-77% of the problem
instances in the case of the NSFNet, and in 86-93% of
the instances in the case of GEANT2, depending on the
traffic distribution. Furthermore, it finds an optimal solution
in 28-41% (respectively, 28-62%) of the instances for NSFNet
(respectively, GEANT2), again depending on the traffic distri-
bution. The Depth-1 strategy achieves better performance, and
both the number of instances for which an optimal solution
is found, and those with a solution either better than that of
FF are higher than with the Depth-0 strategy. There is only
one exception: for the GEANT2 topology with the skewed low
distribution, the number of instances with a solution better than
that of FF is the same (86) under both strategies; but even in
this case, 22 of these instances show an improvement as the
Depth-1 strategy is able to find an optimal solution for them.

One of the unique features of the RFF algorithm is that it
is possible to calculate precisely the number of permutations
it explores. Recall from our earlier discussion that RFF ex-
plores (evaluates) a permutation in one of two ways: either
directly, when it visits the leaf of the tree representing the
permutation, or indirectly when it backtracks and abandons
further exploration of the subtree where the leaf representing
this permutation resides. In the latter case, all leaves of the
abandoned subtree represent solutions that are no better that
the one the algorithm has already found. The height of the
node at which the algorithm backtracks allows us to calculate
the number of leaves in the abandoned subtree, and hence the

number of permutations that are indirectly explored at that
point.

Tables V and VI list the number of permutations that
the RFF algorithm explores in the case of the NSFNet and
GEANT2 networks, respectively. To put these figures in
perspective, note that the number of permutations is 91! ≈
1.35E140 for NSFNet and 496! ≈ 1.98E1123 for GEANT2.
The values shown are averages that are taken separately over
the problem instances for which the algorithm 1) reached the
lower bound, or 2) did not reach the lower bound.

It is evident from the two tables that the RFF algorithm
evaluates an immense number of permutations for either
network, the vast majority of which are explored indirectly.
Nevertheless, the absolute numbers are impressive given that
the algorithm runs for either 270 min (NSFNet) or 80 min
(GEANT2). There are also several trends that can be observed
from the tables. First, the algorithm explores a larger number
of permutations when it cannot reach an optimal solution, as
in this case it runs for the entire alloted time T ; whereas,
it terminates as soon as it finds an optimal solution (i.e., one
equal to the lower bound), usually well before time T . Second,
the algorithm also explores a larger number of solutions under
the Depth-1 strategy compared to the Depth-0 strategy. Since
the Depth-1 strategy yields better solutions, the algorithm
determines earlier (i.e., closer to the root) that a subtree does
not contain better solutions, and hence, it eliminates larger
subtrees with a larger number of poor solutions. Finally, the
algorithm evaluates a number of permutations in the GEANT2
topology that is orders of magnitude greater compared to that
for the NSFNet topology, despite the fact that the running
time for the former is shorter. Again, this is due to the fact
that the subtrees eliminated in the GEANT2 case are far larger
than those eliminated in the NSFNet case: the height of the
GEANT2 tree is 496 whereas the height of the NSFNet tree
is only 91.

Tables VII and VIII provide insight into the running time
of the algorithm for the two networks. Specifically, the tables



list the minimum, median, average, and maximum time (in
seconds) that the algorithm takes to reach the best solution
it can find (i.e., the one that it returns upon termination), for
each of the two parallelization strategies; all values have been
rounded to the nearest integer. For the NSFNet, the algorithm
takes a median of 4 or 5 seconds, depending on the strategy,
to find the best solution. For the Depth-1 strategy that yields
lower solutions, it takes a about 25 min in the worst case to
find the best solution for a handful of outlier instances. In the
GEANT case, the median is around 42 sec for both strategies
and all three traffic distributions, and the maximum is around
40 min. In other words, the algorithm finds the best solution
rather quickly even for the larger GEANT2 network, and the
parallel threads spend most of their time exploring unfovorable
permutations

Recall that under the Depth-1 strategy each batch of threads
runs only for a small amount of time, namely, 1 min, and
yet this strategy outperforms the Depth-0 strategy in which
each batch runs for a significantly larger amount of time. The
results shown in Tables VII and VIII offer a likely explanation
for this outcome. Specifically, given that the algorithm finds
good solutions within seconds regardless of the parallelization
strategy, it does not pay off to continue the search within
the same area of the solution space for a long time. Each
thread in the Depth-0 strategy spends a significant amount of
time in the same solution neighborhood, and is trapped at a
local minimum. Since the total number of threads at Depth-0
is relatively small (i.e., itis equal to K), the strategy cannot
explore many diverse parts of the solution space. With the
Depth-1 strategy, on the other hand, each thread spends a small
amount of time in its region of the space, just enough to find
a good solution if one exists. Since the number of threads
is significantly larger and they start lower in the tree, they
cover many more parts of the permutation space and, hence,
the strategy is able to find better solutions that the Depth-0
strategy cannot reach. These findings indicate that whenever
either 1) a large degree of parallelization is possible, or 2)
a large amount of total running time T can be afforded, a
parallelization strategy that starts at a higher depth has each
thread execute for a small amount of time (1 min or even less)
is likely to yield better results.

Overall, our experiments demonstrate that the RFF algo-
rithm explores a vast number of symmetry-free solutions
and yields optimal or near-optimal solutions in seconds for
networks of moderate size. The algorithm is amenable to
parallelization and, since it simply applies the well-known and
widely adopted FF heuristic, it can be readily implemented in
production environments.

IV. CONCLUDING REMARKS

We have presented two parallelization strategies for re-
cursive first-fit (RFF), a symmetry-free optimal algorithm
for the offline spectrum allocation (SA) problem. Parallel
implementations of RFF explore vast amounts of the solution
space and yield solutions at or near the lower bound. We

plan to extend this work to explore the potential of RFF in
larger-size networks by extending the parallelization strategies
we developed above, and to combine RFF with the routing
algorithms we developed in [21], [22] so as to tackle large
RSA problems efficiently.

REFERENCES

[1] G. N. Rouskas and C. Bandikatla, “Recursive first fit: A highly parallel
optimal solution to spectrum allocation.” IEEE/Optica Journal of Optical
Communications and Networking, vol. 14, pp. 165-176, April 2022.

[2] B. Jaumard, C. Meyer, and B. Thiongane, “Comparison of ILP for-
mulations for the RWA problem,” Optical Switching and Networking,
vol. 3-4, pp. 157–172, 2007.

[3] M. Klinkowski, P. Lechowicz, and K. Walkowiak, “Survey of resource
allocation schemes and algorithms in spectrally-spatially flexible optical
networking,” Optical Switching & Networking, vol. 27, pp. 58–78, 2018.

[4] S. Talebi, F. Alam, I. Katib, M. Khamis, R. Khalifah, and G. N. Rouskas,
“Spectrum management techniques for elastic optical networks: A
survey,” Optical Switching & Networking, vol. 13, pp. 34–48, July 2014.

[5] R. Dutta and G. N. Rouskas, “Traffic grooming in WDM networks: Past
and future,” IEEE Network, vol. 16, pp. 46–56, Nov/Dec 2002.

[6] D. Zhou and S. Subramaniam, “Survivability in optical networks,” IEEE
Network, vol. 14, pp. 16–23, Nov/Dec 2000.

[7] R. Dutta and G. N. Rouskas, “A survey of virtual topology design
algorithms for wavelength routed optical networks,” Optical Networks,
vol. 1, pp. 73–89, January 2000.

[8] H. Wang and G. N. Rouskas, “Hierarchical traffic grooming: A tutorial,”
Computer Networks, vol. 69, pp. 147–156, August 2014.

[9] S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G. N. Rouskas,
“Spectrum assignment in optical networks: A multiprocessor schedul-
ing perspective,” Journal of Optical Communications and Networking,
vol. 6, pp. 754–763, August 2014.

[10] R. Ramaswami and K. Sivarajan, “Routing and wavelength assignment
in all-optical networks,” IEEE/ACM Transactions on Networking, vol. 3,
pp. 489–500, October 1995.

[11] B. Jaumard, C. Meyer, and B. Thiongane., “ILP formulations for the
routing and wavelength assignment problem: Symmetric systems,” in
Handbook of Optimization in Telecom., pp. 637–677, 2006.

[12] E. Yetginer, Z. Liu, and G. N. Rouskas, “Fast exact ILP decompositions
for ring RWA,” Journal of Optical Communications and Networking,
vol. 3, pp. 577–586, July 2011.

[13] H. Zang, J. P. Jue, and B. Mukherjee, “A review of routing and
wavelength assignment approaches for wavelength-routed optical WDM
networks,” Optical Networks, vol. 1, pp. 47–60, January 2000.

[14] J. Simmons and G. N. Rouskas, “Routing and wavelength (spectrum)
allocation,” in B. Mukherjee, I. Tomkos, M. Tornatore, P. Winzer, and
Y. Zhao (Editors), Springer Handbook of Optical Networks, Springer,
2020.

[15] Y. Zhu, G. N. Rouskas, and H. G. Perros, “A comparison of allocation
policies in wavelength routing networks,” Photonic Network Communi-
cations, vol. 2, pp. 265–293, August 2000.

[16] “NC State Henry2 Linux Cluster.” https://projects.ncsu.edu/hpc/About/
ComputeResources.php.

[17] Z. Ortiz, G. N. Rouskas, and H. G. Perros, “Scheduling of multicast
traffic in tunable-receiver WDM networks with non-negligible tuning
latencies,” Proc. ACM SIGCOMM, pp. 301–310, Sep. 1997.

[18] V. Sivaraman and G. N. Rouskas, “HiPeR-`: A High Performance
Reservation protocol with `ook-ahead for broadcast WDM networks,”
in Proceedings of INFOCOM ’97, pp. 1272–1279, IEEE, April 1997.

[19] L. Xu, H. G. Perros, and G. N. Rouskas, “A simulation study of optical
burst switching access protocols for WDM ring networks,” Computer
Networks, vol. 41, pp. 143–160, January 2003.

[20] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and
A. Hirano, “Distance-adaptive spectrum resource allocation in spectrum-
sliced elastic optical path network,” IEEE Communications Magazine,
vol. 48, no. 8, pp. 138–145, 2010.

[21] M. Fayez, I. Katib, G. N. Rouskas, T. F. Gharib, and H. Faheem,
“A scalable solution to network design problems: Decomposition with
exhaustive routing search,” Proc. IEEE GLOBECOM 2020.

[22] G. N. Rouskas and C. Bandikatla, “Parameterized exhaustive routing
with first fit for RSA problem variants,” Proc. IEEE GLOBECOM 2021.


