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Abstract—Network operators offer a variety of tiered services
in which users may select only from a small set of tiers which
offer progressively higher levels of service. Service bundling,
whereby several services are combined together and sold as
a single package, is also common in the telecommunications
market. We consider the problem of determining optimal tiering
structures for service bundles using tools from economics and
utility theory. Our work provides insight into the selection and
pricing of Internet tiered services.

I. I NTRODUCTION

The termproduct/service bundle refers to combining several
products or services together and selling them as a single
package. Product bundling is widely used as a marketing
strategy [3]. Bundles are often priced at a discount to the
total price that their constituent products or services would
fetch if they were sold separately. Bundling can be beneficial
to both consumers and sellers. The former, in addition to
the lower overall price, may appreciate the lower transaction
costs and simplified decision process compared with shopping
for individual products or services, and may experience a
better overall performance due to complementarities among
the bundle components. For sellers, bundling has the potential
to reduce production and transaction costs, reduce customer
churn, and increase revenue and profitability. In particular,
bundling is most successful as a marketing strategy whenever
the marginal costs of bundling are low, customer acquisition
costs are high, and there are economies of scale in produc-
tion and distribution of the bundled products. Consequently,
bundling is common in industries that share these characteris-
tics, including the telecommunications and cable TV industry,
the software business, and the fast food industry, among others.

Network operators have also developed a variety oftiered
service models in which users may select only from a small
set of servicetiers which offer progressively higher levels
of service. Service bundles, and associated tiered structures,
are prevalent in the telecommunications market. For instance,
wireless providers combine voice, data, and text services into
tiered subscription packages marketed to users, where a given
tier corresponds to a certain combination of values for voice
minutes, Internet data, and text messages available to the
user during the billing period. Similarly, ISPs may bundle a
broadband access service with an email or web hosting service
(for which fees may be based on the amount of traffic handled),
and possibly an online storage service (characterized by the
amount of data the user may store on the provider’s servers).
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In [6] we investigated the benefits of tiered service in the
context of MPLS networks. In particular, we considered the
problem of “sampling” the continuous range of possible rates
to select a small set of discrete bandwidth levels (tiers) that
are made available to users, and we presented a sophisticated
dynamic programming algorithm of linear complexity to ob-
tain the optimal set of bandwidth tiers. The main contribution
of this study was to demonstrate that the benefit of offering
a small, predetermined set of tiers rather than supporting
arbitrary rates over a large continuous range comes almost
for free, as the performance degradation (e.g., in terms of call
blocking) compared to a continuous-rate network is negligible.
In more recent work [5] we developed an economic model for
reasoning about and pricing Internet tiered services.

In [5], [6] we considered a single network service. With
the proliferation of network service bundles, it is desirable to
design multi-dimensional tiered structures, where each dimen-
sion corresponds to a certain level of one distinct service in the
bundle. Note that tiering is even more important for service
bundles since the space of potential service levels grows asthe
product of the space for each service component. The objective
in this case would be to determine a tiered structure that is
jointly optimal for a vector of network services. With such a
tiered structure, a user with a certain level of requirements for
each service component would subscribe to the tier that offers
a level at least equal to its requirements across all dimensions
of service. In [4] we modeled this problem as a directionalp-
median problem in multiple dimensions and we showed it to
be NP-complete. We also employed concepts from location
theory to develop efficient algorithms that construct near-
optimal tiering structures for service bundles given some
information regarding the user demands and the cost to the
provider for providing the services.

In this paper we consider the problem of determining
optimal tiering structures for service bundles using tools
from economics and utility theory. The paper is organized
as follows. In Section II we develop an economic model for
bundled network services, we introduce the Cobb-Douglas
utility, and formally define the problem of selecting jointly
the tiers and their prices so as to maximize the expected
profit (i.e., provider surplus [2]) of the ISP under user budget
constraints. In Section III we develop dynamic programming
algorithms both for the case of predetermined tiers (i.e., when
only price is subject to optimization) and the general version
of the problem. We present numerical results in Section IV,
and we conclude the paper in Section V.



II. ECONOMIC MODEL OF SERVICE BUNDLING

Consider an ISP that offers two services. One service,
characterized by parameterx (e.g., access speed), may be
offered at levels between a minimumxmin and a maxi-
mum xmax. The second service, say, web hosting, is also
characterized by a single parametery (e.g., corresponding to
monthly amount of traffic handled), withy also taking values
between a minimumymin and a maximumymax level. The
ISP bundles the two services into a package, and offers a
tiered structure withp tiers for the combined service. We let
Z = {(z1, t1), . . . , (zp, tp)} denote the set ofp distinct service
tiers, where thej-th tier (zj , tj), t = 1, . . . , p, corresponds to
an amountzj for servicex and an amounttj for servicey.

We let C(x, y) denote the cost to the ISP of offering
a service bundle(x, y) of the two services. We also let
P (zj , tj), j = 1, . . . , p, denote the price that the ISP charges
subscribers to tier(zj , tj). Without loss of generality, we
assume that tiers are labeled such that

P (zj−1, tj−1) < P (zj , tj), j = 2, . . . , p. (1)

For mathematical convenience, we also define the “null” ser-
vice tier(z0 = 0, t0 = 0) with priceP (z0, t0) = 0, as well as a
fictitious (p+1)-th service tier such thatP (zp+1, tp+1) = ∞.

The value that users receive from a bundle(x, y) of the
two services is described by the utility functionU(x, y). In
essence, the utility function imposes a pairwise ranking of
bundles by order of preference, wherepreference is a transitive
relation. More precisely, ifU(x, y) > U(x′, y′), then bundle
(x, y) is said to be strictly preferred to bundle(x′, y′). On
the other hand, ifU(x, y) = U(x′, y′), the two bundles are
equally preferred, and the consumer is said to beindifferent
between the two bundles. In particular, a curve

U(x, y) = u (2)

is referred to as anindifference curve since the user has no
preference for one bundle over another among the bundles
represented by points along this curve. In other words, each
point on an indifference curve provides the same level of
utility (value, or satisfaction) to the user. Indifferencecurves
are typically used to represent demand patterns for productor
service bundles observed over a population of consumers.

Fig. 1 shows a set of indifference curves, each associated
with a different utility level. In this figure, utility is measured
along thez (vertical) axis, and the indifference curves are
simply the projections of the functionU(x, y) = u, for various
values of constantu, on thexy plane. In Fig. 1, users would
rather be on curveI7 rather thanI6; they would also rather
be on curveI6 rather than onI5, and so on, but they do not
care where they are on a given indifference curve. Indifference
curves are similar to topographical maps, in that each point
along a given curve is at the same “altitude” above the floor.

The characteristics of the curves in Fig. 1 are typical of
indifference curves in general. Specifically, indifference curves
are defined only on the positive quadrant of thexy plane,
and they are negatively sloped and convex; in other words,
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Fig. 1. Indifference curves,I1, . . . , I7, such thatU(x, y) = constant along
each curve (utility is measured on the verticalz axis)

as the quantity of one service or goodx (respectively,y) that
is consumed increases, it must be offset by a decrease in the
quantity consumed of the other goody (respectively,x), so as
to keep utility (satisfaction) constant.

The Cobb-Douglas family of functions [1] generate indif-
ference curves with the characteristics shown in Fig. 1 and
are widely used as utility functions in this context. This
parameterized family of functions is defined as:

U(x, y) = xαy1−α, 0 ≤ α ≤ 1, (3)

whereα is a parameter whose value is used to specify a certain
function within the family. Then, the indifference curve for a
constant levelu of utility is given by:

y = u
1

1−α x
−α

1−α (4)

We will use the Cobb-Douglas utility in (3) as the utility
function in this paper.

We make the assumption that each user has a budget
B, where B is a random variable defined in the interval
[Bmin, Bmax]. We let f(B) and F (B) denote the PDF and
CDF, respectively, of random variableB. We make the as-
sumption that a consumer will make a purchase if and only
if the price of the product is no greater than the consumer’s
budget. More specifically, given a setZ of p tiers and a price
structure consistent with (1), a user will subscribe to the tier
(zj , tj) with the highest indexj whose priceP (zj , tj) does
not exceed the user’s budgetB.

We are interested in selecting a set of service tiers for
the bundled services, and determining their prices, so as to
maximize the expected provider surplus (i.e., profit). We call
this the maximization of expected provider surplus in two
dimensions (MAX-ES-2D) problem, defined formally as:

Problem 2.1 (MAX-ES-2D): Given the cost and utility
functions C(x, y) and U(x, y), respectively, defined in the
domain [xmin, xmax] × [ymin, ymax], and the CDFF (B) of
user budgets, find a setZ = {(z1, t1), . . . , (zp, tp)} of p ser-
vice tiers and their respective pricesP (zj , tj) that maximizes
the following objective function representing the expected
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provider surplus:

Q̄pr(Z) =

p
∑

j=1

((P (zj , tj) − C(zj , tj))

× (F (P (zj+1, tj+1)) − F (P (zj , tj)))) (5)

under the constraints:

P (z1, t1) < P (z2, t2) < . . . < P (zp, tp) (6)

P (zj, tj) ≤ U(zj , tj), j = 1, . . . , p (7)

xmin ≤ zj ≤ xmax, ymin ≤ tj ≤ ymax, j = 1, . . . , p (8)

Note that the termsF (P (zj+1, tj+1)) − F (P (zj , tj)), j =
1, . . . , p, in the right-hand side of (5) represent the
fraction of users whose budgets fall in the intervals
[P (zj , tj), P (zj+1, tj+1)), hence they will subscribe to tier
j (recall also that we have definedP (zp+1, tp+1) = ∞, and
that F (P (zp+1, tp+1)) = 1). Also, constraint (7) states that
the price of a service tier has to be no greater than the utility
(value) of this tier to users, since otherwise users will not
subscribe even if their budget allows them to do so.

We have the following result.
Lemma 2.1: Let Z = {(z1, t1), . . . , (zp, tp)} be an optimal

solution to MAX-ES-2D. Letuj = U(zj, tj), j = 1, . . . , p.
Then, for all j, tier (zj , tj) is the point on the indifference
curveU(x, y) = uj that minimizes the costC(x, y).
Proof. By contradiction. Assume that in the optimal solution
the j-th tier is such thatC(zj , tj) is not the minimum cost
point on the indifference curveU(x, y) = uj . Let (z′j , t

′

j) be
such a minimum cost point, and letZ ′ be the solution derived
from Z with (zj , tj) replaced by(z′j , t

′

j). Since the utility and
price of thej-th tier is not affected by this change, from (5) it
is clear thatQ̄pr(Z

′) > Q̄pr(Z), contradicting the assumption
that Z is an optimal solution.

III. A PPROXIMATE SOLUTION TO MAX-ES-2D

A. The Fixed Tier Case

Consider first a special variant of the MAX-ES-2D problem
in which the p service tiers are predetermined and part of
the input, and not subject to optimization; this variant arises
in the case of the uniform and exponential tiering structures
that we introduce in Section IV. The cost of each tier is
completely determined in this case, and for simplicity we let
Cj = C(zj , tj), j = 1, . . . , p. The price of each tierj is equal
to the utility, i.e., Pj = P (zj , tj) = U(zj , tj), and we let
P0 = P (xmin, ymin) = U(xmin, ymin). Hence, the provider’s
surplus for a fixed tier structureZ can be obtained from the
following expression:

Q̄(Z) =

p−1
∑

j=0

(Pj − Cj)(F (Pj+1) − F (Pj)) (9)

B. Cost Minimization on an Indifference Curve

Before we tackle the general version of the MAX-ES-2D
problem, we note that, because of Lemma 2.1, each tier in an
optimal solution is the point on an indifference curve with the
minimum cost among all points on this curve. Therefore, let
us consider the optimization problem of the form:

Minimize C(x, y) subject to U(x, y) = u. (10)

Depending on the form of the cost and utility functions,
this problem may be solved exactly or approximately using
standard optimization techniques. Here we will only consider
cost functionsC(x, y) that are linear functions ofx andy:

C(x, y) = c1x + c2y. (11)

Assuming Cobb-Douglas utility functions as in (3), we may
solve fory as a function ofx:

y =
( u

xα

)1/(1−α)

(12)

Substituting this value ofy into the cost function (11), we
obtain an expression for the cost that is a function ofx only:

C(x) = c1x + c2

( u

xα

)1/(1−α)

. (13)

The first and second derivatives ofC(x) are:

C′(x) = c1 + c2 u
1

1−α

(

−α

1 − α

)

x
−1

1−α (14)

C′′(x) = c2 u
1

1−α

α

(1 − α)2
x

α−2

1−α . (15)

If there are no other constraints, we can just letC′(x) = 0,
and obtain the optimal values:

x⋆ = u

(

c1(1 − α)

c2α

)α−1

, y⋆ = u

(

c1(1 − α)

c2α

)α

. (16)

It is easy to prove thatC′′(x⋆) > 0. Thus,C(x) achieves its
minimum value atx⋆, hence the original cost functionC(x, y)
is minimized at(x⋆, y⋆).

Recall, however, thatx and y are defined only between
respective minimum and maximum values. Consider the above
optimization problem under the additional constraints:

xmin ≤ x ≤ xmax ymin ≤ y ≤ ymax. (17)

It easy to see that whenx < x⋆, C′(x) < 0, and when
x > x⋆, C′(x) > 0. Consequently, whenever the unconstrained
minimum point (x⋆, y⋆) from (16) lies outside the feasible
region defined by constraints (17), the minimum point within
the feasible region can be obtained as follows:

• if x⋆ > xmax, thenx⋆ = xmax, andy⋆ =
(

u
xα

max

)
1

1−α

;

• if x⋆ < xmin, thenx⋆ = xmin, andy⋆ =
(

u
xα

min

)
1

1−α

;

• if y⋆ > ymax, thenx⋆ =
(

u
y1−α

max

)
1

α

, andy⋆ = ymax; and

• if y⋆ < ymin, thenx⋆ =
(

u
y1−α

min

)
1

α

, andy⋆ = ymin.
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C. Service Tier Optimization
The most general version of the MAX-ES-2D problem

involves the selection of service tiers and their respective
prices so as to maximize provider surplus, subject to the
constraints (6)-(8). The utility functionU(x, y) provides a
relative ranking of service bundles(x, y) in terms of user
preference, and the utility of any service tier will lie in the
interval [Umin, Umax], where Umin = U(xmin, ymin) and
Umax = U(xmax, ymax). Therefore, the problem can be
logically decomposed into two subproblems:

1) find the indifference curveIj (i.e., utility value uj ∈
[Umin, Umax]) on which each optimal service tier
(zj , tj) lies and set the price of the tier touj ; and

2) set tier(zj , tj) to the point in indifference curveIj , j =
1, . . . , p, that minimizes the provider costC(zj , tj).

The second subproblem was addressed in the previous subsec-
tion. Next, we develop a dynamic programming solution for
the first subproblem.

To this end, we employ a discretization technique. Specif-
ically, we divide the domain[Umin, Umax] of the utility
function U(x) into K > p equal-length sub-intervals, such
that the right endpointUk of the k-th sub-interval isUk =
k(Umax−Umin

K , k = 1, . . . , K. We also restrict the tiers to take
values only from the discrete set{Uk} of indifference curves,
rather than the continuous set[Umin, Umax]. Let Υ(k, l, w)
denote the optimal value of (5) when there arek sub-intervals,
l tiers and thel-th tier is set at the indifference curve of utility
value Uw, w ≤ k. Let also C⋆

w, w = 1, . . . , K, denote the
minimum cost on the indifference curve of utilityUw. Then,
we may write the following recursion:

Υ(k, 1, w) = (Uw − C⋆
w)(F (Uk) − F (Uw)),

k = 1, . . . , K; w = 1, . . . , k (18)

Υ(k, l + 1, w) = max
q=l,...,w

{(Uw − C⋆
w)(F (Uk) − F (Uw))

+ max
v=l,...,q

{Υ(q, l, v)}

}

l = 1, . . . , p − 1; k = 2, . . . , K; w = 1, . . . , k. (19)

Expression (18) can be explained by noting that when there
arek sub-intervals and only one tier with a price set toUw,
the customers who subscribe to the service at this price are
those with budgets equal to or greater thanUw, or a fraction
(F (Uk) − F (Uw)) of the total user population. For each
subscriber, the provider has a profit ofUw − C⋆

w, hence the
expected surplus is given by (18). Expression (19) can be
similarly explained. OnceΥ(k, l, w) has been computed for
all values ofk, l, andw, the overall optimal forp tiers and
K intervals can be determined as:

max
w

Υ(K, p, w) (20)

The overall running time complexity of this dynamic program-
ming algorithm isO(pK4).

As K → ∞, this discrete version of MAX-ES-2D ap-
proaches the original version in which the tiers are continuous
variables. We have conducted a large number of experiments

(omitted due to space constraints) which indicate thatK =
100 is sufficient for the dynamic programming algorithm to
converge; hence, we use this value in the performance study
we present in the next section.

IV. N UMERICAL RESULTS

In order to evaluate tiering structures for service bundles,
we consider an ISP offering a bundle of two services, namely,
access speedx and web hosting traffic handledy. The domain
of servicex is [256 Kbps, 12 Mbps], while the domain of
servicey is [100 MB, 1 TB]. We consider the following tiering
structures in our study:

1) Optimal: the set of tiersZ = {(z1, t1), . . . , (zp, tp)}
obtained as a solution to the dynamic programming
algorithm (18)-(20), wherezi ∈ [256 Kbps, 12 Mbps]
and ti ∈ [100 MB, 1 TB].

2) Optimal-rounded: the set of tiers obtained after round-
ing the values of each tier(zi, ti) ∈ Z such thatzi is
rounded to the nearest multiple of 256 Kbps andti is
rounded to the nearest multiple of 100 MB.

3) Uniform-uniform: the tier structure constructed by (1)
obtaining a uniform tiering structure{z1, . . . , zp} for
servicex by spreading thep tiers across the domain
[256 Kbps, 12 Mbps], (2) obtaining a uniform structure
{t1, . . . , tp} for service y by spreading thep tiers
across the domain [100 MB, 1 TB], and (3) pairing the
tiers of same index in the two sets to form the tiers
{(z1, t1), . . . , (zp, tp)} for the bundle.

4) Exponential-exponential: this tier structure is obtained
in a similar manner as uniform-uniform, except that the
p single-service tiers divide their respective domain into
exponential intervals (i.e., intervals that double in length,
from left to right).

5) Uniform-exponential: the tier structure in whichp
uniform (respectively, exponential) tiers are obtained for
servicex (respectively, servicey), which are then paired
to obtain thep tiers for the service bundle.

6) Exponential-uniform: the tiers for servicex are expo-
nential and those of servicey are uniform.

Note that uniform and exponential tiered structures are sim-
ilar to those employed by major ISPs (e.g., ADSL tiers of
768 Kbps, 1.5 Mbps, 3 Mbps, 6 Mbps, etc). For the last
four tiering solutions, thep > 1 service tiers are fixed.
Therefore, the provider surplus in this case was obtained from
expression (9).

We use the Cobb-Douglas utility function in expression (3)
with parameterα = 0.6, and a linear cost function as in
expression (11), withc1 = 0.1 and c2 = 0.01; these values
for c1 and c2 were selected so that neither term of the cost
function dominates across the domains of servicesx and y.
Plots of the utility and cost functions are shown in Fig. 2.

In order to study the effect of the distribution of user
budgets, we consider three distinct distributions in the domain
[Bmin = 10, Bmax = 1000]:

• a decreasing distribution, f(B) = − 2B
(Bmax−Bmin)2 +

2Bmax

(Bmax−Bmin)2 , with mean 345, in which the mass of the
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Fig. 2. Utility and cost functions used for the experiments

distribution is concentrated at lower budget values (less
affluent population),

• a uniform distribution with PDFf(B) = 1
Bmax−Bmin

=
1

990 and mean 495, and
• an increasing distribution, f(B) = 2B

(Bmax−Bmin)2 −
2Bmin

(Bmax−Bmin)2 , with mean 650, in which the mass of the
distribution is concentrated at higher budget values (more
affluent population).

Figs. 3-5 plot the expected provider surplus for the de-
creasing, uniform, and increasing, respectively, distribution of
user budgets. Each figure shows six curves, corresponding
to the six tiered structures above. A first observation is that,
for a given tiered structure and a given number of tiers, the
expected provider surplus depends directly on the distribution
of user budgets. Specifically, the provider surplus increases
from Fig. 3 (decreasing distribution) to Fig. 4 (uniform distri-
bution) to Fig. 5 (increasing distribution). This result isdirectly
due to the fact that the average user budget is lowest under
the decreasing distribution and highest under the increasing
distribution.

We also observe that the optimal and optimal-rounded
structures outperform the other four fixed-tier structures. The
optimal-rounded curves lie a little lower than the correspond-
ing optimal curves, as a result of rounding in two dimensions.
More importantly, structures which include exponential tiering
of at least one service are the worst performers in terms of
provider profits. This behavior demonstrates that exponential
tiers currently favored by major ISPs are far from optimal.
Overall, these results provide a strong indication that theop-
timization methodology we developed in this paper represents
a valuable tool for service providers.

V. CONCLUDING REMARKS

We have investigated tiered structures for bundles of net-
work services with the objective of maximizing provider
profits under user constraints. We have developed an efficient
dynamic programming algorithm for determining jointly the
service tiers and their prices. Although we only considered
bundles of two services, our work may be extended to bundles
of more than two services.
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