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Abstract— We consider Internet broadband access as an elastic
service whose value varies across segments of the user population.
We show that introducing multiple tiers of service can be an
effective market segmentation strategy that can lead to an
increase of profits for the ISP. We also develop an efficient
dynamic programming algorithm for the problem of determining
optimally both the service tiers and their prices. Our approach
provides new insights into the selection and pricing of Internet
tiered services, and our results indicate that exponential tiering
structures adopted by ISPs are far from optimal.

I. INTRODUCTION

Historically, packet-switched computer networks, including
the Internet and legacy networks based on ATM or Frame
Relay technologies, are designed to be continuous-rate. The-
oretically speaking, continuous-rate networks may allocate
bandwidth at very fine granularities; for instance, one client
may request a rate of 98.99 Megabit per second (Mbps), while
another customer may ask for 99.01 Mbps. Clearly, the option
of requesting arbitrary rates offers clients maximum flexibility
in utilizing the available network capacity.

On the other hand, supporting bandwidth allocation at
such extremely fine granularity may seriously complicate the
operation and management of the network. Based on the
above example, the network provider faces the problem of
designing mechanisms to distinguish between the two rates
(i.e., 98.99 Mbps vs. 99.01 Mbps) and enforce them in an
accurate and reliable manner. However, the task of differenti-
ating between the two users on the basis of these two rates may
be extremely difficult, or even impossible to accomplish for
traffic of finite duration, undermining the network’s ability to
support important functions such as robust traffic policing or
accurate customer billing. Furthermore, link capacity across
a continuous-rate network may become fragmented, posing
significant challenges in terms of traffic engineering.

In practice, most network operators have developed a variety
of tiered service models in which users may select only from
a small set of service tiers (levels) which offer progressively
higher rates (bandwidth). The main motivation for offering
such a service is to simplify a wide range of core functions
(including network management and equipment configuration,
traffic engineering, service level agreements, billing, and cus-
tomer support), enabling the providers to scale their operations
to hundreds of thousands or millions of customers. Returning
to the previous example, a tiered-service network might assign
both users requesting 98.99 Mbps and 99.01 Mbps to the next
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higher available rate, say, 100 Mbps. In this case, there is no
need to handle the two customers’ traffic differently; also, the
network operator only needs to supply policing mechanisms
for a small set of rates, independent of the number of users.

Consider a network that offers a service characterized by a
single parameter, e.g., the bandwidth of the user’s access link.
A tiered-service network is one that offers p levels (tiers) of
service, where typically p is a small integer, much smaller than
the number n of (potential) network users (i.e., p < n). Let
Z ={z,%2, -, 2} denote the set of service tiers offered by
the network provider. Without loss of generality, we make the
assumption that the service tiers are distinct and are labeled
such that z; < z3 < --- < zp. Users are limited to only these
p tiers, and may subscribe to any tier depending on their needs
and their willingness to pay the corresponding service fee. In
particular, z; is the minimum and z, the maximum amount
of service that a user may receive. In the case of residential
Internet access, for instance, z; may correspond to a minimum
bandwidth for the service to be considered “broadband,” while
z, may correspond to the capacity of the access link, e.g., as
determined by limitations imposed by ADSL technology.

According to this definition, traditional telephone networks
and transport networks based on SONET/SDH technology
belong to the class of tiered-service networks. Indeed, such
networks allocate bandwidth in discrete tiers that are multiples
of the slot size in the underlying TDM system.

Current tiered service offerings by major ISPs can be
broadly classified in two categories based on the tiering
structure. The structure of service tiers targeted to business
customers is based on the bandwidth hierarchy of the under-
lying transport infrastructure (e.g., DS-1, DS-3, OC-3, etc.),
While this is a natural arrangement for the service provider,
it is unlikely that hierarchical rates designed decades ago for
voice traffic would be a good match for today’s business data
applications. The second class employs exponential tiering
structures in which each tier offers twice the bandwidth of
the previous one, as exemplified by the various ADSL tiers
(e.g., 384 Kbps, 768 Kbps, 1.5 Mbps, 3 Mbps, etc.) available
through several ISPs. While such simple tier structures may be
an appropriate choice for marketing purposes, the relationship
between these exponentially increasing levels of service (and
their price) and the usage patterns (and ability to pay) of the
population of potential subscribers is open to debate.

An early study by Lea and Alyatama [3] investigated the
benefits of “bandwidth quantization” in packet-switched net-
works. In their terminology, “bandwidth quantization” refers



to sampling the continuous range of possible rates to select
a small set of discrete bandwidth levels (tiers) that are made
available to users. This work presented a heuristic based on
simulated annealing to obtain a sub-optimal set of discrete
bandwidth levels of service. The main contribution of this
study was to demonstrate for the first time that this benefit
comes almost for free, as even with a sub-optimal set of tiers
the performance degradation (e.g., in terms of call blocking)
compared to a continuous-rate network is negligible. In [6]
we showed that the problem considered by Lea and Alyatama
in [3] can in fact be solved optimally, and we presented a
sophisticated optimal algorithm of linear complexity in the
context of MPLS networks.

In more recent work [4] we developed an economic model
for reasoning about and pricing Internet tiered services. In
that work, we considered a market scenario in which all users
receive the same value from the service offered by the network
operator, or equivalently, all users are characterized by the
same utility function U(z). A market in which all users value
a service (or product) similarly is said to be inelastic [2].
Certain essential goods (e.g., gasoline or milk) and services
that everyone needs tend to be inelastic, at least in the short
term. Markets for most other products and services tend to be
elastic, in that their value may be perceived quite differently
across the population of consumers. Hence, in elastic markets,
consumer behavior with respect to pricing may vary widely
depending on the underlying utility curve that characterizes
the specific consumer.

In this paper we consider broadband Internet access as
an elastic service. Specifically, we assume that users are
partitioned into classes, each class characterized by a distinct
utility function, and we study the problem of selecting jointly
the set of service tiers and their prices so as to maximize
the profit (i.e., provider surplus [1]) of the ISP. The paper is
organized as follows. In Section II we introduce a model of
user diversity. For the special case of a single tier we develop
in Section III an optimal algorithm to determine both the
level of service to be offered and its price. In Section IV we
show that introducing multiple tiers can be an effective market
segmentation strategy that may lead to an increase in profits.
We present performance results in Section V, and we conclude
the paper in Section VL.

II. EcoNoOMIC MODEL OF USER DIVERSITY

We consider the market for broadband Internet access with
one ISP and multiple users. The service of the ISP is described
by the access speed x, with x taking values in the interval
[Tmin, Tmaz], Where Ty, and X,q. correspond to the lowest
and highest speed, respectively, that the ISP may offer. The
cost to the ISP of providing an amount z of service is given
by the cost function C'(z). The ISP offers a tiered bandwidth
service with p tiers. Let Z = {z1,..., z,} denote the set of
distinct service tiers, labeled such that z; < ... < z,. We also
let P(z;) denote the price the ISP charges for tier z;. Price
is an increasing function of service x, hence, ¢ < j implies
P(z;) < P(z;). For notational convenience, we assume the
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Fig. 1. Diversity of user utility functions, 7" = 4 classes of users

existence of a “null” service tier zo for which P(z¢) = 0, and
also that P(zp41) = oo; the latter ensures that no user may
receive service at an amount higher than the highest tier.

Users belong to one of 1" classes, 7' > 1. Users in class ¢
are characterized by utility function U;(x). We express cost,
price, and utility in the same units, e.g., US$. The various
utility curves indicate the users’ willingness to pay, and can
be determined using market research tools such as surveys or
conjoint analysis [5]. Fig. 1 illustrates the user diversity with
respect to utility curves for 7' = 4 classes. We let f;,t =
1,...,T, denote the fraction of the user population that is
in class t; obviously, f1 + ...+ fr = 1. We also make the
reasonable assumption that the cost C'(x) and utility functions
Ui(x),t =1,...,T, are continuous, twice differentiable, and
non-decreasing in the interval [Z,,in, Tmaz)-

If the price set for a product is below the value of this
product to a consumer, then the consumer will purchase the
product. On the other hand, if the price of the product is
higher than the consumer’s perceived value of the product,
then they will not make the purchase. Consequently, users
in class ¢ will subscribe to the highest tier z; for which the
price charged does not exceed its value Us(z;) to the users.
More formally, given the utility and price functions, there is
an implied mapping h : {1,...,T} — Z from the set of user
classes to the set of tiers, where h(t) = z; if and only if:

P(Z]) < Ut(Zj) <P(ZjJrl),t:1,...,T;j:O,1,...,p. (1)

Note that, if the price of the lowest tier is higher than the utility
of some class of users, then, from (1) these users are forced
to “subscribe” to the “null” service tier zg, which implies that
they will not use the service. Fig. 2 illustrates the mapping
of T = 2 classes of users to p = 5 service tiers based of
the given price structure imposed by the step pricing function
P(z). Specifically, users in class 1 and class 2 are mapped to
tiers z4 and zo, respectively, consistent with expression (1).
From the point of view of the ISP, there is a clear tradeoff
in setting the price for the service tiers. If the price for some
tier is high, the ISP will lose revenue as some customers may
decide to subscribe to a lower tier or not use the service at all.
On the other hand, if the ISP prices the tiers conservatively, it
may attract some low-utility customers, but may also forego a
significant amount of revenue from customers with high utility
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who would be willing to pay more for the service. Therefore,
the objective is to select jointly the p service tiers to be offered
and their prices so as to maximize the provider surplus. We
will refer to this problem as the surplus maximization (MAX-S)
problem, and formally define it as follows.

Problem 2.1 (MAX-S): Given the cost function C'(z), an
integer 7T', the fraction f; of users in class ¢ and their utility
Ui(z),t = 1,...,T, and the domain [Zmin, Tmaz] Of the
cost and utility functions, find a set Z = {z1,...,2,} of p
service tiers and their respective prices P(z;) that maximize
the following objective function (provider surplus):

Spr(21,...,2p) = Z[P(ZJ) - Cl&)l Z fo @

J=1 h(t)=z;
T35 =0,...,p):

under the constraints (t = 1,.
h(t) = zj iff P(ZJ) < Ut(Zj) < P(Zj+1) 3)

0 =20 < Tmin < 21 < 22 < < 2p < Taz 4)
The following lemma states that the price of each service
tier in the optimal solution may take one of 7" distinct values.
Lemma 2.1: Let Z = {z1,...,%,} be an optimal solution
to the MAX-S problem and P(z;),j =1,...,p, be the price
of the corresponding tiers. Then:

Jte{l,....T}: P(z;)) =Ulz), j=1,...,p. ()

Proof. By contradiction. Assume that the price of tier z; is
such that Us(z;) < P(z;) < Ui(z;) for some classes s # t. In
other words, class-¢ users (and, perhaps, users of some class g
with Ugy(z;) > Uy(z;)) subscribe to tier z;, whereas users of
class s and any class r with U,.(z;) < Us(z;) do not subscribe
to tier z;. Therefore, the price of the tier can be raised to
P'(z;) = Us(z;) without affecting the set of users subscribing
to this or any other tier. This increase in price will result in an
increase to the provider surplus, contradicting the assumption
about optimality of the original price P(z;). |

III. THE SINGLE TIER CASE

Let us first consider the simpler case of p = 1, ie., a
single level of service z1. Due to Lemma 2.1, we know that
P(z1) = U(z1) for some ¢, and our goal is to determine

an optimal value for z; € [Zmin, Tmaz] and a corresponding
optimal price. To this end, we distinguish two cases.

Case 1. The T utility functions U;(x),t = 1,...,T, and the
cost function C'(z) do not pairwise intersect anywhere in their
domain [Zin, Tmaz|. Without loss of generality, we make the
assumption that C'(z) lies below all of the T utility functions
in the same interval. If that is not true, we can ignore the
utility functions that lie below C(z) and only consider the
T’ < T functions that lie above C(x). Doing so will not
affect optimality, since setting the price below cost will result
in a loss for the provider.

Now let us relabel the 7" utility functions such that:

C(z) <Ui(z) < Us(z) < ... < Up(x),VT € [Tmin, Tmaz),

and define F} = ZST:t fs,t = 1,...,T, as the fraction of
users falling in the classes with utilities equal to, or higher
than, that of class ¢.

If the provider offers a single tier in the amount of 2! and
prices it according to the corresponding utility of class-t users,
then we can write the provider surplus from (2) as:

S(21) = F [U(zf) — C(z)], t=1,...,T. (6)

Therefore, we can find the optimal tier z1 € [Zymin, Tmaz] and
its price using these two steps:

1) For each class ¢, determine the value of zf S
[Timin, Tmaz] that maximizes the quantity S;),(z{) in (6).

2) Set the tier z; to the quantity 27, and its price to Us(2{),
where ¢ is such that Sgr(zf) is maximum among the T
quantities computed in Step 1.

Case 2. Some of the utility and cost functions pairwise inter-
sect in one or more points within their domain [Z,in, Tmaz)-
In this case, it is always possible to partition this interval
into sub-intervals within which none of the functions intersect.
Returning to Fig. 1, we can see that the domain of the utility
functions can be divided into two sub-intervals, [Zin,21]
and [z1, Tymaz], Within which the functions do not intersect.
Therefore, we can obtain the optimal value for z; and the
corresponding price by following the following steps:

1) Divide the interval [Zin, maz] into K non-overlapping
sub-intervals ex, k = 1,..., K, such that no two utility
or cost functions intersect within each sub-interval ey.

2) For each sub-interval ey, find the optimal value z7(k)
and optimal price U, (z{(k)), as in Case 1 above.

3) Set the tier z; and its price to the corresponding values
for the interval e; with the maximum provider surplus
Sg.(2{(k)) among all the intervals in Step 2.

Based on the above discussion, in order to find the optimal
solution to the MAX-S problem for p = 1 tier, we need to
determine the maximum of the provider surplus function in
expression (6) in any sub-interval [x1,x2] of [Tmin, Tmaz)-
Let us define function g(z) for some class ¢ as:

g(x) = Uz) — C(z), € [z1,2]. (7

Since the utility and cost functions are continuous and twice
differentiable throughout their domain, then function g(x)



is continuous and twice differentiable in any sub-interval
[x1, x2]. Therefore, we can find its maximum as follows:

1) The second derivative g”(z) < 0 everywhere in [x1, z2).
Then, g(x) is concave in the sub-interval, and its maxi-
mum can be found by solving the equation ¢'(z) = 0.

2) The second derivative g”(z) > 0 everywhere in [x1, z2).
Then, g(z) is convex in the sub-interval, and its maxi-
mum values occur at either x; or x,.

3) The second derivative changes sign in the sub-interval.
In this case, we subdivide [z, x3] into intervals such
that the second derivative ¢ is either non-negative or
non-positive everywhere in the smaller intervals. We
obtain the maximum of ¢g(z) within each smaller interval
according to either case 1 or case 2 above, from which
we can select the overall maximum in [z1, z3].

IV. THE MULTIPLE TIER CASE: MARKET SEGMENTATION

Let us now return to the general case of a tiered service
with p > 1 tiers. Such a service can be viewed as a market
segmentation strategy [7], whereby the ISP splits the market
into several segments with the goal of increasing profitability.
A typical example of market segmentation is when providers
offer a “premium” service at a high price for the high end
of the market, and a “standard” service at a lower price for
the rest of the market. An important issue that arises in the
market segmentation is process is determining how to segment
the market and how to differentiate among the services to be
offered to the various segments so as to maximize profitability.
A tiered service and price structure obtained as a solution to
the MAX-S problem resolves this issue since the tiers and
corresponding prices uniquely identify the market segments
that optimize the provider surplus (profit).

We also note that market segmentation follows the law of
diminishing returns [7] in that, after an initial increase in
profits, creating an additional market segment may have a
negligible effect in overall profitability. Therefore, the number
p of market segments (service tiers) will, in general, be less
than the number T of user classes, especially if 7 is relatively
large. In other words, an optimal market segmentation strategy
may combine several user classes into a single segment. On
the other hand, because of Lemma 2.1, in an optimal solution
to the MAX-S problem the price of each tier z;,5 = 1,...,p,
is equal to the utility U;(z;) of some class ¢. Therefore, the
solutions we develop are for the general case p < T

For simplicity, in the remainder of this paper we make the
assumption that the 7" utility curves do not intersect anywhere
in the domain [2,in,, Tma.] and are labeled such that Uy () is
the lowest and Ur(x) the highest curve. This is a reasonable
assumption, since if some user A values an amount of service
x1 more than a user B, then an amount x9 > x; of service
is likely to have more value for A than for B. On the other
hand, the cost function C'(z) may intersect with some of (or
all) the utility curves within the interval [2 i, Zmaz], but may
intersect at most once with a given utility function.
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classes of users and p = 3 fixed service tiers

A. The MAX-S Problem with Fixed Tiers

Let us first consider a restricted version of the MAX-S
problem in which the p tiers are provided as input to the
problem and are not subject to optimization. This problem
variant arises naturally for the simple uniform and exponential
tiering structures we discuss in Section V. Given the minimum
and maximum service levels, T,,;, and Z,,qz, respectively,
and the number p of tiers, the p service levels are completely
specified under uniform and exponential tiering, hence only
the prices of these levels need to be optimized.

Due to the assumption that utility curves do not intersect
and that price is an increasing function of service x, a feasible
solution to MAX-S is such that, for 5 =1,...,p— 1:

P(Zj) =U, (ZJ) and P(Zj+1) = Ut(Zj+1) = s < t. (8)

as illustrated in Fig. 3. Therefore, we can obtain an optimal
price structure for the MAX-S problem with p fixed tiers using
the dynamic programming algorithm described next.

Let A(t,1) denote the optimal provider surplus when there
are t classes of users and [ service tiers. For an instance of
MAX-S with T classes and p tiers, we can compute A(7T,p)
recursively using the following expressions (recall that the
quantity F}; was defined in the previous section):

A(t7 1) = lrggi{t {Fé [US(ZI) - C(Zl)]} 7t = 17 tee 7T (9)

At 1) = max {A(s,]) + Fopr [Us (zi1) = Cla)]}

s=l,...,t

l=1,...,p—1,t=2,...,T. (10)

Expression (9) states that, if there is a single service tier
fixed at z;, the price is set to the utility that maximizes
the provider surplus (refer also to the definition of provider
surplus for a single tier in expression (6)). The recursive
expression (10) is derived from the observation that if the price
of the (14 1)-th tier is set to the utility of the (s+ 1)-th class,
then all users in this class and all classes of higher utility will
subscribe to this tier. The second term within the brackets in
the right-hand side of (10) represents the contribution of this
tier to the provider surplus. The first term in brackets in the
right-hand side of (10) represents the optimal surplus for s



classes of users and [ tiers, r > [. Taking the maximum over
all values of s yields the overall maximum. The running time
complexity of this algorithm is O(pT?).

B. Approximate Solution to the MAX-S Problem

We now turn our attention to the original version of the
MAX-S problem whereby both the service level at each tier
and its price are subject to optimization. We solve this prob-
lem approximately by employing a discretization technique.
Specifically, we divide the interval [Z.in, Tmaz] into K > T
segments of equal length, and impose the additional constraint
that the p tiers, z1,..., 2,, may only take values from the set
{ex,k=1,..., K}, where e = Tpin + W is the
right endpoint of the k-th interval. As K — oo, this discrete
version of MAX-S approaches the original version in which
zj,j =1,...,p, are continuous variables.

Let A(k,t,1) denote the optimal solution to this discrete
version of MAX-S when there are k points, ¢ classes, and [
tiers. We can compute A(K, T, p) recursively as follows:

c<em>1}}
(11)

A(k,t,1) = max { max {F; [Us(em) —

1<m<k | 1<s<t<m

k=1,....K,t=1,.... T, t<k
Ak, t,l+1) = m:szl,‘f",,kfl {s_?/.l?)t(l {A(m, s,l)
+ max

s (B ke e |

l=1,....,p—1,t=2,....T, k=2,....K, t<k (12)

When there is only one service tier, it is placed at some
endpoint e,, and its price is set at the utility of some
class s that maximizes the provider surplus, hence we have
expression (11). In the general case of k points, ¢ classes, and
I + 1 tiers, the optimal value is obtained by (1) considering
the best placement and pricing of [ tiers in m < k points and
s < t classes, given by A(m,s,1), in which case the best
placement and price for tier (I+1) is given by the second line
of (12), and (2) then taking the maximum over all possible
values of m and s, yielding the recursive expression (12). The
running time complexity of this algorithm is O(pT?K?3).

We have conducted a large number of experiments (omitted
due to space constraints) which indicate that K = 100 is
sufficient for the algorithm to converge; hence we use this
value in the performance study we present in the next section.

V. NUMERICAL RESULTS

To evaluate the performance of tiered service as a market
segmentation strategy, we consider the market for broadband
Internet access. We let the minimum service z,,,;, =256 Kbps
and the maximum service x,,q, =12 Mbps, roughly cor-
responding the range of broadband speeds in the U.S. For
all instances of the MAX-S problem we investigate in this
study, we assume the existence of 7" = 50 classes of users
characterized by the family of utility curves:

Ui(z) = Ma¥log(x), t=1,....,7=50, (13)

we use the linear cost function C'(z) = px, and we set the
values for parameters p, v and \; to:

p=03 v=05 A\=10+.1(t—1), t=1,---,T = 50,

such that the T utility curves do not intersect in the domain
[256 Kbps, 12 Mbps] and are labeled from lowest to highest.
We consider three distributions of users into classes:

o a uniform distribution, in which each class contains an
equal fraction of the user population: f; = %

e an increasing distribution, such that the fraction of users
in a given class increases with utility: f; = ct, where
c = is a constant that ensures that Zthl fi =1,
and

e a decreasing distribution, in which the fraction of users
in a given class increases with utility: f; = ¢(T+1—1),

_ 1
where ¢ = o5 -

1
1275

A. Tier Structure Comparison

We compare the performance of four tiered structures:

1) Optimal: the tiered structure obtained from the dynamic
programming algorithm (11)-(12).

2) Optimal-rounded: the tiered structure derived from
rounding the values of the optimal tiers to the nearest
multiple of 256 Kbps.

3) Uniform: the p tiers are spread uniformly across the
domain [256 Kbps, 12 Mbps].

4) Exponential: the p tiers divide the domain [256 Kbps,
12 Mbps] into intervals that double in length (from left
to right).

The uniform and exponential are simple solutions similar to
structures employed by major ISPs in which the p > 1 service
tiers are completely defined; hence, their prices were optimized
using the approach we described for fixed tiers in Section IV-
A. For the optimal structure, on the other hand, we obtained
both the p > 1 service levels and their prices using the
dynamic programming algorithm in Section IV-B. However,
for p = 1, we obtained the optimal service level and its price
following the algorithm in Section III, and we use this value
for the curves of all four tiering structures.

The three Figs. 4-6 plot the provider surplus against the
number p of tiers and correspond to the decreasing, uniform,
and increasing distribution of users into classes, respectively.
The three figures show four curves, each corresponding to
one of the four tiering structures. As we can see, the tier-
ing structure (referred here as “optimal”) obtained from the
approximate solution to the MAX-S problem and the corre-
sponding optimal-rounded structure outperform the uniform
and exponential tiering structures across the range of values
for p and across the user distributions into classes. Therefore,
network providers would benefit by applying the dynamic
programming solutions to determine the tiered structures to
offer. Furthermore, although the uniform and exponential tier-
ing structures uniquely define the various tiers to be offered,
the prices for these tiers are determined by the dynamic
programming algorithm (9)-(10) so as to optimize the provider
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surplus for the given tiers. Any other ad hoc pricing scheme
would result in a lower surplus, hence even for these structures
the providers would benefit from the tier pricing methodology
presented earlier.

There are several more important observations we make
from these three figures. First, it is clear that the curves for the
optimal and optimal-rounded structures increase rapidly with
p initially, but flatten out once the number of tiers increases
beyond p = 10— 15; the latter behavior implies that additional
tiers provide diminishing returns beyond a point. This result
is consistent with economic theory which predicts that there
is a limit to the benefits that can be achieved by segmenting
a market; it also provides further confirmation to the thesis of
our earlier work [6] that a relatively small number of service
tiers is sufficient to capture most of the benefits of tiering.

We also observe that the exponential tiering structure per-
forms poorly overall, and that its curves reach a well-defined
maximum: the surplus achievable under such structure peaks at
a small value of p and starts to decline rapidly thereafter. This
behavior can be explained by noting that most of the tiers in an
exponential structure are grouped together at the leftmost part
of the service domain [Zin, Tmaz] =[256 Kbps, 12 Mbps],
and the few tiers that cover the remaining of the interval do
not provide fine enough granularity to capture the benefits of
market segmentation. The curves corresponding to the uniform
tiering structure are below those for the optimal and optimal-
rounded structures, but higher than those for exponential tier-
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ing. These results indicate that tiering structures with equally
spaced tiers would be better for the service provider than
exponential ones. Furthermore, we can see that the uniform
tiering curves also reach a maximum at a certain value of p
that depends on the user distribution, and start to decline as
p increases further. This behavior demonstrates that simply
adding more tiers but placing them into specific points in the
domain of the service is not an effective market segmentation
strategy; hence, to achieve the maximum benefits of market
segmentation the service provider must optimize both the size
and price of each tier.

Finally, we note that the overall provider surplus increases
as we move from the decreasing distribution of users into
classes (Fig. 4) to the uniform distribution (Fig. 5) to the
increasing distribution (Fig. 6). This is expected, since the
fraction of users characterized by high utility functions (i.e.,
willing to pay higher prices) is lowest for the decreasing
distribution and highest for the increasing distribution. As a
result, the surplus that the provider is able to extract through
market segmentation is higher in the latter case.

VI. CONCLUDING REMARKS

We have investigated tiered service as a market segmen-
tation strategy for increasing ISP profits under the assump-
tion that consumer behavior with respect to pricing varies
across the user population. We developed an efficient dynamic
programming algorithm for determining optimally both the
service tiers and their prices. Our approach provides new
insight into the selection and pricing of Internet tiered services.
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