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Abstract—RWA is a fundamental problem in the design and
control of optical networks. We introduce the concept of sym-
metric RWA solutions and present a new ILP formulation to
construct optimally such solutions. The formulation scales to
mesh topologies representative of backbone and regional net-
works. Numerical results demonstrate that the new formulation
achieves a decrease of up to two orders of magnitude in running
time compared to existing formulations. In particular, optimal
solutions for topologies up to 20 nodes can be obtained within
minutes using commodity CPUs, and larger networks can be
solved in reasonable time. Our approach significantly lowers the
barrier to entry in fully exploring the solution space of optical
network design and in investigating the sensitivity of design
decisions to forecast demands via extensive ‘“what-if”’ analysis.
Such analysis cannot be carried out currently without large
investments in computational resources and time.

I. INTRODUCTION

The global network infrustructure is built on a founda-
tion of optical networking technologies, first deployed in the
backbone and regional parts of the network but now also
reaching into the access part in the form of PON architectures.
Therefore, the planning and design of optical networks is
crucial to the operation and economics of the Internet and its
ability to support critical and reliable communication services.

In optical networks, traffic is carried over lightpaths that
are optically switched at intermediate nodes. The routing and
wavelength assignment (RWA) problem is one of selecting
a path and wavelength for each connection demand, subject
to certain constraints. RWA is a fundamental problem in
the engineering, control, and design of optical networks, and
arises in most design applications, including traffic grooming,
survivability design, and traffic scheduling.

Offline RWA is a network design problem in which the input
typically consists of a set of traffic demands. This problem is
NP-hard, and several integer linear program (ILP) formulations
have been proposed to solve it. Recently, we developed an
exact decomposition approach for an ILP formulation based
on maximal independent sets that makes it possible to obtain
optimal solutions to the RWA problem for maximum size (i.e.,
16-node) SONET rings in only a few seconds using commod-
ity CPUs [9]. This new, fast technique achieves several orders
of magnitude decrease in running time.

As backbone and regional networks evolve from ring to
mesh, optimal RWA solutions for general topologies are be-
coming important to network designers and operators. Un-
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fortunately, current optimization methods cannot be used to
solve optimally mesh network instances arising in practice.
Consequently, many heuristic solution methods have been
developed under various assumptions and network settings
(refer to the survey in [4]). Nevertheless, the lack of scalability
of optimal methods makes it difficult to characterize the
performance of heuristic algorithms, and severely limits the
application of “what-if” analysis to explore the sensitivity of
network design decisions to forecast traffic demands, capital
and operational cost assumptions, and service price structures.
In this paper, we present a new path-based ILP formulation
for tackling the RWA efficiently on mesh network topologies
encountered in practice. In Section II, we review existing ILP
formulations for the RWA problem and discuss in depth a path-
based formulation that is the starting point for our work. In
Section III we introduce the concept of a symmetric RWA
solution and develop a new, fast formulation for obtaining
such solutions, while in Section IV we show how to further
improve this formulation. In Section V, we present numerical
results that demonstrate the effectiveness of our formulation in
solving problem instances representative of existing backbone
networks, and we conclude the paper in Section VI.

II. PATH ILP FORMULATION OF THE RWA PROBLEM

Consider a connected graph G = (V,A), where V denotes
the set of nodes and A denotes the set of directed links (arcs)
in the network. We define N = |V| and L = |A| as the number
of nodes and links, respectively. Each directed link / consists
of an optical fiber that may support W distinct wavelengths.
Let T = [ty] denote the traffic demand matrix, where # is a
non-negative integer representing the number of lightpaths to
be established from source node s to destination node d. In
general, traffic demands may be asymmetric, i.e., t,y 7 t45. We
also make the assumption that #;, = 0,Vs.

There are three classes of ILP formulations for the RWA
problem depending on the types of variables used: (1) link-
based, (2) path-based, or (3) maximal independent set (MIS)-
based. A comparison of link and path based formulations was
carried out in [5], while several RWA algorithms based on LP
relaxations were designed and studied in [3].

In this work, we focus on the path ILP formulation, whereby
the entities of interest (i.e., decision variables) are path related.
Specifically, a set of K paths are generated in advance for each
source-destination pair (s,d), and all lightpaths from s to d are
constrained to follow one of these K physical paths. We denote
the k-th path, k=1,... K, from node s to node d as pyq, and



use binary parameters XS/ a4k to indicate whether path pyq  uses
link /. We also let P =|Z?| denote the total number of paths
for all source-destination pairs.
In this paper, we study the following minimization problem.
Problem 2.1 (minRWA): Given graph G, number of wave-
lengths W, traffic demand matrix T, and path set & = {psax}.
assign each demand (i.e., lightpath) a path and wavelength so
as to minimize the number of wavelength used in the network.
Let us define the following set of decision variables:
s gy €10, 1}: binary variable indicating whether there is
a lightpath from s to d assigned wavelength w on pg4;
o U" € {0,1}: binary variable indicating whether wave-
length w is used anywhere in the network; and
o Wiig: the highest index of used wavelengths.
The path ILP formulation can then be expressed as:

minimize: Wi, (N
subject to:
« traffic constraints:
K W
>N cax=tas Vs, deV (2)
k=1w=1
« distinct wavelength constraints:
K
N caiXiax <1, Vi€ AW 3)
5,deV k=1
« wavelength usage constraints:
K
ey <U"P, Ww 4)
sdevi=1
« highest wavelength index constraints:
Whigh > wU",  VYw )
« integrality constraints:
Uv=0,1, VYw; e =0,1, Vs, dk,w  (6)

The traffic constraints (2) ensure that all the traffic demands
are satisfied. The distinct wavelength constraints (3) guarantee
that no two lightpaths sharing the same link are assigned to the
same wavelength. The wavelength usage constraints (4) make
sure that the decision variable U" is set to 1 if wavelength w is
used on any of the P paths. Constraints (5) count the number
of distinct wavelengths used in the network.

The formulation has two main limitations: (1) its size
increases rapidly with the size of the network and the number
of wavelengths; and (2) it has a symmetry problem in that
multiple solutions with the same objective value can be ob-
tained by simply changing the order of wavelengths. Since the
ILP solver has to evaluate all Wj;e;,! distinct optimal solutions,
the running time can be unnecessarily long. Hence, it has a
severe scalability issue.

One approach to overcome these limitations has been to
consider objectives that are piecewise linear functions of the
link loads (i.e., the maximum number of wavelengths on each
link), in place of (1), and relax the integrality constraints in
the formulation [3]. However, there are no guarantees that the
optimal solution returned by the LP solver will be integer.
Moreover, this technique cannot be applied to other objectives,
e.g., the one in (1) in this work.

Another approach has been to apply column generation.
This technique has been applied to RWA [6], and does yield
smaller problem sizes for each iteration. However, it may
require a large number of iterations and a recent study specific
to the RWA problem [6] reports low speed-up factors.

In the next two sections, we present a set of techniques to
scale the path ILP formulation to problem instances encoun-
tered in practice. Our approach is general in the sense that it
can be applied to any such formulation of the RWA problem
that includes the traffic and distinct wavelength constraints (2)
and (3), respectively, regardless of the exact form of the
objective function or other constraints.

III. OPTIMAL SYMMETRIC RWA SOLUTIONS

In this work, we assume that routing is symmetric, i.e.,
for all source-destination pairs (s,d), path pg from node
s to node d consists of the same physical links as path pgyq «
from node d to node s, but in the opposite direction. We now
introduce the concept of a symmetric RWA solution.

Definition 3.1 (Symmetric RWA solution): Without loss of
generality, assume that for a node pair (s,d) we have that
tq < tgs. For RWA problem instances with symmetric routing,
we define a symmetric solution to be such that:

C:lvs,lw Vwk, Vs,d:ty<ty. (7)

In other words, for each demand between source s and
destination d for which there is a symmetric demand from d
to s, the two demands are assigned the same path (in opposite
directions) and the same wavelength!.

It has long been recognized [2] that symmetric routing offers
many advantages, including better network capacity planning
and utilization, faster problem resolution, and more consistent
traffic flow characteristics in terms of delay, cost, and other
metrics. Several Internet protocols, including RSVP, NTP, and
multicast (e.g., reverse path forwarding) rely upon routing
symmetry, despite the fact that symmetric routing of fine
granularity flows is not guaranteed in today’s multi-provider
Internet [7]. On the other hand, optical transport networks
are designed, deployed and engineered by a single provider,
hence symmetric routing of lightpaths may be easily achieved
within such a backbone or regional network. Our definition of
a symmetric RWA solution goes one step further, requiring that
symmetrically routed lightpaths also use the same wavelength.
This additional requirement simplifies significantly the ILP
formulation (and hence, the search for a solution) with little,
if any, sacrifice in terms of optimality compared to general
asymmetric solutions, as we explain and quantify in Section V.

It is possible to obtain an optimal symmetric solution
by directly including constraints (7). However, the resulting
formulation would be larger, and hence less scalable. In the
following, we present a decomposition technique that obtains
an optimal symmetric solution in times that are orders of
magnitude faster: an intuitive decomposition that is applicable
to instances with symmetric traffic demands is first described;

w —
Csdk =

'Note that a symmetric solution does not constrain demands that do not
have a symmetric counterpart.
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Fig. 1. RWA instance for the proof of Lemma 3.1: (a) optimal symmetric
solution to the original RWA problem, (b) one optimal solution to RWA-1,
(c) another optimal solution to RWA-1

then a generalized version of the decomposition for arbitrary
traffic matrices is presented.

A. Symmetric Traffic Demands

In this subsection we make the additional assumption that
traffic demands are symmetric, i.e., t,g =145, Vs,d € V; we will
remove this assumption in the next subsection. Let us define
two new traffic matrices 7' = [t},] and 7% = [12] as:

1 tSda s<d 2 tSda s> d
la = s la =
0, 0

otherwise , otherwise
and the corresponding path sets: 2! = {py, € P|s <
dy, P? = {pui € P|s > d}. Note that T! and T? are
lower and upper diagonal matrices, respectively, such that

T'+T?=T and (T")T =72, and that 2'U 2% = 2.
Consider the original RWA problem is decomposed into two
subproblems, RWA-1 and RWA-2, such that input to RWA-1
is traffic matrix 7! and path set 22!, and input to RWA-2 is 7?2
and 2. The two-step decomposition algorithm is as follows.

®)

Algorithm SYM-RWA

1) Solve optimally subproblem RWA-1.
2) Construct a symmetric solution for RWA-2, as defined in
expression (7), where c;‘;'k is the solution from Step 1.

Subproblem RWA-1 may be solved optimally in Step 1
using a reduced version of the ILP formulation (1)-(6) after
making the following changes: (i) the new binary variables are
{cgi’k s < d}; (ii) the new traffic constraints are those in (2)
with s < d; and (iii) the new distinct wavelength constraints
are those in (3) for links / used by paths in Z'. This
ILP formulation for RWA-1 has only one-half the decision
variables {c),,} and one-half the traffic constraints (2) of
the original formulation. The reduced formulation may also
have fewer distinct wavelength constraints (3), if some of the
links in the network are not used by paths of this subproblem.
Hence, the decomposition algorithm can be applied to larger
problem instances than is possible by tackling directly the
original RWA problem through the ILP; we quantify the
scalability of SYM-RWA in Section V.

Now, in Lemma 3.1, we show that if the ILP in (1)-(6) is
used in Step 1 of the SYM-RWA algorithm (after removing
the unnecessary variables and constraints, as discussed above),
then the resulting symmetric solution may not be optimal (or
even feasible) for the original problem. We then show how
to modify the ILP so that SYM-RWA will always yield an
optimal symmetric solution for the original problem.

Lemma 3.1: Consider an RWA problem instance with sym-
metric routing and symmetric traffic demands, RWA-1 and
RWA-2 as defined above. If, in Step 1 of SYM-RWA, the
formulation in (1)-(6) is used to solve RWA-1, then the
solution obtained by SYM-RWA may not be an optimal (or
feasible) symmetric solution for the original RWA problem.
Proof. We will construct a simple instance to show that
the SYM-RWA algorithm may not always find an optimal
symmetric solution. Consider an RWA instance with N =3
nodes arranged in a ring topology, as shown in Figure 1, and 4
traffic demands are between node 1 and 2 (bidirectional), 2 and
3 (bidirectional), respectively. The optimal symmetric solution
is shown in Figure 1(a) and requires only one wavelength.

For subproblem RWA-1 (with half of the traffic demands,
i.e., from node 1 to 2, from node 2 to 3), there exist two
optimal solutions, shown in Figures 1(b) and 1(c), respectively,
that require a single wavelength. If Step 1 of the SYM-
RWA algorithm returns the first solution, then in Step 2 the
symmetric solution to the RWA-2 subproblem will yield the
overall optimal symmetric solution in Figure 1(a). However,
if the solution in Figure 1(c) is returned by Step 1 of the
algorithm, then Step 2 of the algorithm cannot construct a
feasible symmetric solution. In fact, a solution to RWA-2
that uses symmetric paths (but not wavelengths) necessarily
requires one additional wavelength, such that the combined
solution to the original problem is suboptimal. |

To understand the reason underlying the negative result
expressed by Lemma 3.1, observe that in the ILP formulation,
subproblems RWA-1 and RWA-2 are coupled only through
the distinct wavelength constraints (3). Once the decision
variables {c;ti7k} corresponding to RWA-2 are removed from
the formulation used to solve RWA-1, the coupling between
the two subproblems is also removed.

Fortunately, there is an easy way to account for this coupling
by modifying slightly the distinct wavelength constraints (3)
in the ILP formulation used to solve subproblem RWA-1.
The key observation is that, although half of the paths (i.e.,
those that appear only in RWA-2) and the corresponding
decision variables are no longer in the formulation used to
solve RWA-1, due to symmetric routing, these removed paths
are symmetric to the paths of RWA-1. Based on the above
observation, we introduce a new set of binary parameters
Z',, €{0,1} to indicate whether link [ is used by either path
Dsd k OF its symmetric path py, ;. We also introduce a new set
of bidirectional distinct wavelength constraints to replace the
ones in (3):

K
S cuiZiax <1 V€AW 9)

s,deVis<d k=1
These bidirectional constraints restore the coupling between
the two subproblems in the ILP formulation used to solve
subproblem RWA-1. Returning to the instance in Lemma 3.1,
under these contraints, the solution shown in Figure 1(c) would
require two wavelengths, making it suboptimal. Therefore,
Step 1 of SYM-RWA would return the optimal solution shown



in Figure 1(b), ensuring the symmetric solution constructed in
Step 2 is the optimal symmetric solution of Figure 1(a).

We now have the following result.

Lemma 3.2: Consider an RWA problem instance with sym-
metric routing and symmetric demands, RWA-1 and RWA-2 as
defined above. If, in Step 1 of the SYM-RWA algorithm, RWA-
1 is solved using the ILP formulation in (1)-(6) after replacing
the distinct wavelength constraints (3) with the bidirectional
constraints (9), then the solution obtained by the algorithm is
an optimal symmetric solution for the original RWA problem.

Proof. By definition, we have that Z dk = de & —|—ng i» for all
s,d,k,l. Therefore, we can rewrite (9) for all / and w, as:

E C:il,kad,k + (10)

s, deVis<d k=1

w !
E Coa i Xasx < 1.
s,deVis<d k=1

Since at most one of X’ sd.x and de « may be equal to one, the
above set of constraints is equivalent to the two sets:

Czi,sz[d,k <1, VIeA\VYw an
s,deVis<d k=1
K
E Xhsk <1, VIEANYW (12)
s, deV:is<d k=1

Therefore, solving subproblem RWA-1 and then constructing
a symmetric solution for RWA-2, results in an optimal sym-
metric solution for the original RWA problem. |

Note that the proof does not depend on the objective func-
tion, hence this decomposition is applicable to RWA variants
with different objective functions.

B. Arbitrary Traffic Demands

Now let us assume that traffic demands are arbitrary and
not symmetric, i.e., generally #,; # t5,. To accommodate
such asymmetric demands, we generalize the decomposition
approach such that each of the two subproblems includes
only one-half of the source-destination pairs and paths of the
original problem, as before, but RWA-1 contains more traffic
demands than RWA-2.

Let O' and O? be sets of ordered pairs of nodes such that:

O, tyg>tyV(tyg=tssNs<d)

(s,d) € { 0?, otherwise. (a3
Then the traffic matrices 7! = [t])] and T? = [r2,] of RWA-1
and RWA-2, respectively, are:

4 _ [t (d)€O" o [ 1w, (5,d)€0° (14)
sd 0, otherwise ¢ 0, otherwise

and correspondingly 2! = {py € P|(s,d) € 0'}; P* =
{px € 2|(5.d) € O%}. |
Let 1" = min{t,q,14}, and 1}, = 1,4 — 1", We can rewrite
the traffic demands of matrix 7! as:
g4 [ th, (s,d)€O!
sd 0

, otherwise (as)

With this notation, traffic matrix 7! can be written as 7! =
T'' +T12, where T!! is the transpose of 72 and 7' contains

the additional demands tsfl that present in 7'

We solve the original RWA problem using the same de-
composition algorithm SYM-RWA algorithm. However, the
subproblem RWA-1 has a “heavier” traffic matrix than sub-
problem RWA-2. Specifically, there are two types of demands
in RWA-1, those that have a symmetric demand in RWA-2 and
those that do not. Hence, the formulation is further modified
to account for the two types of traffic differently: for traffic
in 71! for which a symmetric demand exists in 72, use the
parameter Zf 4 x> and for traffic in T'2 for which a symmetric
demand does not exist in T2, use the parameter de_k.

We also define the following two sets of variables that
replace variables {c, ,}:

o dgy; €10, 1}: binary variable that indicates whether there
exists a lightpath assigned wavelength w on path pg, to
carry traffic in 71!,

o eV, €{0,1}: binary variable that indicates whether there
exists a lightpath assigned wavelength w on path pgg; to
carry traffic in 712,

With above notations, the following modified formulation
is used to solve RWA-1:

minimize: Wygp,
subject to:
o traffic constraints:

__ min
E E sdk = lsd >

(16)

K W
22 emy =15, (s,d)e0’

a7)
« distinct wavelength constraints:
K
S (A3 Zea i+ eoqpXiar) <1, VIEAYw (18)
(s,d)e0! k=1
« wavelength usage constraints:
K
N (g +eyp) SUYP, Yw (19)
(s,d)€0 k=1
« highest wavelength index constraints:
Whigh > wU"™,  Yw (20)

« integrality constraints:
U"=0,1, Yw; dg;, =0,1, e, =0,1, Vs,d,k,w (21)
Finally, we have the following result.

Lemma 3.3: Consider an RWA problem instance with sym-
metric routing and arbitrary demands, RWA-1 and RWA-2 as
defined above. If, in Step 1 of the SYM-RWA algorithm, RWA-
1 is solved using the ILP formulation in (16)-(21), then the
solution obtained by the algorithm is an optimal symmetric
solution for the original RWA problem.

Proof. The proof is similar to the proof of Lemma 3.2, and is
omitted. |

IV. FURTHER IMPROVEMENTS TO THE ILP FORMULATION

We may further improve the scalability of the new ILP for-
mulation by incorporating information from fast, high-quality
heuristic algorithms for the RWA problem. We adopt the LFAP
algorithm [8], a fast and conceptually simple heuristic that
we have found to perform consistently well across a range of
topologies [1]. For each problem instance to solve, we first



run the LFAP algorithm to obtain a feasible solution that uses
Wirap distinct wavelengths. This provides an upper bound
on the optimal solution, that can be used to effect a further
reduction in the size of the ILP formulation.

Referring to the general formulation for symmetric RWA
solutions in (16)-(21), we observe that the number of variables
and constraints is a function of the number of wavelengths W.
Without any upper bound on the number of wavelengths for a
particular instance, one might initialize W to a value (e.g., the
number supported by DWDM technology) that may be much
larger than necessary. Doing so would have a negative impact
on the ILP solver due to: (1) a large increase in the size of the
formulation; and (2) the symmetry problem, since the number
of equivalent solutions obtained by wavelength permutations
is proportional to W!. As we explain in the next section, we
have found that LFAP in many cases constructs solutions that
use 25% more wavelengths than the optimal one. Therefore,
we set the number of wavelengths in the formulation (16)-(21)
to W = [0.8 X Wpap|. (If this value turns out to be too low,
CPLEX can determines quickly the problem is infeasible, and
can then be invoked again with a higher value.)

V. NUMERICAL RESULTS

In this section, we present the results of an experimental
study we conducted to investigate the performance of the
optimal symmetric RWA formulation in terms of scalability
(running time) and quality of solution. All results were ob-
tained by running CPLEX 11 on a cluster of identical compute
nodes with Woodcrest Xeon CPU at 2.33GHz with 1333MHz
memory bus, 4GB of memory and 4MB L2 cache.

Our study involves a large set of problem instances defined
on several network topologies with random traffic matrices.
In particular, we consider the following topologies: (1) the
14-node, 42-(directed) link NSFNet; (2) the 17-node, 52-link
German network; (3) the 20-node, 78-link EON network; and
(4) a 32-node, 106-link USA topology. These networks have
irregular topologies of increasing size that are representative of
existing backbone networks, and have been used extensively in
networking research. For each network topology, we consider
several problem instances. For each problem instance, the
traffic demand matrix T = [t,,] is generated by drawing the
(integer) traffic demands (in units of lightpaths) uniformly at
random in the interval [0, 7,u.]. We generate both symmetric
(.e.,tqq =tg45,Vs,d) and asymmetric traffic matrices. Each data
point in the figures we present in this section represents the
average of 10 random problem instances for the same settings.

A. Scalability Comparison

Let us first investigate the scalability of the the new for-
mulation. Figure 2 compares the original formulation (1)-(6)
for the RWA problem to the new formulation (16)-(21) in
terms of running time, for the four networks. Recall that the
original formulation obtains the overall optimal solution given
the input path set, whereas the new formulation obtains the
optimal symmetric solution for the same path set. The figure
plots, in logarithmic scale, the CPU time it takes for CPLEX
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to find an optimal solution under symmetric and asymmetric
traffic. We imposed a limit of 20 CPU hours for CPLEX to
find a solution; if it failed to do so within the 20-hour limit,
we terminated the execution run and plotted the data point
in the light gray area of the figure labeled “tLim.” For the
results shown in Figure 2, there are K = 2 paths between each
source-destination pair and the traffic matrix (symmetric or
asymmetric) was generated by setting Ty, = 2.

As we can see, the original path ILP formulation can find
the optimal solution within the 20-hour limit for the NSF,
German, and EON topologies, but not for the 32-node USA
topology. Also, the running time for a given topology is the
same regardless of whether traffic is symmetric or asymmetric,
as the number of variables in the formulation depends on
the size of the network and the traffic load (which depends
on T,4), not on the form of the traffic matrix. The new
formulation, on the other hand, performs much better than the
original one. For symmetric traffic, we observe a reduction of
more than two orders of magnitude in running time, and the
32-node topology can be solved in only about 3 hours. For
asymmetric traffic, the new formulation achieves a reduction
in running time of more than one order of magnitude (up
to a factor of 25), solving the 32-node network in about 16
hours. The main reason for the higher running time in the case
of asymmetric traffic is due to the additional variables that
need to be included in the formulation, as we explained in
Section III-B. Importantly, symmetric instances on the NSF,
Germany, and EON topologies may be solved in about one
minute and asymmetric instances on the same topologies take
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about ten minutes to solve. As a result, the new formulation
makes it possible to solve networks of practical size fast
enough to allow network designers and operators to perform
extensive “what-if” analysis so as to investigate large numbers
of scenarios regarding forecast demands. We have obtained
similar results for several other topologies, including regular
(torus) topologies (omitted due to space constraints).

Figure 3 plots the running time of the new formulation
for the NSF and EON networks as a function of the value
of parameter T,,,.. We observe that the running time in-
creases with the traffic load, as expected, due to the larger
number of wavelengths needed to accommodate the traffic.
Note that a value of T, = 8, the highest one considered in
this experiment, corresponds to an average of four lightpaths
between a source-destination pair (in each direction); for the
NSF and EON networks, the optimal solution for this value
would require more than 50 and 70 wavelengths, respectively.
Although such instances are well beyond what can be realized
in deployed networks, the new formulation is capable of
solving them efficiently.

Finally, Figure 4 plots the running time of the new formu-
lation as a function of the number K of candidate paths, for
the NSF and EON networks and 7;,,,x = 2. Again, the running
time increases with K due to the larger number of variables in
the formulation. Nevertheless, the new formulation makes it
possible to solve realistic instances in a short amount of time.
We also note that, of the 80 instances (i.e., ten instances per
data point) we run with K > 2, only one instance resulted in
an optimal value better (by a single wavelength) than the one

obtained with K =2.
B. Quality of Optimal Symmetric Solution

Let us now turn our attention to the quality of the optimal
symmetric solution. Figure 5 plots the value of the solution
returned by the original formulation, the new formulation,
and the LFAP heuristic [8] for NSFNet, as a function of
Tinax- Recall that LFAP and the original formulation consider
the whole solution space, while the new formulation only
considers symmetric solutions to the RWA problem as defined
in (7). The new formulation obtained the same optimal solution
as the original one for 79 of 80 instances from which the
results in the figure are generated. There was only one instance
(Tinax = 8, symmetric traffic) for which the optimal symmetric
solution required two additional wavelengths (52 versus 50
for the overall optimal). We obtained similar results for EON
network (omitted), in which the new approach resulted in the
same optimal solution as the original one over all 80 instances.
These findings confirm the intuitive view that, except in rare
cases when the demand matrix creates severe bottlenecks,
optimal symmetric solutions are also optimal overall.

We also observe that in NSF network, LFAP, one of the best
heuristic algorithms for the RWA problem, constructs solutions
that are between 25-60% higher than the optimal one. Hence,
while LFAP is quite fast, relying on such a heuristic may
result in significantly higher costs in deploying and operating
the network. Our new formulation, on the other hand, achieves
an excellent tradeoff between running time and optimality.

VI. CONCLUDING REMARKS

We have presented a new ILP formulation to construct
optimal symmetric solutions to the RWA problem, that scales
well to network topologies encountered in practice and enables
network designers and operators to catrry out extensive “what-
if” analysis. We also demonstrated that optimal symmetric so-
lutions, in addition to their practical advantages, often achieve
the overall optimal or a value very close to it.
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