
Service Chain Rerouting for NFV Load Balancing
Lingnan Gaoa, * , George N. Rouskasb,c

aFacebook, Menlo Park, CA, USA bNC State University, NC, USA, cKing Abdulaziz University, Jeddah, Saudi Arabia

Abstract—Network function virtualization (NFV), with its
potential to facilitate network service provisioning, has drawn
growing interest from both academia and industry. One es-
sential challenge is to allocate efficiently the bandwidth and
computational resources to the service requests. In an online
context, service chain requests may arrive, depart or evolve in
an arbitrary fashion, adding more difficulty to the problem.
Service chain reconfiguration may help improve the performance
by individually rerouting a subset of the service chain requests. In
this paper, we propose a new service chain reconfiguration frame-
work to achieve load balancing in an NFV environment under
varying levels of support from the underlying infrastructure. We
show that our framework can achieve an approximation ratio
of O(lnm/ ln lnm) with high probability for the service chain
request rerouting problem.

I. INTRODUCTION

Network function virtualization (NFV) [1] is a networking
paradigm that draws attention from the industry and academia
alike. NFV aims to replace conventional middleboxes, most
of which are implemented as dedicated hardware devices,
with virtual network functions (VNFs). These dedicated hard-
ware devices are typically expensive to acquire, difficult to
configure, and hard to extend in terms of functionality [2].
Such inherent shortcomings pose challenges for service pro-
visioning to keep up with the ever-changing user demands.
With the help of virtualization techniques, network operators
may instead implement the network functions as software
and deploy them onto high capacity servers. This paradigm
decouples the network functionality and services from the
underlying physical infrastructure and introduces flexibility
into the service provisioning process.

The most basic functional entity in an NFV environment is
the VNF. Similar to conventional service provisioning where
traffic may need to pass through one or more middleboxes
in a predefined order, NFV service provisioning requires the
concatenation of multiple VNFs hosted by the physical infras-
tructure. Each of the VNFs can accomplish a single task, such
as firewall security, load balancing, etc., and multiple VNFs
form a service chain to fulfill an overall service objective.

In an NFV environment, the NFV management and orches-
tration (NFV-MANO) unit manages the physical resources,
allocates them in response to user demands, and is responsible
for the configuration, orchestration, and life-cycle management
of the VNFs [3]. One critical challenge in the allocation of
resources is the online nature of demands: the arrival pattern
of service chain requests may not be predictable, the amount or
mix of resources requested by an existing service chain may
change over time, and the lifetime of a service chain may

* Work was done while at NC State University

be arbitrary. Consequently, NFV resource allocation cannot
be viewed as a static problem, as the failure to include
these dynamics may lead to inefficient configurations and
degraded performance for the existing network services. Thus,
there is a compelling need for the NFV-MANO module to
incorporate the dynamic behavior of service chain requests
into its resource allocation decisions. One option to address
such dynamics is to incorporate the uncertainties into the
decision making. Examples to such approaches can be found
in [4–6]. These works aim to allocate resources to a given
service chain with a provably good analytical bound, without
using any information about future requests.

An alternative approach and the focus of this work, aims
at improving performance via reconfiguration, or rerouting, of
service chains. In particular, we consider two different types of
support that the underlying infrastructure may provide: route
optimization (RO) and state transfer (ST). With route optimiza-
tion, one can set up any path on the substrate network from the
source to the destination of a service chain, while with state
transfer the chain may be handed from one VNF instance in the
network to another. Recognizing that reconfiguration may be
disruptive to ongoing services, our aim is to limit the number
of rerouted service chains.

In this work, we focus on algorithm design for a suite of
NFV service chain reconfiguration strategies. Our contribu-
tions include: (1) a new framework for modeling service chain
rerouting that accounts for various levels of support from the
infrastructure; (2) a formulation of the reconfiguration problem
as a variant to the integer multi-commodity flow (MCF)
problem with the objective of minimizing congestion while
bounding the amount of disruption to users or the network;
and (3) a fully polynomial time approximation scheme and a
randomized rounding approach for the rerouting problem, and
derivation of their optimality properties.

Service chain routing has been extensively studied by the
existing literature [7]. While a major portion of these works
tackle the problem in the offline setting [8–11], several studies
have addressed the online routing problem [4–6, 12, 13] within
various application scenarios. The works [4, 5, 13] consider the
online admission control problem with the resource capacity
constraints [4, 5], the end-to-end delay constraints [13], or
for the multi-cast traffic [12], and present online algorithms
that can jointly admit a subset of incoming requests to the
physical infrastructure, while the work of [6] considers the
online routing of the service chain request for a better load
balancing. By resorting to the competitive analysis [14], these
works can make the routing decisions without any information
about the future requests, while achieving a provably good

performance. Although these online algorithms can achieve a
good performance for static service chain requests, they do not
consider the resource demand fluctuation, which may lead to
performance degradation for the current configurations. Also,
to the best of our knowledge, no previous work has considered
the service chain rerouting problem under different levels of
support from the underlying infrastructure to achieve a better
load balancing.

Following the introduction, in Section II we formally state
the service chain reconfiguration problem and in Section III
we develop service chain rerouting algorithms. We evaluate
the performance of the proposed algorithms in Section IV,
and conclude the paper in Section V.

II. PROBLEM STATEMENT

As traffic demands evolve over time, contention for certain
resources may lead to congestion. Our objective is to recon-
figure service chains so as to eliminate hotspots within the
network and improve performance. Specifically, we reroute
traffic of an existing service chain individually and consider
two different types of support from the underlying network:
• Routing Optimization (RO): The provider has fine-grained

control in routing traffic over the underlying network. As a
result, it is possible to set up any path for a given service
chain to align with the optimization goal. Such control is
possible, e.g., in software defined networks (SDN).

• State Transfer (ST): The provider may transfer the state
of a network service from one VNF instance to another at
a different location in the network. With ST support, it is
possible to transfer the state from a VNF instance at node A
to an instance of the same VNF at node B, and then reroute
the service chain to node B.
As the underlying enetwork may independently provide the

two types of support, RO and ST, we consider four cases:
• RO: In this scenario, the service chain must pass through

the same set of VNF instances, but the network operator
may reroute the traffic of the chain by optimizing the path
segments between successive VNFs.

• ST: For each service chain, it is possible to select new
VNFs of the same type and reroute the traffic to the new
VNF instances. However, the paths between the new VNF
instances are provided by the underlying network and are
not subject to optimization.

• RO & ST: Under this scenario, when rerouting a service
chain, the provider may optimize both the VNF instances
and the path segments connecting them.

• No RO or ST: Service chain rerouting is impossible.

A. Modeling

1) Substrate Networks: To model the substrate network, we
use an undirected graph G = (V,E) with n = |V | vertices,
and m = |E| edges. Each edge in G is capacitated, with the
edge capacity c(e), e ∈ E, reflecting the amount of available
bandwidth. There exist a total of K types of virtual network
functions, {V NF1, V NF2, . . . , V NFK}. Each type of VNFs

may be instantiated on one or more substrate nodes, while
each substrate node may support any number of VNFs.

2) Service Request: We use tuple (srci, dsti, di,Fi) to
model service chain Ci, where srci and dsti represent the
chain’s source and destination nodes, respectively, and di
denotes the amount of its traffic. The traffic of chain Ci must
go through one or more VNFs in the order they appear in the
listFi = f1i , f

2
i , . . . , f

k
i , imposing a set of ordering constraints

on the route of service chain Ci.
3) Service Chain Embedding: As we are considering a

reconfiguration problem, we assume that each active service
chain Ci has been mapped onto the underlying network. In
other words, a route from the source to the destination node
of the service chain has been determined that satisfies the
ordering constraints. We define a segment of a service chain
as the path that interconnects: the source to VNF f1i , two
successive VNFs in Fi, or VNF fki to the destination of the
chain. Therefore, the route for service chain Ci is a sequence
of paths. The implication is that the route may use an edge
more than once, and we use the term walk to denote the route
for Ci. We use wci to denote the walk on the substrate network
to which service chain Ci has been mapped.

4) Valid Walk Set: We use Wi to represent the set of all
valid walks for the service chain request Ci. Upon completion
of the rerouting process, the new route will be one of the walks
in Wi, including wci ; in the latter case, the chain has not been
selected for rerouting.

Given the existing route wci for Ci, the composition of Wi

depends on the underlying network support, RO and/or ST:

1) RO & ST: Wi contains all the walks from srci to dsti in
the underlying substrate network that satisfy the ordering
constraints posed by Fi.

2) RO: Suppose wci passes through a sequence of substrate
nodes that host the VNFs f1i , f

2
i , · · · , fki , in this order.

Then, Wi contains all the walks from srci to dsti that
pass through the same substrate nodes in the same order.

3) ST: Wi contains all the walks from srci to dsti in
the underlying substrate network that satisfy the ordering
constraints posed by Fi, with the additional constraint that
between any pair of substrate nodes in such a walk, there
exists only one path determined by the routing policy (i.e.,
routing of path segments is not subject to optimization).

5) Valid Tree Set: Consider a VNF v instantiated on a
certain substrate node. Whenever VNF v is part of a service
chain, the substrate node where it is hosted is connected to a
number of neighbors that could be: the source or destination
of the chain, or the substrate nodes hosting v’s neighbors in
Fi. Based on the above discussion, the substrate node of v is
connected to each these neighboring nodes by a path. Since
VNF v is the common endpoint of all these paths, we refer to
this set of paths as a tree rooted at VNF v.

For a given tree tv for the VNF v, the root of the tree,
root(tv), is the substrate node where v is hosted. The leaves
of the trees are substrate nodes, either hosting other VNFs,
or representing the source or destination nodes. We use the

notation leaf(tv, u) to denote the substrate node on tree tv
that hosts VNF u.

We use Tv to denote the set of trees that VNF v may use
to route its traffic during a remapping operation. In the non-
RO case, set Tv consists of one tree for each substrate node
where VNF v is instantiated (since the routing is determined
by policy and not subject to optimization). In the RO case, on
the other hand, there could be multiple trees within Tv that
use one substrate node as the root. A tree t ∈ Tv represents
both the placement of VNF v and the routing of its traffic.

B. Service Chain Rerouting Formulation

Based on the above definitions, we can formulate the service
chain re-routing problem as an Integer Linear Programming
(ILP) problem. We use the decision variable xwi to denote
whether the service chain Ci is routed along walk w, and we
assume that there is a total of R active chains.

min U (1)

s.t.

R∑
i=0

∑
w∈Wi

tri(e, w)x
w
i ≤ Uc(e) ∀e ∈ E (2)∑

w∈Wi

xwi = 1 ∀i ≤ R (3)∑
i

∑
w∈Wi

ρ(w)xwi ≤MC (4)

xwi = {0, 1} ∀i ≤ R, w ∈Wi (5)

Expression (1) captures the reconfiguration objective, which
is to minimize the maximum utilization after carrying out the
reconfiguration. Constraints (2) guarantee that the total amount
of traffic on each edge may not exceed the edge capacity by
more than a factor of U . In this expression, tri(e, w) denotes
the amount of traffic to be placed on edge e if chain Ci were to
route along walk w. Hence, by minimizing U in the objective
function, we are minimizing the maximum congestion.

Constraints (3) guarantee that all traffic of each chain Ci is
routed along a valid walk. Combined with the constraints (5)
they ensure that all traffic of a given chain is along a single
walk. In (4), quantity ρ(w) takes a constant value: ρ(w) = 0
when w is the original walk, i.e., w = wci , otherwise,
ρ(w) = 1. Therefore, Constraints (4) ensure that the number
of rerouted chains does not exceed a given limit MC .

We note that while the above ILP formulation is straightfor-
ward and intuitive, there could exist a huge number of decision
variables. For a single service chain, the total number of valid
walks is exponential to the size of the network. This makes
it almost impossible to explicitly write down the exact ILP
formulation. However, as we show next, we do not need the
exact form of the ILP to solve the reconfiguration problem.

III. SERVICE CHAIN REROUTING ALGORITHMS

In this section, we present a general solution approach that
may be used to tackle all three VNF rerouting problems we
discussed in Section II. However, due to page constraints, we
only discuss how to apply it to the RO case.

At a high-level, our approach consists of two steps:
1) ILP Relaxation: As we mentioned earlier, we cannot

hope to solve the ILP formulation (1)-(5) within a rea-
sonable amount of time. Thus, our first step is to relax
the integral constraints (5). Although one can obtain the
optimal solution to the resulting Linear Programming (LP)
problem in polynomial time, we present a fully polynomial
approximation scheme (FPTAS) to further expedite the
solution process.

2) Randomized Rounding: The solution to the LP problem
may yield fractional values for the decision variables,
violating the constraint that each service chain be routed
along one and only one walk. Starting with a feasible
solution to the LP problem, we develop a randomized
rounding method to construct the integral solution that
represents a valid configuration for the network.

We discuss these steps in more detail next.

A. FPTAS Algorithm For ILP Relaxation

It is possible to approximate the solution to the LP problem
derived from relaxing the integral constraints (5) via FPTAS,
where one can control the trade-off between accuracy and
efficiency. The FPTAS for the service chain rerouting problem
is shown in pseudo-code as Algorithm 1. This FPTAS is a
direct extension of the FPTAS for the Maximum Concurrent
Multi-Commodity Flow (MCMCF) problem [15]. Before we
present the FPTAS, we first restate the service chain rerouting
problem to make it align with the MCMCF problem.

The ILP problem we presented in Section II aims at
minimizing congestion, and is equivalent to the following
formulation that maximizes throughput:

max λ (6)

s.t.

R∑
i=0

∑
w∈Wi

tri(e, w)x
w
i ≤ c(e) ∀e ∈ E (7)∑

w∈Wi

xwi ≥ λ ∀i ≤ R (8)∑
i

∑
w∈Wi

ρ(w)xwi ≤ σMC (9)

The objective function (6) maximizes the minimum through-
put for the service chains. The maximum throughput is recip-
rocal to the minimum congestion, i.e., λ∗U∗ = 1. It is easy
to verify that Constraints (7)-(9) relate to Constraints (2)-(4),
respectively, when σ = λ. In the above formulation, σ is a
constant, and we shall discuss shortly how to determine its
value. We also note that the optimal solution to the throughput
maximization problem may be transformed to one for the
congestion minimization problem via scaling down the flows
by a factor of λ∗.

The FPTAS is presented in Algorithm 1. It starts with an
empty initial solution with throughput zero. For Algorithm 1 to
approximate the solution within a factor of 1 + ω, we choose
the value for ε so that (1 − ε)−3 = 1 + ω. We then assign

a positive initial weight to all edges w.r.t. the edge capacity
and the desired accuracy level, namely, l(e) = δ/c(e), where
δ = (m/(1 − ε))−1/ε and m is the number of edges in the
network. In addition, there is a re-routing penalty φ = δ/σM .

The algorithm then proceeds in phases, where each phase
has multiple iterations and each iteration contains one or more
steps. Within a single phase, for every service chain request,
Ci, i ≤ R, we route di traffic and as a result the throughput
increases by one. Note that, after each phase, the amount
of traffic placed on an edge may well exceed its capacity.
Nevertheless, we can obtain a feasible solution by scaling
down the flows by the amount of violation.

Assuming there are R distinct active service chains, each
phase will contain R iterations. Within iteration i, we route di
units of traffic for chain Ci, i = 1 . . . , R. Each iteration further
consists of one or more steps, such that within each step we
route the request along the shortest walk wsi ∈Wi.

Recall that the set Wi of valid walks depends on the under-
lying network support, and that, due to page constraints, in this
paper we only consider the RO case. How to find the shortest
walk in this case is presented as function SHORTESTWALK.
First, we find a walk w with the shortest length weighted by the
demand

∑
e∈w l(e)di. In the RO case, one can only change

the route within each segment, while the two endpoints of
the segment remain the same. In other words, after rerouting,
the service chain will still pass through the same set of
VNFs. It is conceivable that, in this case, the shortest walk
is the concatenation of the shortest path of each segment. For
service chain Ci, we can find the shortest walk by sequentially
computing the shortest path between the srci, f1i , . . . , f

k
i , dsti,

and concatenate the shortest path to form the shortest walk.
If this walk is different from wci , the penalty φ shall apply.
Thus, we shall use the walk w only if its length is less than
that of wci by a margin of φ.

In each step, when we route c amount of traffic along wsi ,
we ensure that the amount of the traffic will not exceed the ca-
pacity of the edges along this walk. The remaining traffic shall
be routed in the succeeding steps. For edges along the walk,
e ∈ wsi , we increase their weight by l(e) = (1+ εc/c(e))l(e).
Intuitively, a more highly loaded edge will have a greater
weight, discouraging more traffic being placed on this edge
in succeeding steps, and in turn, encouraging a more evenly
distribution of traffic across all edges. Similarly, if we route
Ci along a walk other than wci , we increase the penalty
φ = (1 + εc/σMC) to encourage the algorithm to pick the
existing walk in future steps.

The FPTAS terminates when D(l, φ) =
∑
e c(e)l(e) +

σMφ, increases beyond 1. The value D(l, φ) is the dual
objective for the throughput maximization problem, with l(e)
and φ being dual variables associates with Constraints (7) and
(9) respectively.

Note that finding the shortest walk in the RO case needs
to invoke Dijkstra’s algorithm at most K times, once for each
path segment, and the running time would be O(Kmlogn). As
with [15], we use Õ(·) to denote the running time that hides
the polylog factors, and we have the following guarantee:

Algorithm 1 General FPTAS Framework

1: function FPTAS(G, {C}, ε, σ)
2: Initialization:

δ ← (m/(1− ε))−1/ε, l(e)← δ/c(e), φ← δ/σM
3: while D(l, φ) < 1 do . Phase
4: for i = 1, 2, · · · , R do . Iteration
5: while less than di traffic routed do . Step
6: ws ← SHORTESTWALK(G, l, φ, Ci, wci)
7: c← min{d′i, routable traffic}
8: for all edges e ∈ ws do
9: ship c traffic along walk ws

10: xws
i ← xws

i + c
11: l(e)← (1 + εc/c(e))l(e)
12: end for
13: φ← (1 + ρ(ws)εc/σM)φ
14: end while
15: end for
16: end while
17: Scale down flow to obtain a feasible x̂wi solution.
18: end function

19: function SHORTESTWALK(G, l, φ, Ci, wci)
20: w ← {}
21: for segment s in |SCi| do
22: p← shortest path for s
23: w ← w ∪ p
24: end for
25: if

∑
e∈w l(e)di + φ ≤

∑
e∈wc

i
l(e) then

26: return w
27: end if
28: return wci
29: end function

Theorem 1. The FPTAS approximates the solution to the
throughput maximization problem within Õ(ω−2m2RK) time,
with an approximation ratio O(1 + ω).

Proof. The proof is similar to the one for the FPTAS in [15].
We omit the proof due to space constraints.

The other two scenarios, namely, ST and ST & RO, differ
from RO in the function SHORTESTWALK. We can find the
shortest walk under these two scenarios with relatively simple
modifications to the Viterbi algorithms [16]. Due to page
constraints, we do not discuss these other two cases further.

B. On Randomization

The output of Algorithm 1 is a fractional solution to the
Linear Programming problem. We denote this solution as x̂.
We shall now discuss how to recover an integer solution from
the fractional solution with randomized rounding.

We assign a positive probability to each walk w ∈Wi that,
in the fractional solution, carries non-zero traffic for chain Ci.
The probability value is proportional to the amount of traffic
w carries, namely, Prob(w, i) = x̂wi /di, where x̂wi is the total
amount of traffic to route along the walk w. As the amount of

Algorithm 2 VNF Reconfiguration Framework

1: function RECONFIGUREVNF(G, {C}, ε)
2: Relax the integral constraints for the LP problem
3: while bisection search for σ until σ = λ do
4: λ← FPTAS(G, {C}, ε, σ)
5: end while
6: for Service Chain Ci, ∀i ≤ R do
7: randomly select walk wi w.r.t. Prob(w, i) = x̂wi /di
8: end for
9: end function

flow is normalized by the total amount di of traffic for chain
Ci, it is easy to verify that

∑
w∈Wi

Prob(w, i) = 1, ∀ i. Then,
we randomly select one and only one walk for chain Ci based
on this probability.

Randomization delivers the integral solution to the service
chain rerouting problem. The whole procedure is summarized
in Algorithm 2. Note that Algorithm 1 takes σ as an input.
For a throughput maximization problem, the value σ should
match the throughput λ. Although the value for λ is not known
in advance, notice that λ will monotonically increase with σ.
Thus, we can resort to a bisection search to find the value for
σ: as the rerouting always leads to a better load balancing,
the current throughput can serve as the lower bound for σ;
meanwhile, the total capacity versus the total demand,

∑
e c(e)∑
i di

,
represents the most balanced load, thus it serves as an upper
bound for the bisection search, which will terminate when σ
matches the throughput.

Given a feasible solution to the linear programming problem
x̂ that achieves a congestion of Û with M̂C service chains
being rerouted, we make the following two claims:

Lemma 2. With high probability, 1 − 1/m, randomized
rounding with Prob(w, i) leads to an O(Û lnm/ ln lnm)
congestion.

Proof. The analysis to the randomized rounding algorithm
works is in the similar way to the analysis of the Integer
Multi-Commodity Flow problem presented in [17], using the
Chernoff bound. We omit the proof due to page limitation.

Lemma 3. The expected number of rerouted chains is MC ,
and there is a strong tail distribution guarantee that the proba-
bility to have more than MC requests re-routed exponentially
decays. Namely, the probability that (1 + q)MC chains are
rerouted is less than 1− e−

qMC
3 with q ≥ 1.

Proof. The expected number service chain requests to be re-
routed is equal to

∑
i ρ(w)x̂

w
i . Constraints (5) ensures that it

is no greater than MC , thus the expected number of re-routed
service chain is bounded by MC .

We can take the rerouting of request Ci as a random variable
Xi(i), who takes the value of one when Ci is re-routed, and
zero otherwise.

By taking the Chernoff bound [18] over the Xi(i), we have:

Pr[
∑
i

Xi(i) ≥ (1 + q)MC] ≤ e−
q2

2+qMC (10)

when q ≥ 1, We have e−
q2

2+qMC ≤ e−
qMC

3 . This implies that
the probability to have more than (1 + q)MC service chain
re-routed is less than 1− e

−qMC
3

C. Performance Analysis

We make the following claims to the optimality and time
complexity of the algorithm:

Theorem 4. With a high probability, Algorithm 2 can
achieve an O((1 + ω) lnm/ ln lnm) approximation ratio
within Õ(ω−2m2KR) under the RO case, with an expected
number of MC service chains rerouted.

Proof. Approximation ratio: Suppose the optimal solution to
the relaxed LP is U∗, the FPTAS yields a solution with conges-
tion bounded by (1+ω)U∗. Using the Lemma 2, after random-
ized rounding, we can obtain an O((1 + ω)U∗ lnm/ ln lnm)
congestion with high probability. Since U∗ is a lower bound
to the ILP problem, we conclude that Algorithm 2 achieves
an O((1+ω) lnm/ ln lnm) probabilistic approximation ratio,
and the expected number of service chain rerouted is MC .

Time complexity: Algorithm 2 consists of two steps: an
FPTAS phase and a rounding phase. Randomized rounding
completes within linear time to the number of walks that carry
positive traffic. The total number of such walks is proportional
to the total number of steps in the FPTAS, therefore, the
FPTAS phase, whose time complexity is given in Theorem 1,
dominates the time complexity of Algorithm 2.

IV. NUMERICAL RESULTS

We set up a simulation to evaluate our proposed algorithm.
For the substrate network, we generate the topology following
the Waxman model [19] with a total of 50 substrate nodes. The
link capacities are uniformly distributed in [50, 100]. We define
a total of six types of VNFs to be supported by the substrate
network. Each type of VNFs is supported by ten substrate
nodes and initially, the VNFs are randomly instantiated on
the substrate nodes. We randomly generate the service chain
requests. Each service chain request randomly chooses the
source and the destination node, and the requested VNFs, and
the length of the service chain is uniformly distributed in [1, 4].

We use the tool [20] to generate the time-varying traffic of
the service requests, which follows the distribution measured
in [21]. The arrival of service chain requests follows a Poisson
distribution. Since we do not have information about the future
changes in the traffic demands, we use the online service
chain routing algorithm [6] to route the service chain request
based on the traffic demand of the service chain upon arrival.
We carry out the reconfiguration operation after admitting a
predetermined number of requests.

We compare the performance of our proposed algorithm,
rand-rr, with the following baseline algorithms:

100 150 200
Number of Requests

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ax

im
um

 C
on

ge
st

io
n

lb-rr
rand-rr
g-rr

Fig. 1: congestion vs num. of
requests

3 5 10
Number of Rerouted Requests

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ax

im
um

 C
on

ge
st

io
n

lb-rr
rand-rr
g-rr

Fig. 2: congestion vs rerouted
requests

100 150 200
Number of Requests

0.1

1

Ru
nn

in
g

Ti
m

e
(s

ec
)

rand-rr
g-rr

Fig. 3: running time vs num.
of requests

3 5 10
Number of Concurrent Configurations

0.1

1

Ru
nn

in
g

Ti
m

e
(s

ec
)

g-rr
rand-rr

Fig. 4: running time vs recon-
figurations

• reroute lower-bound (lb-rr): we use the solution from
the FPTAS in Algorithm 2 to derive a lower bound to the
congestion minimization. Suppose the FPTAS achieves a λ
throughput, and an approximation ratio 1+ω, a lower-bound
to the relaxed LP problem is (1 + ω)/λ, which in turn, is
the lower-bound for the reconfiguration problem.

• greedy reroute (g-rr): iteratively select and remove the
service chain with the most heavy traffic passing through the
most congestive edge, and reroute them back in the order
they are selected. We also use the same routing algorithm [6]
to reroute the selected service chain requests.
We present the simulation results in Fig. 1 to Fig. 4. We

select ω to be 1, hereby, the FPTAS yields a 2-approximation
solution to the LP problem in the worst case. We generate a
varying number of service chain requests with the rerouting
threshold MC set to 5, and measure the running time and
the maximum congestion. In addition, we generate a total of
R = 200 service chain requests, and evaluate the proposed al-
gorithm with different rerouting thresholds. For each scenario,
we run the simulation for 30 times and present their mean and
95% confidence interval.

Fig. 1 plots the maximum congestion against the total
number of service chain requests routed on the substrate
network with MC = 5, and Fig. 2 plots the maximal network
congestion against different value for MC , with R = 200.
From these two figures, we can conclude that our proposed
scheme, rand-rr, can achieve a good performance for the
service chain re-routing. Compared to the case where no
reconfiguration takes place (no-rcf), rand-rr reduces the con-
gestion by at least 35% across all cases and the improvement
increases with the threshold MC ; meanwhile it is off the
theoretical lower bound, lb-rr by at most 21%. Compared to
g-rr, rand-rr further reduces network congestion by 22%.

Fig. 3 plots the running time against different number of
service chain requests routed on the network, while Fig. 4
evaluates the number of rerouted requests with different rerout-
ing/remapping threshold. Our proposed scheme, rand-rr, takes

at most one second across all scenarios, although the greedy
algorithm takes is even faster.

V. CONCLUDING REMARKS

We have developed an efficient algorithm to perform recon-
figurations to achieve load balancing in an NFC environment
by re-routing service chains while taking the reconfiguration
overhead into account. Our proposed algorithm can adapt to
different levels of support from the underlying infrastructure
and can achieve an O(lnm

lnm lnm (1 + ω))-approximation ratio.

REFERENCES

[1] B. Han et al. “Network function virtualization: Challenges
and opportunities for innovations”. In: IEEE Communications
Magazine 53.2 (2015), pp. 90–97.

[2] J. Sherry et al. “A survey of enterprise middlebox deploy-
ments”. In: (2012).

[3] R. Mijumbi et al. “Network function virtualization: State-of-
the-art and research challenges”. In: IEEE Communications
surveys & tutorials 18.1 (2015), pp. 236–262.

[4] T. Lukovszki and S. Schmid. “Online admission control and
embedding of service chains”. In: International Colloquium
on Structural Information and Communication Complexity.
Springer. 2015, pp. 104–118.

[5] L. Guo et al. “Joint Placement and Routing of Network
Function Chains in Data Centers”. In: INFOCOM. IEEE.
2018.

[6] L. Gao and G. Rouskas. “On Congestion Minimization for
Service Chain Routing Problems”. In: ICC. IEEE. 2019.

[7] J. G. Herrera and J. F. Botero. “Resource allocation in NFV:
A comprehensive survey”. In: IEEE Transactions on Network
and Service Management 13.3 (2016), pp. 518–532.

[8] R. Cohen et al. “Near optimal placement of virtual network
functions”. In: INFOCOM. IEEE. 2015.

[9] Z. Xu et al. “Throughput optimization for admitting NFV-
enabled requests in cloud networks”. In: Computer Networks
143 (2018), pp. 15–29.

[10] Y. Sang et al. “Provably efficient algorithms for joint place-
ment and allocation of virtual network functions”. In: INFO-
COM. IEEE. 2017.

[11] W. Ma et al. “Traffic aware placement of interdependent nfv
middleboxes”. In: INFOCOM. IEEE. 2017.

[12] Z. Xu et al. “Approximation and online algorithms for NFV-
enabled multicasting in SDNs”. In: ICDCS. IEEE. 2017.

[13] Y. Ma et al. “Online revenue maximization in NFV-enabled
SDNs”. In: ICC. IEEE. 2018, pp. 1–7.

[14] A. Borodin and R. El-Yaniv. Online computation and com-
petitive analysis. cambridge university press, 2005.

[15] N. Garg and J. Koenemann. “Faster and simpler algorithms for
multicommodity flow and other fractional packing problems”.
In: SIAM Journal on Computing 37.2 (2007), pp. 630–652.

[16] G. D. Forney. “The viterbi algorithm”. In: Proceedings of the
IEEE 61.3 (1973), pp. 268–278.

[17] P. Raghavan and C. D. Tompson. “Randomized rounding:
a technique for provably good algorithms and algorithmic
proofs”. In: Combinatorica 7.4 (1987), pp. 365–374.

[18] D. P. Williamson and D. B. Shmoys. The design of approxi-
mation algorithms. Cambridge university press, 2011.

[19] B. M. Waxman. “Routing of multipoint connections”. In:
IEEE journal on selected areas in communications (1988).

[20] L. Saino et al. “A toolchain for simplifying network simula-
tion setup.” In: SimuTools 13 (2013), pp. 82–91.

[21] A. Nucci et al. “The problem of synthetically generating
IP traffic matrices: Initial recommendations”. In: SIGCOMM
Computer Communication Review (2005).

