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Abstract—First-Fit (FF) is a well-known and widely deployed
algorithm for spectrum assignment (SA), but until our recent
study [1], investigations of the algorithm had been experimental
in nature and no formal properties of the algorithm with respect
to SA were known. In this work, we show that FF is a universal
algorithm for the SA problem in the sense that 1) it can be used
to construct solutions equivalent to, or better than, any solution
obtained by any other algorithm, and 2) it can construct an
optimal solution. This universality property applies to both the
min-max and min-frag objectives, and to variants of the SA
problem with or without guard band constraints. Consequently,
the spectrum symmetry-free model of [1] extends to all known
SA variants, which therefore reduce to permutation problems.
Accordingly, all variants may be solved by similar, intuitive,
effective and highly parallelizable algorithms. Our results unlock
new algorithmic approaches for optical network design problems
that encompass SA as an integral subproblem.

I. INTRODUCTION

Spectrum allocation (SA) underlies much of optical network
design [2] and has been studied extensively in a wide range of
optimization problems, usually coupled to objectives includ-
ing routing [3]–[5], virtual topology design [6], [7], traffic
grooming [8], and network survivability [9]. The SA problem
is intractable even when considered in isolation, i.e., separately
from other aspects of network design [10]. Consequently,
a number of heuristic algorithms, including first-fit, best-fit,
most-used, and least loaded [11] have been developed and
studied experimentally.

The first-fit (FF) algorithm is a simple heuristic for the
SA problem that operates without global knowledge and has
been shown to be effective across a wide range of network
topologies and traffic demands [11]–[13]. Accordingly, it is
commonly employed in practice. Recently, we proved an
optimality property of FF that forms the basis for a symmetry-
free model for spectrum assignment in networks of general
topology. This model eliminates from consideration symmetric
solutions, i.e., equivalenth solutions derived from spectrum
slot permutations, and opens up new algorithmic directions
for the SA problem specifically, and optical network design,
more generally.

Before its application to spectrum assignment, the FF algo-
rithm had been investigated theretically since the early days
of computing in the context of bin packing [14] and memory
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allocation [15], among other fields. For instance, FF has been
shown to be an approximation algorithm for the bin packing
problem and a series of studies over four decades gradually
improved the approximation ratio [14], [16], [17]. To the
best of our knowledge, however, before we derived the FF
optimality property in [1], investigations of the FF algorithm
within the context of spectrum assignment, on its own or as
part of optical network optimization problems, were purely
experimental and no formal properties of the algorithm were
known.

With this work we aim to close this gap. Specifically, we
carry out a theoretical investigation of FF and show that it
is a universal algorithm for all known variants of the SA
problem. In this paper, we use the term universal to indicate
that, for any instance of any SA problem variant, the pure FF
algorithm or an appropriately modified version is capable of 1)
constructing a solution that is equivalent to, or better than, any
solution obtained by any other algorithm, and 2) constructing
an optimal solution.

The paper is organized as follows. In Section II we review
our recent results regarding the min-max SA problem, the
variant that has been most extensively studied in the literature.
We discuss the optimality property of FF with respect to
min-max SA that allowed us to develop the first symmetry-
free model for networks of general topology; in turn, this
model led to intuitive and effective algorithms. In the following
three sections, we extend these results to several SA variants,
and specifically, min-max DSA (Section III), min-frag SA
(Section IV), and min-frag DSA (Section V). We conclude
the paper in Section VI.

II. MIN-MAX SA AS A PERMUTATION PROBLEM

Let G = (V,A) represent the topology graph of an optical
network with a set V of nodes and a set A of directed fiber
links, where N = |V | and L = |A| denote the number
of nodes and links, respectively. The traffic offered to the
network consists of C connections Ti, i = 1, . . . , C, where
each connection is a tuple Ti = (si, di, pi, ti) such that: si
and di are the endpoints of the connection, pi is the path
between nodes si and di that the connection must follow, and
ti is the number of spectrum slots that are required to carry
the traffic of the connection along path pi.

We assume that the spectrum slots on each link are indexed
1, 2, 3, . . ., and we define the min-max spectrum assignment
(SA) problem as:



Definition 2.1 (min-max SA):
Input: Graph G and C connections {Ti = (si, di, pi, ti)}.
Output: An assignment of ti spectrum slots to each con-

nection Ti along its path pi.
Objective: Minimize the index of the highest spectrum slot

used on any link in the network.
Constraints:
1) Contiguity: each connection Ti is assigned a block of ti

contiguous spectrum slots starting at index fi, i.e., block
[fi, fi + 1, . . . , fi + ti − 1].

2) Continuity: each connection is assigned the same block
of slots on each link ` ∈ pi along its path pi; and

3) Nonoverlap: connections whose paths share a link are
assigned non-overlapping blocks of spectrum slots.

The first-fit (FF) algorithm [11] considers connections in
a fixed order and assigns to each one a contiguous block of
spectrum slots that starts at the lowest-indexed slot available
along the links of the connection’s path. Let P denote a
permutation of the C connections, and let FF (P ) denote
the solution constructed by applying the FF algorithm to the
connections in the order implied by P . In recent work [1]
we have shown that there exists a permutation P ? of the C
connections such that FF (P ?) is an optimal solution to the
min-max SA problem. This result has several implications:

1) min-max SA as a permutation problem: to find an
optimal spectrum assignment it is sufficient to examine
the connection permutations, hence min-max SA is
transformed into a permutation problem; accordingly,
we have developed an optimal, recursive, branch-and-
bound algorithm, recursive first-fit (RFF), to search the
permutation space efficiently [1], [18].

2) Symmetry-free spectrum assignment: in selecting
among the various connection permutations there is no
need to consider a spectrum assignment other than the
one produced by the FF algorithm; hence, symmetric so-
lutions are automatically eliminated from consideration
and the size of the solution space is reduced by orders
of magnitude [1].

3) Inherent parallelism: the connection permutation space
is naturally represented as a tree which may be de-
composed into non-overlapping subtrees [1], [18]; ac-
cordingly, multi-threaded implementations of RFF may
explore the subtrees in parallel.

4) FF subsumes any other min-max SA algorithm: the
results of [1] imply that for any solution S constructed
by any other SA algorithm (e.g., best-fit, most-used,
etc. [11]), there exists a connection permutation P such
that FF (P ) has an objective value equal to or better
than that of S.

In the following, we extend these results to other SA
problem variants.

III. THE MIN-MAX DSA PROBLEM

The min-max distance SA (min-max DSA) problem is a
variant introduced in [19] that includes the min-max SA

problem of the previous section as a special case. Specifically,
min-max DSA arises when it is required to allow for a guard
band between blocks of spectrum slots assigned to different
connections on the same link, e.g., to prevent crosstalk or
reduce security threats at the optical layer. Min-max DSA
constitutes a fairly general model in that the size of the guard
band is not fixed but depends on each connection pair, e.g.,
on the number of spectrum slots, path, or other attribute of the
two adjacent connections [19].

Formally, the min-max DSA problem can be defined as
follows:

Definition 3.1 (min-max DSA):
The min-max SA problem of Definition 2.1 with:
Additional Input: Guard band size gij ≥ 0 for each

connection pair (Ti, Tj), i 6= j.
Additional Constraint:
4) Guard band: if connections Ti and Tj are assigned

adjacent slots on a link ` shared by their paths, their
spectrum blocks must be separated by a block of unal-
located (empty) slots of size at least gij .

Clearly, if gij = 0 ∀ i, j, min-max DSA reduces to min-max
SA.

A. The DSA-FF Algorithm and Its Universality Property
Consider a permutation P of the C connections. Without

loss of generality, assume that the connections are relabeled
so that P =< T1, T2, . . . , TC >. Let DSA-FF be a modified
version of the FF algorithm for the min-max DSA problem.
Similar to FF, DSA-FF takes as input some permutation P
and assigns spectrum to each connection at a time in the
order implied by P , i.e., T1, T2, . . . , TC . After considering
connections T1, . . . , Ti−1, DSA-FF assigns to connection Ti

a contiguous spectrum block of ti slots starting at slot fi
such that fi is the slot with the lowest index satisfying two
conditions:

1) slots [fi, fi + 1, . . . , fi + ti − 1] are free along all links
of the connection’s path pi, and

2) for each link ` ∈ pi, if some connection Tj , j < i, has
been assigned a block of slots immediately below slot
fi on link `, then there is a guard band of size at least
gij between the two blocks; i.e., fi ≥ (fj+tj−1)+gij .

We now prove the following DSA-FF universality property
which implies that, for any feasible solution to the min-
max DSA problem produced by any algorithm, the DSA-FF
algorithm may construct an equivalent or better solution, i.e.,
one with an equal or lower objective value.

Lemma 3.1 (Universality Property for min-max DSA): Let
S be any feasible solution to the min-max DSA problem.
There exists a permutation P of the C connections such that
applying the DSA-FF algorithm in the order implied by P
yields S or another feasible solution S′ with equal or lower
objective value.
Proof. By construction.

Consider a feasible solution S to the min-max DSA problem
with objective value equal to SOL, and label the slots on



each link as 1, 2, . . . , SOL. By definition, feasible solution S
satisfies all four constraints of the min-max DSA problem. Let
fi denote the slot with the lowest index within the block of ti
slots allocated to each request Ti, i = 1, . . . , C, under solution
S.

Let PS be the complete permutation in which the requests
Ti are listed in increasing order of fi in solution S, with
ties broken arbitrarily. Consider the block of tj contiguous
spectrum slots, starting at slot fj , allocated to some connection
Tj . Let us remove this block of tj slots from solution S. In
the remaining partial solution, it is possible that there exists a
block of tj slots starting at a lower indexed slot f ′j < fj such
that 1) they are available on all links of path pj , and 2) there
are free slots above and below this block such that allocating
this block to Tj will not violate the guard band constraints.
If so, we can allocate the lower-indexed tj slots starting with
slot f ′j to connection Tj without 1) affecting the feasibility of
the solution, or 2) increasing the objective value beyond SOL.

Based on this observation, we modify solution S by con-
sidering the connections one by one, in increasing order
of fi as listed in permutation PS . For each connection Ti,
we remove its block of spectrum slots that starts at slot
fi from the solution, and we allocate to it an equal block
of slots starting at the lowest possible slot index f ′i in the
partial solution such that none of the problem constraints are
violated, keeping in mind that f ′i may be equal to fi. This
modified solution S′ does not use more than SOL slots on any
link, since any modifications involve the allocation of lower-
indexed spectrum slots to connections. At the same time, since
modifications are applied to the starting solution S only if
no constraints are violated, the modified solution S′ is also
feasible. Hence, the modified solution S′ is either 1) identical
to S, if it was not possible to move any spectrum blocks,
or 2) a different feasible solution with an objective function
equal to or lower than SOL, if the spectrum slots allocated
to some connection(s) in S were moved to a lower-indexed
block. Importantly, by construction the modified solution S′

is such that no connection may be allocated to a spectrum
block that starts at a lower-indexed slot.

Let P be the permutation in which the connections are
reordered so that they are listed in increasing order of f ′i
in the modified solution S′, and let us apply the DSA-FF
algorithm to this permutation. The algorithm allocates to
each connection Ti a block of ti contiguous slots starting
at the lowest-indexed slot for which all problem constraints
are satisfied. Therefore, the DSA-FF algorithm will construct
the modified solution S′ above that is feasible and has an
objective value no larger than SOL.

Figure 1 illustrates the proof of Lemma 3.1 using a simple
example. Figure 1(a) shows a feasible solution to the min-max
DSA problem on a four-link chain network and C = 5 connec-
tions labeled A,B,C,D,E. Each connection is represented by
a rectangle of a different color. The length of each rectangle
spans all the links in the corresponding connection’s path,

whereas the width represents the number of slots allocated
to the connection. For instance, the bottomest connection A
in the figure spans all four links of the network and has been
allocated the contiguous block consisting of slots 1 and 2 along
these links. For the problem instance shown in the figure, we
have gAB = 3, gAC = gAD = 2 and gAE = gBE = 1.
Therefore, the solution in Figure 1 is feasible as there is a
guard band (i.e., block of empty slots) of appropriate size
between the blocks of adjacent connections.

Figure 1(b) is the modified solution constructed by the proof
of Lemma 3.1. In this solution, connection E has been moved
from slot 11 to slot 4, as the three free slots between the blocks
of connections A and B in Figure 1 are sufficient to allocate
one slot to connection E and form two guard bands of size 1
between A and E and between E and B. Similarly, connection
D has been assigned slots 5 and 6, instead of slots 6 and 7
in the original solution. The new solution is also feasible and
has an objective value of 9, lower than the objective value 11
of the original solution. The reader may also verify that 1) the
solution of Figure 1(b) is the one constructed by the DSA-
FF algorithm on permutation < A,B,C,D,E >, and 2) the
solution of Figure 1(a) would not have been produced by DSA-
FF on any permutation of the five connections. We also note
that the solution in Figure 1(b) is optimal since the objective
value is equal to the number of slots required to accommodate
the amount of traffic and corresponding guard bands associated
with the connections whose path includes the botlleneck link 4.

B. Symmetry-Free Model for min-max DSA

Lemma 3.1 applies to all feasible solutions, including opti-
mal ones, yielding this corollary:

Corollary 3.1: There exists a permutation P ? of the C
connections such that DSA-FF (P ?) is an optimal solution
to the min-max DSA problem.

Consequently, the symmetry-free model we introduced
in [1] for the min-max SA problem extends to this general
min-max DSA variant. Specifically, min-max DSA reduces to
a permutation problem in that, to find an optimal solution,
one only needs to examine the solutions that the DSA-FF
algorithm produces on the various connection permutations.
As a result, symmetric solutions, i.e., solutions derived from
a DSA-FF solution by permuting blocks of spectrum slots,
are eliminated from consideration. Clearly, the min-max DSA
problem remains NP-hard [19]. However, as we explain in [1],
the number of symmetric solutions is exponential. Therefore,
the size of the symmetry-free solution (i.e., permutation) space
is orders of magnitude smaller compared to that explored
by conventional integer linear programming (ILP) formula-
tions [20], [21].

Furthermore, with the elimination of symmetric solutions,
the permutation space has a well-defined structure that is
amenable to recursive and multi-threaded exploration. In par-
ticular, the recursive branch-and-bound RFF algorithm we
developed in [1], [18] for min-max SA can be readily ex-
tended to tackle the min-max DSA problem. This DSA-RFF



Fig. 1. (a) A feasible solution to a min-max DSA problem instance on a 4-link chain with C = 5 connections A,B,C,D,E. (b) The feasible (and optimal)
solution constructed by the proof of Lemma 3.1.

algorithm operates identically to RFF; the only difference is
that it applies DSA-FF, rather than the pure FF algorithm,
as it recursively and incrementally builds and evaluates the
connection permutations. Rather than repeating the details
of RFF, we refer the reader to [1] for the operation of
the algorithm and to [18] for two alternative multi-threaded
implementations. We also note that min-max DSA includes
more constraints than min-max SA, hence its solution space is
smaller (since permutations that might yield feasible solutions
for min-max SA may lead to infeasible solutions for min-
max DSA). Therefore, we expect DSA-RFF to be more
time-efficient than pure RFF. Nevertheless, an experimental
evaluation of DSA-RFF is outside the scope of this paper and
will be the subject of future research.

IV. THE MIN-FRAG SA PROBLEM

A spectrum fragment on a link is a block of one or more
contiguous unused (free) slots located between two assigned
spectrum blocks. The min-max objective we have discussed
so far attempts to pack the assigned spectrum blocks tightly
within lower-index slots so as to minimize spectrum frag-
mentation and allow for growth in demand. A different way
for achieving the same goal would be to construct solutions
that minimize the number of unused slots contained within
spectrum fragments. Therefore, we define the min-frag SA
problem as:

Definition 4.1 (min-frag SA):
The min-max SA problem of Definition 2.1 with this new

objective:
Objective: Minimize the sum of spectrum fragment sizes

over all links of the network.
We now show that the optimal solutions to the min-max SA

and min-frag SA problems can be very different.
Lemma 4.1: An optimal solution to the min-max SA prob-

lem is not necessarily optimal for the min-frag SA problem,
and vice versa.
Proof. By counter-example.

Figure 2(a) shows an optimal solution to a min-max SA
problem instance on a 4-link chain with C = 9 connections;
each connection is represented similarly to Figure 1. The

solution is optimal since the index of the highest slot used
is 13, which is equal to the lower bound, i.e., the number of
slots necessary to carry the traffic on connections using link 3.
This is also a feasible solution to the min-frag SA problem
with an objective value of 2 representing the sum of the two
one-slot spectrum fragments on links 1 and 4.

Figure 2(b), on the other hand, shows an optimal solution
to the min-frag SA problem instance where there is a single
spectrum fragment of one slot. This solution is also a feasible
solution for the min-max objective but the index of the highest
slot used is 14, higher than that of the optimal min-max
solution in Figure 2(a).

Hence, the min-max optimal solution of Figure 2(a) is
suboptimal for the min-frag obejective, whereas the min-frag
optimal solution of Figure 2(b) is suboptimal uder the
min-max objective.

As we can see from Figure 2, there is a tradeoff between
the min-max and min-frag objectives. Specifically, to minimize
the index of the highest slot used it may be necessary to
introduce additional spectrum fragments as in Figure 2(a); and
conversely, minimizing the spectrum fragments may require
the use of higher-indexed slots as in Figure 2(b).

Nevertheless, the min-max SA and min-frag SA problems
have something in common, namely, that they are both solved
by the FF algorithm. We showed that FF solves the min-max
SA problem in [1]; to show that FF also solves the min-frag
SA problem we first prove the following more general result.

Lemma 4.2 (FF Universality Property for min-frag SA):
Let S be a feasible solution to the min-frag SA problem.
There exists a permutation P of the C connections such that
applying the FF algorithm in the order implied by P yields S
or another feasible solution S′ with equal or lower objective
value.
Proof. By construction.

The construction is very similar to that of the proof of
Lemma 3.1 in that we consider the connections in solution
S one at a time and in the same order, remove their assigned
spectrum block from the solution, and attempt to place the
block at a lower-indexed starting slot. The main difference



Fig. 2. (a) An optimal solution to a min-max SA problem instance on a 4-link chain with C = 9 connections; also a feasible (but suboptimal) solution to
the corresponding min-frag SA problem instance. (b) An optimal solution to the min-frag SA problem instance; also a feasible (but suboptimal) solution to
the corresponding min-max SA problem instance.

is that there are no guard bands to consider when placing a
spectrum block.

Note also that if a spectrum block is moved to a lower-
indexed starting slot, the objective function cannot increase
(but may decrease). To see this, consider a spectrum block
of size t that is moved to lower-indexed slots. There are
two cases to consider: (a) links in which another spectrum
block is assigned slots of higher index than this block, and
(b) links for which this spectrum block is the one with the
highest-index slots. In case (a), removing the block creates
a spectrum fragment of size t, but placing the block at a
lower-indexed slot removes a fragment of the same size;
therefore, the net change in the objective function is zero.
Case (b) has two sub-cases that correspond to the spectrum
blocks of connections D and E in Figure 1(a), ignoring the
guard bands implicit in that figure. In both sub-cases, when
the spectrum blocks of the two connections are moved to a
lower-indexed starting slot, the objective function (i.e., the
sum of fragment sizes) decreases.

Similar to Corollary 3.1, we have this result:
Corollary 4.1: There exists a permutation P ? of the C

connections such that FF (P ?) is an optimal solution to the
min-frag SA problem.

Therefore, the symmetry-free model, along with all the im-
plications we discussed earlier, also extends to the min-frag SA
problem. In particular, the RFF algorithm [1] may be modified
in a straightforward manner to explore the permutation space
for an optimal solution under the min-frag, rather the min-
max, objective; multi-threaded implementations of RFF [18]
are also applicable in this case.

However, there is a crucial difference between the min-
max and min-frag objectives. Specifically, as the FF algorithm
operates on a certain permutation to build a solution under
the min-max objective, the objective value (i.e., the index
of the highest assigned slot) is monotonically non-decreasing
as a function of the number of connections considered. This
property allows RFF to determine if a permutation that has

been partially considered will not lead to a solution that is
better than a baseline one; if so, RFF eliminates the current
subtree of the permutation space and backtracks to explore a
different subtree. The min-frag objective, on the other hand,
does not have the same property: a connection further down in
a permutation may fit within an existing spectrum fragments,
thus reducing the objective value. Consequently, RFF will have
to operate on each and every connection of a permutation
without the possibility of backtracking; hence, it will take
more time to explore the same fraction of the permutation
space than for the min-max objective. As we mentioned in
the previous section, an experimental investigation of this
modified version of RFF is outside the scope of this paper,
but we are considering other options for speeding up the
exploration of the min-frag solution space.

V. THE MIN-FRAG DSA PROBLEM

Recall that the min-frag objective attempts to minimize
the number of unused slots stranded in fragments between
assigned spectrum blocks. In the presence of guard band con-
straints, however, certain slots within a spectrum fragment may
represent a required guard band and cannot be considered as
“unused.” Consider, for instance, the 3-slot fragment in link 1
of Figure 1(a). Since gAD = 2, two slots of that fragment
represent the required guard band between connections A and
D, hence only one slot is unused. Therefore, once connection
D is moved to slots 5 and 6 in the modified solution of Figure
1(b), the two-fragment slot on link 1 represents the guard band
and does not include any unused slots.

With these observations, the min-frag DSA problem is
derived from min-max DSA with the new objective of mini-
mizing the size of the spectrum fragments that do not represent
guard bands. More formally:

Definition 5.1 (min-frag DSA):
The min-max DSA problem of Definition 3.1 with this new

objective:
Objective: Minimize, over all links of the network, the sum

of spectrum fragment sizes minus the sum of all guard bands.



Using a construction proof similar to the ones we presented
in the previous two sections, we can show that DSA-FF is
also a universal algorithm for the min-frag DSA problem;
specifically, we have the following lemma:

Lemma 5.1 (Universality Property for min-frag DSA): Let
S be any feasible solution to the min-frag DSA problem.
There exists a permutation P of the C connections such that
applying the DSA-FF algorithm in the order implied by P
yields S or another feasible solution S′ with equal or lower
objective value.

Similar to our earlier observations, the implication of
Lemma 5.1 is that the recursive DSA-RFF algorithm we dis-
cussed in Section III-B may be used to search the symmetry-
free solution (permutation) space for a permutation on which
the DSA-FF algorithm produces an optimal solution to min-
frag DSA. As we discussed in the previous section, the
min-frag objective is such that the objective value is not
monotonically non-decreasing as a function of the number
of connections in the permutation to which the DSA-FF
algorithm has assigned spectrum. Therefore, DSA-RFF cannot
operate in a branch-and-bound mode, and has to completely
evaluate each permutation, i.e., perform an exhaustive search
of the permutation space. A quantitative evaluation of DSA-
RFF for this problem is the subject of ongoing research in our
group.

VI. CONCLUDING REMARKS

We have studied two variants of the spectrum assignment
problem, one without guard band constraints (i.e., SA) and
one with such constraints (i.e., DSA). For each variant, we
considered two objectives: min-max, which minimizes the
highest spectrum slot index assigned to any connection, and
min-frag, which minimizes the sum of the number of unused
slots in spectrum fragments across all links. We have shown
that the FF algorithm may be used to solve optimally the
min-max SA and min-frag SA problems. Likewise, the DSA-
FF algorithm which operates similarly to FF but takes into
consideration the guard band constraints, may be used to solve
optimally the min-max DSA and min-frag DSA problems. We
also showed that while the two objectives, min-max and min-
frag, attempt to minimize fragmentation, they may lead to
different solutions.

Our results transform all four spectrum assignment prob-
lems into permutation problems with a well-structured and
symmetry-free solution space. With this new insight into the
nature of spectrum assignment, we were able to develop
intuitive recursive algorithms, RFF and DSA-RFF, that differ
radically from conventional approaches and may be used
to explore the corresponding solution (permutation) spaces
effectively and in parallel. Our work shows that seemingly
disparate variants of spectrum assignment have a common
underlying structure and may be tackled using similar ap-
proaches. Finally, since spectrum assignment underlies most
optical network optimization problems, our results represent

the first step towards new algorithmic approaches to optical
network design.
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