
Offline Distance-Adaptive Routing and Spectrum
Assignment in Mesh Elastic Optical Networks

Sahar Talebi†, George N. Rouskas†?, Iyad Katib?

†Operations Research and Department of Computer Science, North Carolina State University, Raleigh, NC 27695-8206 USA
?King Abdulaziz University, Jeddah, Saudi Arabia

Abstract—The routing and spectrum assignment (RSA) prob-
lem has emerged as the key design and control problem in elastic
optical networks. Distance adaptive spectrum allocation exploits
the tradeoff between spectrum width and reach to improve
resource utilization by tailoring the modulation format to the
level of impairments along the path. In this paper, we consider the
distance-adaptive RSA (DA-RSA) problem with fixed alternate
routing. We first show that the DA-RSA problem in networks of
general topology is a special case of a well-studied multiprocessor
scheduling problem. We then leverage insights from scheduling
theory to (1) present new results regarding the complexity of the
DA-RSA problem, and (2) build upon list scheduling concepts
to develop a computationally efficient solution approach that is
effective in utilizing the available spectrum resources.

I. INTRODUCTION

Optical networking technologies underlie the delivery and
availability of reliable and survivable Internet services. As op-
tical transmission speeds approach 1 Tbps, new technologies,
including flexible spectrum switches and bandwidth variable
transceivers [1] continue to drive novel capabilities at the
optical layer. Elastic optical networks [2], [3] offer the promise
to harness the properties of individual optical devices to deliver
novel features and capabilities at the network scale. Further-
more, using finer spectrum granularity than conventional fixed-
grid WDM technology, elastic networks have the potential to
accommodate efficiently the ever-increasing traffic demands
by tailoring both modulation format and spectrum resources
to the data rate and path impairments [2], [4].

Elastic optical network technology is in the early stages of
development and/or deployment, yet relevant network design
techniques have been the subject of considerable research and
development activities in recent years. The routing and spec-
trum assignment (RSA) problem [5] addresses the network-
wide allocation and management of spectral resources and
is fundamental to the design and control of elastic optical
networks. The objective of RSA is to assign spectrum and
a physical path to each demand, so as to optimize spectrum
utilization. Several aspects of the problem have been stud-
ied in the literature, including offline RSA [6], [7], online
RSA [8], [9], distance adaptive RSA (DA-RSA) [10], [11],
fragmentation-aware RSA (FA-RSA) [12], RSA and traffic
grooming [13], and RSA with restoration [14]; for a recent
survey of the literature, we refer the reader to [5]. Most
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existing studies approach the problem using classical network
design techniques. Network design problems are notoriously
hard, and optimal methods (e.g., integer programming formu-
lations) do not scale to topologies encountered in practice.
This issue is even more pronounced in elastic optical networks
as the network designer has to take into account additional
dimensions including variable bandwidth demands (rather than
single-wavelength ones as in fixed-grid WDM) and trade-offs
in reach versus spectral efficiency.

In this paper, we provide new insight into the structure of the
offline distance-adaptive RSA (DA-RSA) problem by relating
it to a well-known problem of scheduling multiprocessor tasks
on dedicated processors. We also present a computationally
efficient solution approach for mesh (i.e., general-topology)
networks, based on list scheduling, that is effective in utilizing
the available spectrum resources. Specifically, the remainder of
the paper is organized as follows. In Section II, we define DA-
RSA with fixed alternate routing and show that this problem
is a special case of a multiprocessor scheduling problem in
which a task may be executed by alternate sets of processors.
Accordingly, we leverage scheduling theory to investigate the
complexity of the DA-RSA problem (in Section III), and to
develop a list scheduling algorithm to solve it (in Section IV).
In Section V, we present the results of an experimental study
to evaluate the list scheduling algorithm on various network
topologies and traffic distributions, and we conclude the paper
in Section VI.

II. DA-RSA IN GENERAL GRAPHS AS A SPECIAL CASE
OF MULTIPROCESSOR SCHEDULING

The concept of distance-adaptive (DA) spectrum allocation
was introduced in [15] to exploit the tradeoff between reach
and spectrum width, by tailoring the modulation format to
the level of impairments along the path so as to improve
spectrum utilization. Specifically, for the same data rate, a
high-level modulation format with low SNR tolerance and
narrow spectrum may be selected for a short path, whereas
a low-level modulation with high SNR tolerance and a wider
spectrum may be used for a longer path [11].

We consider the following general definition of the distance-
adaptive routing and spectrum assignment (DA-RSA) problem
with fixed alternate routing in elastic optical networks.
• DA-RSA Inputs: (1) a directed graph G = (V,A), where
V is the set of nodes and A is the set of arcs (directed
links); (2) k alternate routes, r1sd, . . . , r

k
sd, from node s



to node d, where k ≥ 1 is a small integer, (3) a spectrum
demand matrix T = [tlsd], such that (i) tlsd is the number
of spectrum slots required to carry the traffic from source
s to destination d along the l-th route between the two
nodes, l = 1, . . . , k, and (ii) spectrum demands may
increase (but not decrease) with the path length, i.e.,

|rl
sd| ≤ |rh

sd| ⇒ tlsd ≤ thsd. (1)

• DA-RSA Objective: select one of the k possible routes for
each spectrum demand and assign spectrum slots along
all the arcs of this route such that the total amount of
spectrum used on any arc in the network is minimized.

• DA-RSA Constraints: (1) spectrum contiguity: each de-
mand is assigned contiguous spectrum slots; (2) spectrum
continuity: each demand uses the same spectrum slots
along all arcs of its route; and (3) non-overlapping
spectrum: demands that share an arc are assigned non-
overlapping parts of the available spectrum.

Now, consider the following multiprocessor scheduling
problem P |setj |Cmax, defined as [16]:
• P |setj |Cmax Inputs: a set of m identical processors, a

set of n tasks, a set setj = {S1
j , . . . , S

k
j } of k alternative

processor sets that may execute each task j, where k is
an integer, and the processing time pl

j of task j when it
is to be executed on processor set Sl

j , l = 1, . . . , k.
• P |setj |Cmax Objective: assign one of the k sets of

processors to execute each task, and schedule the tasks
so as to minimize the makespan Cmax = maxj Cj of the
schedule, where Cj denotes the finish time of task j.

• P |setj |Cmax Constraints: (1) no preemption is allowed;
(2) all the processors in the selected set must work on task
j simultaneously, and (3) each processor may execute at
most one task at any given time.

The next two lemmas show that the DA-RSA problem
with fixed-alternate routing in networks of general topol-
ogy is a special case of the P |setj |Cmax scheduling prob-
lem. Lemma 2.1 first shows that DA-RSA transforms to
P |setj |Cmax, and hence, any algorithm for the latter problem
also solves the former. Lemma 2.2 shows by counter-example
that the reverse result is not true, i.e., that there exist instances
of P |setj |Cmax for which there is no corresponding instance
of DA-RSA.

Lemma 2.1: DA-RSA with fixed-alternate routing in mesh
networks transforms to P |setj |Cmax.

Proof. Consider an instance of the DA-RSA problem
with fixed-alternate routing on a general directed graph
G = (V,A), a set of k routes {r1sd, . . . , r

k
sd} for each

source-destination pair (s, d), and demand matrix T =
[tlsd], l = 1, · · · , k. It is possible to construct an instance of
P |setj |Cmax such that: (1) there is a processor i for every arc
in ai ∈ A, (2) there is a task j for each source-destination pair
(s, d), (3) there is a setj = {S1

j , . . . , S
k
j } for each task j with

Sl
j = {i : ai ∈ {rl

sd}} where (s, d) is the source-destination
pair corresponding to task j, and (4) the processing time of
task j on processor set Sl

j is pl
j = tlsd, l = 1, · · · , k. In this

transformation, each arc in the DA-RSA problem maps to a
processor in the scheduling problem, each spectrum demand to
a task, each alternate route of a demand to one of the alternate
processor sets of the corresponding task, and the number of
spectrum slots along a route of a demand to the processing
time of the task on the corresponding set of processors. Note
that, because of (1), the processing times of each task j in the
P |setj |Cmax instance will obey this relationship:

|Sl
j | ≤ |Sh

j | ⇒ pl
j ≤ ph

j . (2)

With this transformation, the spectrum contiguity constraint
in allocating slots to a demand implies that processing of
the corresponding task in the constructed scheduling problem
will continue with no preemption. The spectrum continuity
constraint along the arcs of the route taken by a demand
guarantees that all the processors within the set assigned to
a task will execute this task simultaneously. Also, the non-
overlapping spectrum constraint assures that a processor works
at most on one task at a time.

Finally, the total amount of required spectrum required
for all the demands using an arc of graph G in the DA-
RSA problem, is equivalent to the completion time of
the last task executed on the corresponding processor.
Accordingly, minimizing the spectrum use on any arc of the
DA-RSA problem is equivalent to minimizing the makespan
of the schedule in the corresponding problem P |setj |Cmax.

Lemma 2.2: There exist instances of P |setj |Cmax for
which there is no corresponding instance of the DA-RSA
problem with fixed-alternate routing.

Proof. By counter-example. Consider an instance of
P |setj |Cmax with m = 3 processors labeled P1, P2, P3, and
n = 3 tasks τ1, τ2, and τ3. Each task τj must be executed
by a single set S1

j of processors (i.e., k = 1), as shown in
the following table; the processing time of each task can be
arbitrary:

task S1
j

τ1 {P1, P2}
τ2 {P2, P3}
τ3 {P1, P3}

The graph of the corresponding DA-RSA instance would
have to consist of three directed links, L1, L2, and L3,
corresponding to processors P1, P2, P3, respectively. Consider
task τ1. Since this task must be executed simultaneously on
processors P1 and P2, then the corresponding demand in
the DA-RSA instance must be routed along the two arcs L1

and L2. Suppose that the path of this demand is the directed
pair of arcs < L1, L2 >; if the path is the directed pair of
arcs < L2, L1 >, then similar arguments may be used to
reach the same conclusion. Now consider task τ2. Similarly,
the path of the corresponding demand can be either (a)
< L2, L3 >, or (b) < L3, L2 >. In case (a), the graph of the
DA-RSA instance would have to be the directed three-link
chain network < L1, L2, L3 >. In case (b), the graph of the



DA-RSA instance would have to be a a three-link network in
which links L1 and L3 feed into link L2. Consequently, there
is no feasible path for the spectrum demand corresponding
to the third task τ3 in either graph, as it is not possible for
traffic on link L1 to continue onto link L3, or vice versa.
Therefore, an instance of DA-RSA does not exist.

III. COMPLEXITY RESULTS

The problem P2|setj |Cmax in which the number of proces-
sors is fixed to m = 2, is NP-hard [17]. Moreover, it has been
shown that, unless P = NP , no constant-ratio polynomial
time approximation algorithm exists for the general problem
P |setj |Cmax [18]. However, since the DA-RSA problem is a
special case of P |setj |Cmax, it is possible that polynomial or
approximation algorithms exist for special topologies or spec-
trum demand matrices. In this section, we present theoretical
results on the complexity of the DA-RSA problem.

Before we proceed, we introduce two definitions. First,
we let KN denote a complete digraph with N nodes. Since
every pair of distinct nodes in KN is connected by a pair of
distinct arcs, one in each direction, the total number of arcs
in the graph is equal to N(N − 1). Second, in the context of
multiprocessor scheduling, we refer to tasks as compatible if
they can be executed simultaneously, i.e., if the processor sets
assigned to the tasks are pairwise disjoint. We now have the
following lemma.

Lemma 3.1: The DA-RSA problem on complete digraphs
KN , N ≥ 2, is solvable in polynomial time.

Proof. From Lemma 2.1 the multiprocessor scheduling
problem instance corresponding to a DA-RSA instance on
KN contains N(N − 1) processors, one for each arc of
KN . Let us select the shortest path (i.e., direct arc) for
each spectrum demand in the DA-RSA instance. Then, each
task in the scheduling instance is to be executed on its own
distinct processor. Therefore, the problem reduces to that of
scheduling a set of single-processor tasks that are pairwise
compatible. Since all tasks may be executed in parallel, the
makespan of the schedule is equal to the processing time of
the longest task. Recall that all instances of P |setj |Cmax

constructed from an instance of the DA-RSA problem are
such that processing times of tasks satisfy expression (2).
Therefore, this makespan is optimal.

Although DA-RSA may be solved optimally on a complete
digraph using shortest path routing, as the above lemma
implies, the next three results show that DA-RSA on general
topologies derived by deleting arcs from a complete digraph,
is NP-Complete.

Theorem 3.1: DA-RSA on a digraph G obtained by deleting
the two arcs1 between any pair of nodes of K4, is NP-
Complete.

1In typical telecommunication networks, two nodes are directly connected
using two links, one in each direction. Hence, in this and the next theorem,
we only consider the case of removing both arcs between a pair of nodes.
Although, it is possible to extend the results to the case of deleting one arc
at a time, we will consider this task in future work.

The proof is omitted due to page constraints, but it is
available in the first author’s dissertation [19]. Theorem 3.1
shows that removing the two arcs between any pair of nodes
of K4 renders the DA-RSA problem on the resulting graph
K ′4 NP-Complete. The following theorem shows that removing
two pairs of arcs from K5 yields a problem that is also NP-
Complete.

Theorem 3.2: DA-RSA on a digraph K ′5 obtained by delet-
ing the two arcs between any two pairs of nodes of K5, is
NP-Complete.

Again, the proof is omitted but can be found in [19].
We now provide the following complexity result for the

DA-RSA problem on general graphs.
Lemma 3.2: Let G be a digraph. If either K ′4 or K ′5 is a

vertex-induced subgraph of G, then the DA-RSA problem on
G is NP-Complete.

Proof. Let K ′4 be a vertex-induced subgraph of G; identical
arguments apply when K ′5 is a vertex-induced subgraph of
G. Consider an instance of DA-RSA on G with the following
spectrum demands: (1) arbitrary, between nodes of the K ′4
subgraph, (2) equal to a large number M , between adjacent
nodes not in the K ′4 subgraph, and (3) equal to zero, between
non-adjacent nodes not in the K ′4 subgraph. Similar to the
observations in the previous theorem, in the optimal solution,
each arc of G that is not part of the subgraph K ′4 only carries
the traffic between the directly connected nodes. Hence, this
instance reduces to a DA-RSA sub-problem on digraph K ′4,
which, according to Theorem 3.1, is NP-Complete.

IV. A LIST SCHEDULING ALGORITHM FOR Pm|setj |Cmax

In this section, we propose a list scheduling (LS) algorithm
for the Pm|setj |Cmax problem. Since DA-RSA is a special
case of Pm|setj |Cmax, this algorithm can be used to solve
the DA-RSA problem in networks of general topology. This
is accomplished in three steps: (1) the DA-RSA instance at
hand is first be transformed to an instance of Pm|setj |Cmax

following the process described in Lemma 2.1, (2) the LS
algorithm is applied to construct a schedule that solves the
scheduling instance, and (3) the schedule is transformed back
to a solution of the DA-RSA instance.

The input to the LS algorithm is a list of tasks L, along with
their corresponding k alternate sets of processors. Tasks in the
list are sorted in decreasing order of the processing time on
their smallest processor set; ties are broken by the size (i.e.,
the number of processors) of their smallest processor set, and
further ties are broken arbitrarily. For each task, its alternate
processor sets are sorted in increasing order of their size.

At each scheduling instant t, the algorithm scans the list L
to find the first task j and processor set Sl

j that is compatible
with the tasks already executing at this time t. This set Sl

j of
processors is selected to execute task j starting at time t, and
the algorithm removes the task from L. The algorithm updates
the set of free processors at time t, and continues scanning list
L, repeating the above process until no other compatible task
is found. Then, the algorithm advances t to the earliest time



List Scheduling Algorithm for Pm|setj |Cmax

Input: A list L of n tasks on m processors, each task j defined
by the set setj = {S1

j , . . . , Sk
j } of k alternative processor sets on

which it may be executed, and the corresponding processing times
{p1

j , . . . , p
k
j }

Output: A schedule of tasks, i.e., the time Tj when task j starts
execution, along with the set Sj of processors assigned to it and the
corresponding processing time pj

begin
1. t← 0 //Scheduling instant
2. F ← {1, . . . , m} //Set of currently idle processors
3. while list L 6= ∅ do
4. j ← first task in list L
5. Sj ← ∅ //Set of processors to execute task j
6. pj ← 0 //Processing time of task j
7. for z ← 1 to k
8. if Sz

j ⊆ F then
9. Sj ← Sz

j

10. pj ← pz
j

11. Tj ← t
12. F ← F \ Sj

13. Remove the task j from list L
14. break
15. while not at the end of list L or F 6= ∅ do
16. i← first task in list
17. for w ← 1 to k
18. if Sw

i ⊆ F then
19. Si ← Sw

i

20. pi ← pw
i

21. Ti ← t
22. F ← F \ Si

23. Remove the task i from list L
24. break
25. end while // no more tasks may start at time t
26. j ← the first task executing at time t to complete
27. t← Tj + pj

28. F ← F ∪ Sj

19. end while
end

Fig. 1. A list scheduling (LS) algorithm to select one set Sj and its corre-
sponding processing time pj to execute each task j of the Pm|setj |Cmax

problem.

t′ > t at which one of the currently executing tasks will be
completed, releases the set of processors assigned to the just
completed task, and repeats the above actions for time t′. The
algorithm continues in this manner until all tasks in list L have
been scheduled.

A pseudocode description of the LS algorithm is provided
in Figure 1. Both the outer and inner while loops of the
algorithm take at most O(n) time, in the worst case, where
n is the number of tasks in the scheduling problem. Both
for loops take time O(k) in the worst case, where k is the
number of alternate processor sets. Therefore, the running time
complexity of the LS algorithm is O(kn2). Since the number
of tasks corresponds to the number of spectrum demands, the
complexity of the algorithm when applied to the DA-RSA
problem is O(kN4), where N is the number of nodes and k
the number of alternate paths.
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Fig. 2. The NSFNet topology

V. NUMERICAL RESULTS

We have evaluated the performance of the LS algorithm
by carrying out simulation experiments with a large number
of DA-RSA problem instances. Each problem instance is
characterized by three parameters: (1) the network topology,
(2) the number k of shortest paths for each source-destination
pair, and (3) a randomly generated spectrum demand matrix.

Due to space constraints, in this paper we only show results
for the 14-node, 42-arc (directed link) NSFNet shown in
Figure 2; for results on other general topology networks of
varying size and average nodal degree, the reader is referred
to [19].

We used Yen’s algorithm [20] to compute the k loop-less
shortest paths, k = 1, . . . , 7, between each pair of nodes in
each topology. Yen’s algorithm takes time O(N3), where N
is the number of nodes. For the experiments we present in
this section, we assumed that all links have unit weight for
purposes of computing shortest paths.

A. Spectrum Demand Matrix

For each DA-RSA problem instance we randomly gener-
ate a spectrum demand matrix in two steps: traffic demand
generation and distance-adaptive spectrum allocation.

1) Traffic Demand Generation: We assume that the elastic
optical network supports the following data rates (in Gbps):
10, 40, 100, 400, and 1000. Therefore, in the first step, traffic
rates between every pair of nodes are drawn from one of three
probability distributions:
• Distance-independent: each value in the set
{10, 40, 100, 400, 1000} is selected with equal
probability.

• Distance-increasing: the probability assigned to each
value in the set {10, 40, 100, 400, 1000} depends on the
length of the shortest path between the source and des-
tination nodes, such that the probability of higher values
in the set increases with the length of the shortest path.

• Distance-decreasing: the probability assigned to higher
values in the set {10, 40, 100, 400, 1000} decreases with
the length of the shortest path between the source and
destination nodes.

2) Distance-Adaptive Spectrum Allocation: In the second
step, we determine the number tlsd of spectrum slots required
for the traffic demand to be carried on the l-th alternate path,



l = 1, . . . , k, from source s to destination d. In distance-
adaptive spectrum allocation, the number of slots depends on
both the data rate and the length of the path [2], [15]. We
adopt the parameters of the study in [15], and assume a slot
width of 12.5 GHz and three modulation formats:
• Paths with up to 4 links: the 64-QAM modulation format

is used such that data rates of 10, 40, 100, 400, and
1000 Gbps require 1, 1, 2, 6, and 14 spectrum slots,
respectively.

• Paths with 5-9 links: the 16-QAM modulation format
applies, such that rates of 10, 40, 100, 400, and 1000
Gbps are assigned 1, 1, 2, 8, and 20 slots, respectively.

• Paths with 10 or more links: the QPSK modulation format
is utilized, and data rates of 10, 40, 100, 400, and 1000
Gbps are allocated 1, 2, 4, 16, and 40 spectrum slots,
respectively.

B. Evaluation Metrics

The first metric we consider is the maximum number of
spectrum slots on any link in the network required by the
solution to a DA-RSA problem instance obtained by the LS
algorithm. We denote this value as MaxSlotsLS ; as the reader
may recall, this value is equivalent to the length of the sched-
ule constructed by the LS algorithm for the corresponding
scheduling problem instance. This metric can provide insight
into the impact of the number k of alternate paths or the
traffic rate distribution on the use of spectrum resources in
the network.

In order to evaluate the quality of the LS algorithm, and
since the optimal solution cannot be obtained in polynomial
time, it is important to compute a lower bound (LB). Let Din

q

and Dout
q denote the in- and out-degrees of node q. A simple

lower bound for the DA-RSA problem can be calculated as
follows:

LB = max{max
s

∑
d

tsd/D
out
s ,max

d

∑
s

tsd/D
in
d } (3)

where tsd in the above expression is the spectrum demand for
the traffic from s to d along the shortest path between the two
nodes. The metric we use to characterize of the LS algorithm
is the ratio

R = MaxSlotsLS/LB. (4)

Clearly, R ≥ 1.0; the closer R is to 1.0, the better the
performance of the algorithm. We note, however, that the lower
bound in (3) only considers spectrum demands in and out of
each node, and does not account for the interaction of these
demands along the links of the network; therefore, we expect
the bound to be loose.

The figures we present in the next section report average
values for either MaxSlotsLS or R. Specifically, each data
point on these figures is the average of 10 replications of a
random experiment; in turn, each replication is the average
of 30 random instances generated for the stated parameters
(i.e., topology, number k of paths, and traffic rate distribution).
The figures also report 95% confidence intervals which can be
seen to be narrow.
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C. Results and Discussion

Figure 3 plots the maximum number of spectrum slots,
MaxSlotsLS , as a function of the number k of alternate paths,
for the NSFNet topology. The figure includes three curves,
each representing results for problem instances with spec-
trum demand matrices generated by the distance-independent,
distance-increasing, and distance-decreasing distributions, re-
spectively.

We first observe that the amount of spectrum increases with
the size of the network, reflecting the corresponding increase in
traffic demands due to the larger number of source-destination
pairs. Nevertheless, the overall behavior of the curves is
consistent across the three traffic distributions. Specifically, the
amount of spectrum resources is high for shortest path routing
(k = 1), but drops sharply (between 20-50%, depending on the
distribution) when demands may be routed along one of k = 2
alternate paths. As the number k of alternate paths increases
further, the number of spectrum slots decreases more slowly
and eventually levels off, indicating the diminishing returns
of employing each additional path. Very similar results have
been observed for other networks of general topology, and are
reported in [19].

A final observation from the figure is that the solution to
the DA-RSA problem is highly sensitive to the traffic demand
distribution. Specifically, everything else being equal, the
distance-increasing distribution requires more spectrum than
the distance-independent distribution, which in turn is more
resource-intensive than the distance-decreasing distribution.
This result can be explained by the fact that demands between
nodes that are far away from each other consume more spectral
resources in the network than the same demands between two
nearby nodes due to (1) the larger number of links in the paths
they travel, and (2) the wider spectrum that is required to carry
the demand if the length of its path crosses the threshold into
a lower-level modulation with high SNR tolerance.

Let us now turn our attention to Figure 4 which plots the
average ratio R in expression (4) against the number k of paths
for NSFNet topology; again, the figure includes three plots,
one per demand distribution. Note that the lower bound in (3)
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is independent of the number k of alternate paths for each
demand. Since the number of required slots, MaxSlotsLS

decreases with k, as seen in the previous figure, we expect R
to decrease as well, and this is exactly what we observe in
Figures 4.

Nevertheless, there is an important difference between the
figure that plots the absolute value of spectrum slots required
and the one that shows the average ratio. Specifically, we
observe that there are significant gaps between the various
curves in Figure 3, which, as we explained above, are due to
the combined effects of the demand distribution and distance-
adaptive spectrum allocation. On the other hand, the curves of
the various distributions in Figure 4 are closer to each other
and the average ratios of the three distributions converge to
similar values. Recall that the lower bound in (3) depends on
the demands in and out of each node in the network, and hence
it depends on the traffic distribution. Therefore, the behavior
of the curves in Figure 4 is a strong indication that, for the
distributions we considered in this study, the LS algorithm
is capable of exploiting alternate paths to construct solutions
that move towards the lower bound, regardless of the absolute
value of spectrum slots required in each problem instance.

Overall, the results in this section (and in [19]) indicate
that the LS algorithm is effective in using a small number
of alternate paths (i.e., k = 5, 6) to utilize spectrum resources
efficiently, by balancing the traffic demands across the network
links.

VI. CONCLUDING REMARKS

We have shown that the distance-adaptive routing and
spectrum assignment (DA-RSA) problem with fixed alternate
routing in mesh networks transforms to a well-known proces-
sor scheduling problem. We have also developed a compu-
tationally efficient algorithm that builds upon list scheduling
concepts to jointly tackle the routing and spectrum assignment
aspects of DA-RSA. Our work explores the tradeoffs involved
in DA-RSA algorithm design, and opens up new research
directions in leveraging the vast literature in scheduling theory
to address important and practical problems in network design.
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