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Abstract—Distance adaptive spectrum allocation exploits the
tradeoff between spectrum width and reach to improve resource
utilization by tailoring the modulation format to the level of
impairments along the path. We first show that the distance-
adaptive routing and spectrum assignment (DA-RSA) problem in
mesh networks is a special case of a multiprocessor scheduling
problem. We then develop a suite of efficient and effective
DA-RSA algorithms that build upon list scheduling concepts.
Our work explores the tradeoffs involved in DA-RSA algorithm
design, and opens up new research directions that may leverage
the vast literature in scheduling theory.

I. I NTRODUCTION

Optical networking has a vital role in the operation of the
global Internet and the availability of reliable and surviv-
able communication services. Conventional fixed-grid WDM
technology assigns a full wavelength to each traffic demand,
even small ones, resulting in low utilization of the available
spectrum [1]. This issue is even more challenging when
transmitting higher data rates over long distance [2]. Elastic
optical networks [2], [3] have been introduced in response to
the need to accommodate the ever growing traffic demands
within a finite spectrum capacity. Using finer spectrum granu-
larity, elastic networks enable flexibility in allocating spectrum
resources proportionally to the traffic demand size.

Routing and spectrum assignment (RSA) arises as the
fundamental design and control problem in elastic networks.
Several aspects of the problem have been studied in the
literature, including offline RSA [4], [5], online RSA [6],
[7], distance adaptive RSA (DA-RSA) [8], [9], fragmentation-
aware RSA (FA-RSA) [10], RSA and traffic grooming [11],
and RSA with restoration [12]; for a recent survey of the
literature, we refer the reader to [13].

Although operators are in the process of transitioning their
networks to mesh topologies, large portions of the current
infrastructure are built on ring topologies. Hence, RSA algo-
rithms for rings will be important in the short- and medium-
term; importantly, such solutions are likely to provide insight
into extending the techniques to mesh networks. Therefore,
there has been increasing interest in RSA solutions for ring
networks within the research community. The study in [14]
considered the case of dynamic traffic flows between every
pair of nodes, and showed that employing elastic spectrum
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allocation in ring topologies increases spectrum utilization and
reduces the blocking ratio compared with fixed-grid WDM
technology. A distance adaptive elastic optical ring network
with traffic grooming was considered in [15]. The joint routing,
spectrum assignment, and modulation format problem were
formulated as an in integer linear problem (ILP), and was
solved with heuristic algorithms. This study also providedup-
per bounds for both the spectral minimization and transceiver
minimization problems.

Several studies have addressed theoretical aspects of the
RSA problem in ring topologies. For instance, an algorithm
with a (4 + 2ǫ)-approximation ratio for ring networks was
presented in [16]. In [17], it was shown that the contiguity
(i.e., adjacency) constraint in the spectrum assignment problem
is redundant, in that it can be constructed from the optimal
solution to the wavelength assignment (i.e., corresponding
coloring) problem. A comprehensive study on the complexity
and approximation ratios for the spectrum assignment (SA)
and routing and spectrum assignment (RSA) problems in rings
is available in our recent work [18].

In this paper, we leverage scheduling theory to provide
new insight into the structure of the offline distance-adaptive
RSA (DA-RSA) problem and to present efficient and effective
algorithms for rings. In Section II, we introduce the general
result that DA-RSA with fixed alternate routing in general
mesh networks is a special case of a multiprocessor scheduling
problem in which a task may be executed by alternate sets of
processors. Based on this transformation, we introduce a set of
scheduling algorithms in Section III. In Section IV, we present
the results of experiments to compare the performance of the
algorithms with respect to the lower bound, and we conclude
the paper in Section V.

II. OFFLINE DA-RSA IN MESH NETWORKS: A SPECIAL

CASE OFMULTIPROCESSORSCHEDULING

Distance-adaptive (DA) spectrum allocation, a concept first
introduced in [19], exploits the tradeoff between spectrum
width and reach (for the same data rate) to improve utilization
by tailoring the modulation format to the level of impairments:
a high-level modulation format with narrow spectrum and low
SNR tolerance may be selected for a short path, whereas a
low-level modulation with a wider spectrum and high SNR
tolerance may be used for a longer path [9]. The distance-
adaptive routing and spectrum assignment (DA-RSA) problem



with fixed-alternate routing in mesh elastic optical networks
can be defined as:

Definition 2.1 (DA-RSA):Given a directed graphG =
(V,E) with V vertices (nodes) andE arcs (directed edges),k

alternate routes,r1
sd, . . . , r

k
sd, from each nodes to each noded,

and traffic demand matrixT = [tsd,l] in which tsd,l represents
the required amount of spectrum to transmit traffic from source
nodes to destination noded along thel-th route,l = 1, · · · , k,
select one of possible route for each traffic demand and assign
required spectrum on all the edges of this route such that the
total amount of spectrum in the network is minimized while
the following three constraints are satisfied:

• spectrum contiguity constraint: each demand is assigned
contiguous spectrum on all the edges of each route.

• spectrum continuity constraint: each demand is assigned
the same spectrum along all the edges of its route.

• non-overlapping spectrum constraint: demands that share
an edge are assigned non-overlapping parts of the avail-
able spectrum.

If there is only one possible route for each traffic demand
(i.e., k = 1 in the above definition), then the RSA problem
reduces to the spectrum assignment (SA) problem. In recent
work [20], we have proved that the SA problem in mesh
elastic optical networks is a special case of the multiprocessor
scheduling problemP |fixj |Cmax. That is, the SA problem
can be transformed toP |fixj |Cmax, but the reverse is not
always true. Based on this reduction, any algorithm that solves
the P |fixj |Cmax problem also solves the SA problem. The
following definition of P |fixj |Cmax is adapted from [21],
[22].

Definition 2.2 (P |fixj |Cmax): Given a set ofm identical
processors, a set ofn tasks with processing timepj , j =
1, . . . , n, and a prespecified setfixj of processors for exe-
cuting each taskj, j = 1, . . . , n, schedule theses tasks under
three constraints: (1) preemption is not allowed; (2) each task
must be executed by all of its set of required processorsfixj

at the same time; and (3) a processor can process at most
one task at a time, so as to minimize the makespan of the
tasks denoted byCmax = maxj Cj whereCj stands for the
completion time of taskj.

If the number of processorsm is fixed and given in advance,
then the problem is denoted byPm|fixj |Cmax. The proof that
SA transforms toP |fixj |Cmax is available in [20].

Consider now the more general multiprocessor scheduling
problemP |setj |Cmax, defined as follows [23], [24]:

Definition 2.3 (P |setj |Cmax): Given a set ofm identical
processors, a set ofn tasks, a prespecified setsetj =
{fix1

j , . . . , fixk
j } of k alternative processor sets to execute

each taskj, and processing timepl
j for executing taskj on

set fixl
j , schedule thesen tasks under three constraints: (1)

preemption is not allowed; (2) each taskj is processed by
exactly one set of processors insetj simultaneously; and (3)
each processor can execute at most one task at each time, so as
to minimize the makespanCmax = maxj Cj of the schedule,
whereCj represents the completion time of taskj.

We now show that the DA-RSA problem with fixed-
alternate routing in mesh networks is a special case of
P |setj |Cmax.

Lemma 2.1:DA-RSA with fixed-alternate routing in mesh
networks transforms toP |setj |Cmax.

Proof.Consider an instance of the RSA problem with fixed-
alternate routing on a directed topology graphG = (V, E),
a set ofk routes{r1

sd, . . . , r
k
sd} for each source-destination

pair (s, d), and demand matrixT = [tsd,l], l = 1, · · · , k. It
is possible to build an instance ofP |setj |Cmax such that:
(1) there is a processori for every arc inai ∈ E , (2) there
is a taskj for each source-destination pair(s, d), (3) there
is a setj = {fix1

j , . . . , fixk
j } for each taskj with fixl

j =
{q : aq ∈ {rl

sd}} where (s, d) is the source-destination pair
corresponding to taskj, and (4) and processing time of taskj

on processor setfixl
j is pl

j = tsd,l, l = 1, · · · , k. In other
words, each alternate path transforms to the corresponding
alternate set of processors, while the amount of spectrum
on that path define the corresponding processing time in the
scheduling problem.

The spectrum contiguity constraint in the given instance
of DA-RSA is equivalent to the no preemption constraint
in the constructed multiprocessor scheduling problem.
The spectrum continuity constraint guarantees that all the
processors within a alternate set of processors execute
the corresponding task simultaneously. Finally, the non-
overlapping spectrum constraint assures that a processor
works at most on one task at a time. Similarly, the total
amount of required spectrum on an arc of graphG in
the RSA problem is equivalent to the completion time
of the last task executed on the corresponding processor.
Accordingly, minimizing the spectrum use on any arc of
the RSA problem is equivalent to minimizing the makespan
of the schedule in the corresponding problemP |setj |Cmax.

We also note that the reverse of the above lemma is not true,
i.e., P |Setj |Cmax does not transform to DA-RSA and hence,
it is a more general problem. The proof is by counter-example
but is omitted due to page constraints.

Clearly, the P |fixj |Cmax problem is a special case of
P |setj |Cmax where there is only one set of processors (i.e.,
k = 1) to execute each task. Therefore, once a set of pro-
cessors among thek > 1 alternate sets is selected to execute
taskj, theP |setj |Cmax problem reduces toP |fixj |Cmax, in
which case any algorithm that solves the latter problem may
be applied to schedule the tasks.

In the context of theP |fixj |Cmax problem, we refer to
tasks ascompatibleif they can be executed simultaneously,
i.e., they do not share any processors. More formally, we have
the following definition.

Definition 2.4 (Compatible Tasks):A setT of tasks for the
P |fixj |Cmax problem are said to becompatibleif and only if
their prespecified sets of processors are pairwise disjoint, i.e.,
fixi ∩ fixj = ∅,∀ i, j ∈ T .



A. Lower Bound for Ring Networks

In order to evaluate the performance of an algorithm for
the DA-RSA problem, and since the optimal solution cannot
be obtained in polynomial time, it is important to compute
a lower bound (LB). To this end, we note that the amount
of flow across any cut of the network is a lower bound on
the amount of spectral resources that would be needed on
any link. The tightest such bound occurs for a cut with the
maximum flow between the two network partitions. In general,
determining such a cut for a mesh network is a hard problem.
In a ring network, however, we find such a cut by considering
all possible two-link cuts and selecting the one with the
maximum flow. In anN -node ring, there are N !

(N−2)!2! two-
link cuts, hence a lower bound can be obtained inO(N2) time.
Note that anN -node bidirectional ring hasN links in each
direction, hence the corresponding multiprocessor scheduling
problem hasm = 2N processors; therefore, the complexity of
obtaining the lower bound can also be expressed asO(m2).

III. O FFLINE DA-RSA ALGORITHMS FORRING

NETWORKS

In ring networks, each demand may take either the clock-
wise or the counter-clockwise path to the destination, hence the
DA-RSA problem is equivalent to theP |setj |Cmax problem
with k = 2 sets of processors for each task. It has been shown
that, in the general case, there can be no constant-ratio poly-
nomial time approximation algorithm forP |setj |Cmax unless
P = NP [25]. The two-processor problemP2|setj |Cmax

has been proved in [26] to be NP-hard. Therefore, in order to
solve the DA-RSA problem in large ring networks, new low
complexity algorithms with good performance are needed.

The DA-RSA problem requires both routing and spectrum
assignment decisions. There are two broad approaches to
solve this problem [13]. One strategy is to first select one of
the possible routes for each source-destination pair, and then
assign the required amount of spectrum along each path. Such
methods are commonly referred to as R+SA in the literature. A
second approach is to make routing and spectrum assignment
decisions jointly.

We now present three algorithms to solve the DA-RSA
problem. The algorithms make routing and/or spectrum assign-
ment decisions by building upon the multiprocessor scheduling
perspective above. All three algorithms utilize the concept of
compatible tasks to minimize the makespan,Cmax, of the
corresponding scheduling problem.

A. R+SA Algorithms

In this section, we describe two algorithms that first select
the clockwise or counter-clockwise path for each demand, and
then employ a multiprocessor scheduling algorithm to solve
the correspondingPm|fixj |Cmax problem. The algorithms
only differ in how they make the routing decision, or, from the
point of view of multiprocessor scheduling, how they select
one of the two sets of processors on which a task is to be
executed. The input to these algorithms is a list of tasks along

Traffic Load Balancing Algorithm for Pm|setj |Cmax

Input: A list L of n tasks onm processors, each taskj requires a
prespecified setsetj = {fix1

j , . . . , fixk
j } of k alternative processor

sets with its corresponding processing timepj = {p1

j , . . . , p
k
j } and

Al = [a1, . . . , am] for alternativel whereai = 1 if processori ∈
fixl

j ; otherwise,ai = 0
Output: A list L′ of n tasks in which each taskj having a processing
time pj and a setfixj ⊆ {1, 2, . . . , m} of required processors

begin
1. F ← [0, . . . , 0]1×m //Completion time of each ofm processors
2. C′

max ← 0 // Expected makespan without idle times
3. while list L 6= ∅ do
4. j ← first task in listL
5. Remove the taskj from list L
6. fixj ← ∅ //Set of processors to execute taskj
7. pj ← 0 //Processing time to execute taskj
8. for z ← 1 to k
9. altz ← F + pz

j Az

10. C′

z ← takes the maximum value ofaltz

11. C′

max ← min(C′

z)
12. for w ← 1 to k
13. if C′

w = C′

max then
14. F ← altw

15. fixj ← fixw
j

16. pj ← pw
j

17. end while
end

Fig. 1. A traffic load balancing (TLB) algorithm to select onesetfixj for
executing each taskj of the Pm|setj |Cmax problem

with the two alternative set of processors and corresponding
processing times.

The first algorithm simply assigns each traffic demand to
its shortest path (in the scheduling problem, it assigns each
task to the set with the smallest number of processors), with
ties broken arbitrarily. We refer to this algorithm as SP. The
second algorithm attempts to balance the spectrum demands
on all the processors, and is referred to as traffic load balancing
(TLB). A pseudocode description of the TLB algorithm is
shown in Figure 1. Briefly, the algorithm processes the tasks
sequentially. When processing taskj, the algorithm tentatively
adds the processing time of each setfixl

j to the processing
time of each processor in the set, and selects the set that
results in the smallest total processing time on any processor.
In essence, the algorithm ignores the simultaneous processing
constraint (equivalently, the spectrum continuity constraint of
DA-RSA), hence, it only considers the amount of work (load)
in making a selection, not the actual schedule length.

The complexity of the TLB algorithm is determined by the
running time of the two nestedfor loops within the outerwhile
loop. Therefore, the running time of TLB isO(kn) wheren

is the number of tasks in the input list andk is the maximum
number of alternative processor sets for any task. Since, in
the scheduling problem corresponding to a ring network, the
number of alternative setsk = 2, the complexity of the TLB
algorithm is linear in the numbern of input tasks.

Once a set of processors to execute each task has



been determine by either the SP or TLB algorithms, the
original Pm|setj |Cmax problem has been reduced to the
Pm|fixj |Cmax problem. In [20], we introduced a suite of list
scheduling algorithms for solving the latter problem (i.e., for
performing the spectrum assignment) in chain networks. Based
on the comprehensive set of experiments reported in [20],
the longest first compact (LFC) algorithm exhibits the best
performance across various network sizes and traffic demand
distributions. Therefore, we adopt the LFC algorithm to solve
the Pm|fixj |Cmax problem corresponding to ring networks;
for the details on the operation of LFC, the reader is referred
to [20]. Since the running time of LFC isO(n2), it follows
that the overall complexity of both the SP+LFC and TLB+LFC
algorithms is alsoO(n2).

B. A Joint Routing and Spectrum Assignment Algorithm

The two R+SA algorithms described in the previous section
have low complexity and are easily implementable, as they
decompose the DA-RSA problem into independent routing and
spectrum assignment subproblems that are solved sequentially.
The disadvantage of an R+SA approach, even in the case of the
TLB algorithm that takes into account the work load on each
processor (i.e., arc) is that it does not consider the possible
idle times (i.e., spectrum gaps) that may occur due to the
spectrum continuity constraint. Hence, the makespan of the
schedule constructed by an R+SA algorithm may be longer
than necessary.

In this section, we propose a new algorithm that makes
routing decisions jointly with spectrum assignment. The algo-
rithm is a variant of the well-known class of list scheduling
algorithms in that it takes as input a list of tasks, processes
the list sequentially, and builds the schedule one task at a
time, as it encounters the tasks in the list. However, our
algorithm differs in two important points from classical list
scheduling. First, since each task may be executed by alternate
sets of processors, the input list contains not individual tasks,
but rather task-processor set pairs, one pair for each set of
processors that may execute a given task; therefore, we refer
to this algorithm asset scheduling(SS). Second, the list is
not built once at the beginning of the algorithm; rather, it is
built incrementally during the execution of the algorithm,as
we explain shortly.

The SS algorithm consists of the following logical steps:
1) Task selection.A subset of the input set of tasks is

selected.
2) Task ordering. For each task selected in the first step,

task-processor set pairs are created for each processor
set that can execute this task. These task-processor set
pairs are sorted in a list.

3) Task scheduling. The list is scanned and tasks are
considered for inclusion in the schedule. Scheduled tasks
are removed from further consideration.

4) Iteration. Repeat from the first step until all tasks have
been scheduled.

We now describe the first three steps of the algorithm in more
detail.

Task selection.This step starts with a setS of tasks (traffic
demands) that have not been scheduled yet; initially, the set
includes all n input tasks and decreases in size at every
iteration as tasks are scheduled in the third step. Our goal is
to identify tasks inS that are critical in terms of scheduling,
and consider them early on. Therefore, we consider the ring
network with only the traffic demands corresponding to the
tasks inS, determine the cut that results in the lower bound
we discussed in the previous section, and identify the demands
(tasks) that make up the maximum flow across this cut. Let
T ⊆ S denote the latter set of tasks. Since tasks inT
contribute to the lower bound, it is important to minimize the
gaps between them in the schedule. Therefore, we considerT
as the next set of tasks to schedule.
Task ordering. For each taskj ∈ T selected in the previous
step, we pair it with each alternate processor setfixl

j that
can execute the task. In the case of a ring network in which
the only two path options for a traffic demand are in the
clockwise and counter-clockwise direction, there are onlytwo
alternate processor sets,fix1

j andfix2
j , for the corresponding

task. For each task, we sort its two task-processor set pairsin
increasing order of the processor set size, i.e.,|fix1

j | ≤ |fix2
j |,

with ties broken arbitrarily. Then, we sort the tasks in de-
creasing order of the processing timep1

j of their smallest
processor setfix1

j . This sorted list of task-processor set pairs,
L = [(1, fix1

1), (1, fix2
1), (2, fix1

2), (2, fix2
2), . . .] is the input

to the task scheduling step. With this order, tasks that have
larger processing times, and hence are more critical in terms
of scheduling, are considered earlier; and for a given task,the
smaller processor set is considered first as it requires fewer
resources (processors, or arcs) and smaller processing time
(due to the distance-adaptive modulation).
Task scheduling.The input to this step is the listL of tasks
from the previous step, and a partial schedule in which the last
task ends at timet; initially, the schedule is empty andt = 0.
We schedule the first task in listL to start execution at time
t on processor setfix1

1 (recall that(1, fix1
1) is the first item

in list L. We then remove from the list both task-processor
set pairs(1, fix1

1), (1, fix2
1), and update the processors in set

fix1
1 as busy at timet. We scan listL to find the next taskj

and processor set that is compatible withfix1
1; we schedule

task j at time t, update the processors on which it will be
executed as busy, and remove all pairs with this task from the
list. We continue scanning listL to find all the task-processor
sets that are pairwise compatible, and schedule all these tasks
to start at timet. Note that scheduling a task implies making
both a routing decision (i.e., selecting one of the two processor
sets of the task or route for the corresponding demand) and
a spectrum assignment decision (i.e., assigning a start time
to the task, or a starting spectrum slot for the corresponding
demand).

Once we have reached the end of the list, we update the set
S of unscheduled tasks that was provided as input to the task
selection step by removing all the tasks that were scheduled
in this step. We also update the end time of the new partial
schedule to the maximum completion time of any scheduled



task. We then continue to the fourth step to iterate until all
tasks have been scheduled.

Due to page constraints, we have not included a pseudocode
description of the SS algorithm. Its running time complexity
is O(n3), wheren is the number of tasks.

IV. N UMERICAL RESULTS

We now describe the experiments we have carried out to
compare the performance of the three DA-RSA algorithms
in bidirectional ring networks withN = 5, 7, 9, 11, 13, 15
nodes (recall also that the scheduling problem corresponding
to anN -node bidirectional ring hasm = 2N processors). We
generate traffic demands between each pair of nodes in the
ring based on one of the following three distributions:

• Distance-independent:traffic demands may take any of
the five discrete values in the set{10, 40, 100, 400, 1000}
with equal probability; these values correspond to data
rates (in Gbps) to be supported by EONs.

• Distance-increasing:traffic demands may take one of the
five discrete values in the set{10, 40, 100, 400, 1000}
such that higher values are assigned to a node pair with a
probability thatincreaseswith the length of the shortest
path between the two node.

• Distance-decreasing:traffic demands may take one of
the five discrete values in the set{10, 40, 100, 400, 1000}
such that higher values are assigned to a node pair with a
probability thatdecreaseswith the length of the shortest
path between the two node.

In our experiments, we also used various other probability
values for both the discrete low and discrete high distribu-
tions, but the trends regarding the relative performance ofthe
algorithms were very similar to the ones shown below.

We consider distance adaptive spectrum allocation based
on the traffic rate and the length of each possible path
(i.e., number of processors in the corresponding scheduling
problem) [2], [19]. Thus, we assume that the slot width is
12.5 GHz, and there are two modulation formats as represented
in [19]:

• 16-QAM modulation format for paths with up to 8 links
(i.e., processors) such that 10, 40, 100, 400, and 1000
Gbps take 1, 1, 2, 8, and 20 slots, respectively.

• QPSK modulation format for more than 8 links (i.e.,
processors), while 10, 40, 100, 400, and 1000 Gbps are
assigned 1, 2, 4, 16, and 40 spectrum slots, respectively.

The performance metric we consider in this study is the
ratio of the spectrum required by the solution constructed
by one of the algorithms, over the lower bound (computed
as described earlier); the closer this ratio is to 1.0, the
better the performance of the algorithm in terms of its use
of available spectrum. Note that, since theP2N |setj |Cmax

problem corresponding to a bidirectional ring network with
N nodes is NP-hard forN ≥ 4 [18], the optimal makespan
value is not known for the problem instances considered in
this study. Clearly, this optimal value is greater than or equal
to the estimated lower bound; therefore, the performance of

the algorithms with respect to the optimal may be better
than this ratio indicates. Nevertheless, this metric accurately
characterizes the relative performance of the algorithms.

Figures 2-4 plot the average ratio of the three algorithms,
denoted by SP+LFC, TLB+LFC, and SS, as a function of the
number of ring nodes; each figure presents results for problem
instances generated using the distance-independent, distance-
increasing, and distance-decreasing demand distributions, re-
spectively. Each data point on these plots is the average of
ten replications, each replication being the average over 30
randomly generated instances; 95% confidence intervals, es-
timated using the method of batch means, are also shown in
the figures.

We first observe that the best algorithm has a ratio of no
more than 1.2, i.e., it is always within 20% of the lower bound
on the amount of spectrum required to route all demands.
Since the (unknown) optimal solution will generally lie above
the lower bound, these results indicate that our algorithms
are effective in constructing solutions close to optimal one.
Another important observation is that of the two R+SA
algorithms, SP+LFC outperforms TLB+LFC in most cases
regardless of the demand distribution, with the exception of
small ring networks. Note that in the small ring networks
of up to seven nodes in which TLB+LFC is better than
SP+LFC, and based on the modulation formats we consider, a
specific demand requires the same number of slots regardless
of whether it is routed on the shortest or non-shortest path.
This behavior indicates that, in ring networks in which there
are only two possible paths, whenever demands routed along
the non-shortest path require a larger number of slots than
along the shortest path, it is preferable to use shortest path
routing as an R+SA solution. This observation is especially
true in large rings where SP+LFC is clearly the best solution,
since in large networks selecting the non-shortest path incurs
a spectrum penalty along a large number of links. Finally, we
observe that the the performance of the SS algorithm relative
to the two R+SA algorithms depends strongly on the demand
distribution. In particular, for distance-independent traffic and
small- to medium-size rings, the SS algorithm is able to find
solutions using non-shortest paths that outperform both R+SA
algorithms. At the other extreme, a strategy that uses non-
shortest path does not work well under the distance-increasing
traffic distribution. Overall, our results indicate that (1) due
to the spectrum penalty of long paths, a strategy that uses
shortest path routing is a clear winner for large rings, and
(2) for small- and medium-size rings the performance of the
algorithms depends on the traffic distribution.

V. CONCLUDING REMARKS

We have shown that the DA-RSA problem transforms to
a processor scheduling problem, and we have developed list
scheduling algorithms for ring networks. Our results indicate
that as the network size increases beyond a point that depends
on the traffic demand distribution, the spectrum overhead
associated with using a long path becomes sufficiently high
that it is always best to use the shortest path. Overall, the best
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algorithm is always within 10-20% of the lower bound, indi-
cating that scheduling concepts can be successfully adapted to
address network design problems. Our current research focuses
on extending these techniques to mesh networks.
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