Efficient Implementation of Best-Fit Scheduling
for Advance Reservations and QoS in Grids

Claris Castillo, George N. Rouskas and Khaled Harfoush

Computer Science Department, North Carolina State University, Raleigh, NC, USA,
ccastil@ncsu.edu, rouskas@csc.ncsu.edu, harfoush@csc.ncsu.edu

Abstract. In this work we consider the problem of providing QoS guar-
antees to Grid users by means of advance reservation of resources. Ad-
vance reservation mechanisms provide with the ability to allocate re-
sources to users based on agreed-upon QoS requirements and increase
the predictability of a Grid system. However, incorporating such mech-
anisms into current Grid environments has proven to be a challenging
task due to the dynamism and heterogeneity of Grid environments. In
our previous work we introduced a suite of scheduling algorithms for
Grids capable of allocating resource efficiently and providing with QoS
guarantee. In this paper we extend our previous work by introducing an
efficient implementation of the best-fit scheduling algorithm. We eval-
uate the performance of the best-fit algorithm by means of extensive
simulation and analysis against the scheduling algorithms introduced
previously. Our results show that best-fit algorithm performs well across
several metrics that reflect both user and system specific goals.

1 Introduction

Providing QoS support for applications has become crucial for the development
of Grid technologies and their economic significance. A strong evidence of the
urgency for incorporating QoS capabilities in Grids is presented in a recent
study performed by a leading technology-market research company [13]. This
study shows that computing Grids have achieved 81% of awareness but only
8% of adoption in North American enterprises; with Asia Pacific and Europe
exhibiting similar figures. We believe that the lack of QoS support in existing
Grid systems is a primary factor for the slow adoption rate of Grid computing
in enterprise systems.

This state of affairs has its roots to the fact that Grid technologies emerged
in response to the need of uniting resources in an inexpensive and effective man-
ner and not of providing with QoS requirements to users. To make matters
worse, providing with QoS in Grids has proved difficult; this is mainly due to
the heterogeneity and dynamism of Grid environments. In such complex envi-
ronments QoS deals with several independent systems which only as a whole can
define QoS user demand [9]. Therefore, QoS support needs to be embedded in
every layer of the Grid architecture. The scheduler is one low-layer component
which plays an important role in the QoS capabilities of a resource management

system; since it has direct access to resources and can perform very resource-
specific tasks. However, embedding QoS in schedulers has been often overlooked
as a design parameter in Grids. Most existing Grid solutions tackle the problem
of providing with QoS in Grids by embedding QoS support at higher layers of
the architecture exclusively [19]. Examples of this are: service level agreements
(SLAs) [10,14,15,20] and monitoring and predictive tools [22], [18], [16,17]. This
lack of functional consistency through all the layers of the architecture leads
to solutions that exhibit conflict of objectives in between layers; hindering the
effective provision of QoS they were designed for in the first place [3].

Advance reservation of resources [1-3,6,23-27] has generated great interest
in the Grid community as a mechanism that Grid providers may employ to offer
specific QoS guarantees to application users when scheduling new jobs. How-
ever, the availability of advance reservation mechanisms is currently limited [12],
mainly due to two major concerns regarding their performance. First, typical
advance reservation mechanisms lack flexibility as they do not permit grace-
ful degradation in application performance when resource management policies
mandate changes in allocations [11]. Second, existing approaches suffer from poor
scalability as they are not effective in managing large sets of advance reservations
or handling resource fragmentation. To overcome these challenges, algorithms for
advance reservations need to be efficient so they can adapt to dynamic changes
in resource availability and user demand without hurting system and user per-
formance.

We believe that the development of QoS-driven scheduling algorithms is of
utmost importance to further development of Grid technology and its economic
significance, since without QoS guarantees users will be reluctant to pay for Grid
services and service providers will be unable to differentiate themselves from their
competitors. In previous work [7] we developed a suite of efficient algorithms for
advance reservations and QoS in Grids. These algorithms proved to be effective in
handling job deadlines and the resource fragmentation commonly observed when
using advance reservations. We also showed that they can be easily adapted to
employ several optimization criteria for scheduling jobs and their low running
times make them suitable for large Grid environments. Given the great success of
the best-fit scheduling algorithm in minimizing resource fragmentation in other
contexts (e.g., memory blocks) we have developed an efficient implementation
of the algorithm. Similar to our previous work this algorithm reuses concepts
of computational geometry to deal effectively with resource fragmentation and
deadline requirements. Moreover, its generic design facilitates its adoption to
accommodate for both network and computing resources.

The rest of the paper is organized as follows. In Section 2 we describe the
online scheduling problem considered in this work. Since the design of the best-
fit scheduling algorithm reuses some of the concepts for advance reservations
introduced in our previous work [21], in Section 3 we provide with the relevant
background [21] required for the understanding of this work. In Section 4 we
describe an efficient implementation of the best-fit scheduling algorithm and its

ready time rj deadline d; ending time

server 2

starting time
&
1

server 1

Fig. 1. (a) Jobs scheduled and idle periods in a 2-server system, (b) idle periods
as points in the plane, plane partitioned into strips of width 2 x [,,,;,,, and feasible
regions Ry, Ry for the new job

corresponding data structures. In Section 5 we investigate the performance of
our algorithm through simulation, and we conclude the paper in Section 6.

2 Problem Description

Following a description of the problem addressed in this paper. Notice that the
problem is described in terms of computing resources, but as we mentioned
earlier, the scheduling algorithms introduced in [21] and in section 4 can be
applied to networking resources as well.

Consider a scheduler S for a Grid with n servers which may be geographically
distributed in a network.We make the assumption that all servers are identical
in terms of their processing capacity C; extending the algorithms we present
here to non-identical resources is the topic of ongoing research in our group. A
user with job j requiring service submits a request to the scheduler. The request
is characterized by a three-parameter tuple (r;,1;,d;), where:

— 7; is the ready time of the job, i.e., the earliest the job can be made available
to the grid for processing;

— l; is the length of the job, i.e, the amount of work the job requires; and

— dj(>rj+1;) is the deadline of the job, i.e., the latest time by which the job
can be completed.

The deadline is a measure of the quality of service required by the user. We
assume that deadlines are hard, in that a user receives utility only if the job
completes service by its deadline. Therefore if S determines that the deadline
cannot be met, it drops the job and notifies its user accordingly. Note that this
restriction may be relaxed with minimal modifications to our algorithm.

We consider the online scheduling problem whereby users submit service
requests to S at random instants. We assume that S maintains a schedule which

records, for each server 4, the time periods in the future during which the server
is reserved for jobs that have already been accepted to the system. In essence,
this schedule represents the set of advance reservations that have been made,
and it guarantees that server resources will be available to the accepted jobs
at specific future times. Figure 1(a) shows an example schedule for a 2-server
system. The schedule shows that at the current time (i.e., time ¢ = 0 in the
figure), there are three jobs scheduled for server 1: the job currently in service
which will end at time ¢1, job A which has reserved the server from time t3 to
ts, and job D which has reserved the server from time tg to t17; similarly, three
jobs have been scheduled for server 2. The figure also shows a service request for
scheduling a new job j with ready time r; = ¢ and length [; = ts — ¢.

When a service request (rj,l;,d;) for a new job j arrives, S immediately
runs an algorithm to determine whether it is feasible to schedule the job so as
to meet its deadline. If so, then S uses a set of criteria to select one of the
(possibly multiple) servers who can handle this job, updates its schedule, and
returns a reference to this server to the user; otherwise, the job is dropped. The
scheduling decision impacts the performance perceived by users as reflected by
the fraction of jobs meeting (or missing) their deadlines and the turnaround
times of the jobs. It also impacts the overall system performance as reflected
by the system utilization, which is a measure of how well the overall service
capacity of the system is used. The challenge, therefore, is to develop efficient
online scheduling algorithms that minimize the fraction of dropped jobs while
maximizing utilization.

Several variants of this scheduling problem with advance reservations and/or
deadlines have been studied in multiprocessor and Grid systems [26-30]. How-
ever, the heuristic solution approaches that have been proposed may not scale
well and may not utilize the available system capacity efficiently [2,31]. In our
previous work [21] we developed a framework that applies techniques borrowed
from computational geometry to enable the efficient scheduling of jobs with
deadline constraints. Since the work presented in this paper is an extension
of [21], in the next section we provide with the background relevant to the new
contribution.

3 Background

We represent idle periods as points in a Cartesian plane and jobs with non-
immediate deadlines as segments, as we explained in [21]. Let us refer to Figure 1,
assuming that the current time ¢t = 0, Figure 1(a) shows the current schedule of
advance reservations for a 2-server system, along with a request to schedule a new
job j with the tuple (r; = tg, [; = ts —tg, d; = t12). Figure 1(b) is the geometric
representation of this schedule. The partitioning of the plane in horizontal strips
will be explained shortly in this section. An idle period is represented by a point
in the Cartesian plane with its z and y coordinate corresponding to its starting
and ending time respectively. Since the ending time of an idle period must be
greater than its starting time, all points will always be above the diagonal in

Figure 1. Similarly, a job with immediate deadline can be represented as a point
P = (rj,r; +1;) in Figure 1 where P represents the earliest the job can start
and end execution. The fact that job j has a general deadline is represented in
Figure 1(b) by the line segment between points P and P’, where P = (r;,7;+1;)
(respectively, P’ = (dj_l;,d;)) corresponds to the earliest (respectively, latest)
possible pair of starting and ending times for this job. Notice that an idle period
is feasible for a given job if its starting and ending time is smaller and larger
than the starting and ending time of the new job, respectively. Following this
observation, the scheduler may select any point on this line segment as the
starting/ending times of the job, as long as there is an idle period completely
containing this point.

In order to enable the design of efficient scheduling algorithms we then par-
tition the area of the plane above the diagonal into strips of width equal to
twice the minimum job size [,,;,. Doing so in effect partitions the set of K idle
periods into a number H of subsets, where subset h,h = 1,---, H, contains
the idle periods falling within the hg, strip. In each strip the idle periods are
stored in a balanced priority search tree. The motivation behind partitioning the
plane is that it bounds the number of idle periods per strip. In fact, at most one
idle period from each server can be contained in each strip. Consequently, up-
dating the schedule (i.e., adding removing idle periods from the priority search
tree associated with a given strip) takes time O(log n), rather than O(log K),
where typically n << K. Since each priority search tree structure contains only
a subset of the set of idle periods, it may be necessary to search several trees
to find a feasible idle period for a new job request. Consider point P in figure
representing the earliest time the new job may start execution. In this example,
the new job can be scheduled either in the idle period represented by point V' or
the one represented by Y. Point V' can be found by searching the tree structure
corresponding to the strip in which point P lies, however, if point V (i.e., the
corresponding idle period) did not exist, one would have to continue searching
strips above the one in which P lies (i.e., those with starting times earlier than
the new job) in order to find an idle period (in this case, point Y) that would
not delay the start of the job. On the other hand, if neither V or Y existed, the
search would have to continue in strips (e.g., Z) that could accommodate this
job at some starting time along the line segment from P to P’.

In addition to allowing the scheduler to handle jobs with general deadlines
efficiently, the partition of idle periods into subsets also enables the natural
implementation of a variety of strategies for selecting one among multiple feasible
idle periods. In [21] we developed a suite of scheduling strategies which make use
of the approach we outlined above. These strategies are based on the observation
that a job scheduled in an idle period will create at most two new idle periods: one
between the start of the original idle period and the start of the job (the leading
idle period, LIP in short) and one between the end of the job and the end of the
original idle period (the trailing idle period, TIP in short). The creation of these
new smaller idle periods results in further fragmentation of the available capacity,
and may prevent future job requests from being accommodated. Therefore, it

may be desirable to schedule a new job within the idle period such that the size
of either the leading or trailing idle periods created is optimized.

We exploit these observations in [21] and propose three scheduling strate-
gies; min-LIP, min-TIP and first-fit. Min-LIP and min-TIP seek to minimize the
leading and trailing idle period respectively. First-fit, in the other hand, does
not optimize for the size of the leading and trailing idle periods when schedul-
ing a new job; and returns the first feasible idle period found for the given job.
Results obtained from extensive simulations demonstrate that our algorithms
perform well across both user and system performance under different condi-
tions. Due to space constraints we are not going to describe these scheduling
algorithms in here; we refer the reader to [21] instead. In the next section we
present an extension to the suite of algorithms presented in [21], in that, we
develop an extended and efficient version of best-fit scheduling algorithm that
supports advance reservations.

4 Best-Fit Algorithm Description and Implementation

Consider the new job j and its geometric representation in the plane, as shown
in Figure 1(b). The feasible region of job j refers to the part of the plane where
all idle periods that can accommodate this job may lie. The feasible region is
the part of the plane above and to the right of the line segment between P and
P’, since only any idle period in that region will fully contain some point of the
line segment. The feasible region can be partitioned into two subregions, R; and
Ry, as in Figure 1(b). Any idle period lying in Ry (e.g., idle periods Y an V in
the figure) starts at or before the new job’s ready time r; (= tg in the figure),
and ends after the earliest time the job can be completed (= ts in the figure).
Therefore, any idle period in this region can accommodate the new job without
delaying its execution, i.e., the job can start execution at its ready time r;. Any
idle period lying in Ry, on the other hand (e.g., idle period Z in Figure 1(b)),
starts later than the job’s ready time but is large enough for it. Hence, the job
may be assigned to any idle period in Ro at the cost of delaying its execution
beyond its ready time.

For the best-fit strategy, we use a 2-dimensional tree T} to store the idle
periods within each strip h, h = 1,--- , H. In the tree corresponding to T}’s first
dimension, t¢;, idle periods are in the leaf nodes, arranged in ascending order
of their starting time. A leaf node corresponding to idle period X stores the
following information:

— the starting time of X
— the ending time of X; and
— other auxiliary data, such as identity of the corresponding server.

The information stored at each of its internal nodes w consists of:

— the median starting time of the idle periods stored in the subtree of ¢; rooted
at u;

— a pointer to a secondary priority search tree ¢ ; and
— a pointer to a secondary regular binary search tree tlh.

Trees tj and t% store the idle periods in u’s subtree in descending order
of their ending time and length, respectively. The information stored at each
internal node v of tree ¢}, consists of:

— the median ending time of the idle periods stored in the subtree of 7, rooted
at v; and;
— a pointer to the idle period with minimum length in v’s subtree.

As we explain shortly, the manner in which the data structure is searched
depends on the part of the feasible region (R; or Ry) in which the corresponding
strip lies.

The best-fit algorithm consists of two steps: a search for bg,, the local best

fit in region R;, followed by a search for bg,, the best fit in region Ry. After
exploring both regions, the algorithm returns the overall best fit for the given
job, if one exists. Since in this strategy the algorithm searches for a local best fit
in every strip in order to obtain a global optimal, the order in which this search
proceeds is irrelevant. However, for the sake of simplicity in our implementation
we search both regions in a top-bottom fashion.
Step 1: Search in region R;. Since the best-fit among a set of feasible idle
periods is the idle period with the smallest length, the algorithm first identifies
the set of feasible idle periods in the strip, and then retrieves the one with
the smallest length. Recall also that all idle periods in Ry start before r; (see
figure 1) and hence, meet the feasibility requirement in terms of their starting
time. However, they may or may not be feasible depending on their ending
time. To identify the set of feasible idle periods for a given job j in a strip
in Ry, the algorithm searches the secondary tree associated with the strip tj.
More specifically, the algorithm visits every internal node v in t7 whose subtree
contains exclusively idle periods with ending time larger than the earliest time
the job can be completed; the algorithm stops as soon as it reaches a leaf. To do
this, the algorithm starts at the root A of the tj. It compare the earliest ending
time of the new job j (r; +1; = t3) to the median of the ending times of the
idle periods in this tree stored at the root. If the median is larger, that implies
that all the idle periods in the right subtree are larger. The algorithm marks the
right subtree and continues searching in the left subtree. If the median is smaller
then the algorithm discard the right subtree since all the idle periods contained
in it have a ending time smaller than the earliest ending time of the job; and
hence are not feasible for the given job. In this case the scheduling algorithm
continues the search recursively in the left subtree. Since this tree traversal visits
each level of the tree at most once and the tree data structure is balanced the
cost of visiting the O(logn) internal nodes is O(logn) per strip.

For each internal node v visited in tree tj, the algorithm computes the local
best fit b, corresponding to the idle periods in v’s subtree. Such an idle period
is the smallest idle period in v’subtree and can be retrieved by means of the
pointer stored at v at a cost of O(1). The algorithm then compares b, to the

most up to date br, at that particular point in time; if b, has a smaller length
it updates br, with b,, otherwise, it discards b,. Recall that retrieving b, from
a given v’s subtree costs O(1); therefore, the overall cost for searching bg, is
O(mlogn) where m is the number of strips in R; and is at most m = [52—].

2lmin

Step2: Search in region Rs. After the algorithm has searched for bg, it
proceeds to search bg, in Ro. Notice that as an idle period in Ry moves further up
(down) from the line segment between P and P’ its length increases (decreases),
until it reaches the line segment itself where the length of the idle period is [;.
It follows that the best fit in a strip in Ry is the closest idle period to the line
segment between P and P’. To find such idle period the algorithm performs a
simple binary search on tree tlh. More specifically, it searches for the idle period
with the minimum length larger than the length of the job, [;. Since in Ry there

are at most k = (21'1”" | strips, the overall complexity for searching bg, in Step
2 is O(klogn).

5 Performance Evaluation

We use simulation to evaluate the performance of best-fist scheduling strategy.
We use the method of batch means to estimate the performance parameters we
consider (and which we discuss shortly), with each batch consisting of thirty
simulation runs and each run lasting until 10® jobs have been submitted to the
Grid scheduler. We have also obtained 95% confidence intervals for all the results,
which are shown in the figures.

In our simulation, we assume that job requests arrive as a Poisson process
with rate A. Job sizes are distributed according to a bounded Pareto distribution.
The minimum job size is set equal to 1, and is taken as the unit of time. The
maximum job size is set to 50 time units, and we vary the mean job size &
by changing the value of the parameters of the Pareto distribution. We let L
denote the amount of time that the scheduler S can look “into the future”; in
other words, a job may request to be scheduled at most L units of time in the
future. We let the deadline d; of job j be uniformly distributed in the interval
(rj+1,r;+1;+q(L—r;—1;)), where ¢,0 < g < 1is a parameter that controls
the “tightness” of the job deadlines. In our simulations, we let L = 200.

We use three performance metrics in our study. The loss rate is the fraction
of jobs that are dropped due to the fact that their deadline cannot be met. The
system wutilization is the fraction of time the n servers are busy serving jobs.
Finally, the average delay is the mean amount of time that a job has to wait
beyond its ready time until it starts execution; note that dropped jobs do not
contribute to the average delay.

To evaluate best-fit’s performance we include the results of the scheduling
strategies min-LIP and min-TIP introduced in [21]. The reasons for this being
that first, their performance ia well understood [21] and second, they share sim-
ilar optimization objectives with best-fit. This in turns provides us with a more
solid comparative framework; enhancing the quality of our study and results.

01k / g

Loss Rate
o
=
3
T
L

min-LIP —+—

0.02 L L L L L
0.2 0.4 0.6 0.8 1 12

System Load

Fig. 2. Loss rate vs. system load p, n =20,z = 3.28,¢ = 0.1

09 - 1

08 |- B

07 |- B

0.6 |- B

05 [|

Utilization
\

04t yd E
03} r'd]

02| i

011 B
L min-LIP —+—

I
0.2 0.4 0.6 08 1 12
System Load

Fig. 3. Utilization vs. system load p, n =20,% = 3.28,¢ = 0.1

Figures 2-4 plot the loss rate, utilization and average delay, respectively, for
the three scheduling strategies against the system load p. The system load is
calculated using the familiar from queueing theory expression p = (Az)/n. For
the results shown in these figures, we let the number of servers n = 20, the mean
job size & = 3.28, and the tightness of the job deadlines ¢ = 0.1. Note that the
load values in the figures range from low (p = 0.1) to very high (p = 1.1) at
which the system is more than 100% loaded. Also, the 95% confidence intervals
are quite narrow for all curves shown.

From Figure 2 we can see that the loss rate increases with the system load
for the three scheduling strategies, as expected. We observe that for low loads

2.6
[min-LIP —+—

24 | B

22 | B

Delay

18 B
16 B
14 B

12 o |

0.2 04 06 08 1 12
System Load

Fig. 4. Average delay vs. system load p, n = 20,z = 3.28,¢ = 0.1

the three scheduling strategies exhibit almost identical performance. However
as the load increases, the curve corresponding to best-fit diverges and becomes
worse. This fact can be explained as follows; for min-LIP (respectively, min-TIP)
the leading idle period (respectively, trailing idle period) is being minimized,
therefore, the level of resource fragmentation is minimum. For best-fit, on the
other hand, it is more likely that two idle periods, i.e., the leading and trailing idle
period, will be created for every job scheduled; incurring in further fragmentation
of the resources and therefore in higher loss rate.

Figure 3, which plots the system utilization versus the load, confirms our
observations regarding the relative performance for the three different schedul-
ing algorithms. As expected, utilization increases with the system load initially,
but at some point the curves level off. These results are consistent with our
observations for Figure 2. Best-fit exhibits the worst performance among the
three scheduling algorithms since best-fit seeks to minimize the total amount
of unutilized resources left per schedule, without seeking to accommodate for
the time dynamics observed in advance reservations. More specifically, to max-
imize utilization in a planning system, i.e., with advance reservation support,
the scheduler needs to guarantee that any resource remaining unused at certain
point in time will eventually (i.e., some time in the future) be claimed for a given
job. This is difficult to achieve under the best-fit strategy since it tends to create
two most likely small trailing and leading idle periods for every new job sched-
uled. Min-LIP and min-TIP in the other hand are mostly like to create one single
idle period for every scheduled job. This result indicates all three algorithms are
capable of identifying and using idle periods to schedule jobs, thus ensuring that
fragmentation of system capacity does not compromise overall performance.

Let us now turn to Figure 4 which plots the average job delay against the
system load. As we can see, jobs experience the highest delay under best-fit. This

result is consistent with the plots in Figure 2, in that as the load increases the
resources become more fragmented and the scheduler is forced to allocate idle
periods that start far in the future, i.e., >> st; to new incoming jobs. Overall, the
average delay values in Figure 4 are relatively low, and correspond to a fraction
of the mean job size T = 3.28 for the three different scheduling algorithms.

In addition to providing insight into the relative behavior of the three strate-
gies due to the different optimization objectives considered, Figures 2-3 illustrate
that properly designed scheduling algorithms can effectively overcome the ob-
stacles of capacity fragmentation to deliver high performance in terms of metrics
that reflect the requirements of both users and service providers.

6 Concluding Remarks

We have developed an efficient implementation of the best-fit scheduling algo-
rithm for advance reservations in Grids that uses techniques from computational
geometry. We have also presented results from extensive simulation experiments
to demonstrate that the algorithm is simultaneously user and system centric,
that is, it is able to meet deadline requirements imposed by the users while
maximizing system utilization. Our results challenge the common belief about
optimal performance of the best-fit scheduling algorithm. The fact that best-fit
algorithm is outperformed by both min-LIP and min-TIP algorithms suggests
that although its performance is optimal in contexts such as in memory archi-
tectures, its suitability is questionable in more dynamic contexts such as the one
considered in this work. Our work provides a practical and efficient solution to
the problem of scheduling computing and network resources in dynamic Grid
environments.

References

1. E. Elmroth and J. Tordsson. A grid resource broker supporting advance reserva-
tions and benchmark-based resource selection. Lecture Notes in Computer Science,
volume 3732, pages 1077-1085. Springer-Verlag, 2005.

2. I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, 2003.

3. M. Maheswaran K. Krauter, R. Buyya. A taxonomy and survey of grid resource
management systems for distributed computing. Software: Practice and FExperi-
ence, 32(2):135-164, February, 2002.

4. R. Min and M. Maheswaran. Scheduling Advance Reservations with Priorities in
Grid Computing systems. In Proceedings of PDCS’01, pages 172—176, 2001.

5. W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In
Proceedings of IPDPS’00, pages 127-132, 2000.

6. A. Sulistio and R. Buyya. A grid simulation infrastructure supporting advance
reservation. In Proceedings of PDCS’04, pages 1-7, Nov. 2004.

7. Reference removed to preserve the anonymity of the authors.

8. H. Rasheed, M. Dikaiakos, and S. Haridi Quantification of Grid Resource Hetero-
geneity Effects on Performance Technical Report, January, 2006.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L. Burchard, B. Linnert, F. Heine, M. Hovestadt, O. Kao, and A. Keller A Quality-
of-Service Architecture for Future Grid Computing Applications Proceedings of the
19th International Parallel and Distributed Processing Symposium (IPDPS’05),
April 3-8, Denver, Colorado, 2005.

G. Dasgupta, K. Dasgupta, A. Purohit, and B. Viswanathan Proceedings of the
14th IEEE International Workshop on QoS (IWQOS’06), pages 281-283, June 19—
21, New Heaven, CT, USA.

I. Foster and A. Roy Quality of Service Architecture that Combines Resource
Reservation and Application Adaptation Proceedings of the 8th International
Workshop on Quality of Service (IWQOS’2000), pages 181-188, June 5-7, 2000.
J. MacLaren Advance Reservations: State of the Art http://www.fz-
juelich.de/zam/RD/coop/ggf/graap/sched-graap-2.0.html

F. Gillett Global Compute Grid Adoption Is Nearly Flat Forrester—Business
Technographics, October 13, 2006.

A. Andrieux, K. Czajkowski,A. Dan, K. Keahey, H. Ludwig, J. Pruyne,J. Rofrano,
S. Tuecke, and M. Xu Web Services Agreement Specifications WS-Agreement
Global Grid Forum, 2004

A. Leff, J.T. Rayfield, and D.M. Dias Service-Level Agreements and Commercial
Grids IEEFE Internet Computing, pages 44—50,volume 7, number 4, July, 2003

H. Li, and L. Wolters An Investigation of Grid Performance Predictions Through
Statistcal Learning 1st Workshop on Tackling Computer System Problems with Ma-
chine Learning Techniques (SysML), in conjunction with ACM Sigmetrics, Saint-
Malo, France, 2006.

L. Yang, J.M. Schopf, and I. Foster Conservative Scheduling: Using Predicted
Variance to Improve Scheduling Decisions in Dynamic Environments Proceedings
of the 15th ACM/IEEE Conference in Supercomputing (SC’03), pages , Phoenix,
Arizona, 2003.

R. Wolski Experiences with Predicting Resource Performance On-line in Computa-
tional Grid Settings Proceedings of ACM SIGMETRICS Performnace Evaluation
Review,Volume 30, Number 4, pp 44-49, March, 2003.

I. Foster What is The Grid? A Three Point Checklist. www-fp.mcs.anl.gov/
~foster/Articles/WhatIsTheGrid.pdf, July 20, 2002.

L. Jin, V. Machiraju, and A. Sahai Analysis on Service Level Agreement of Web
Services HP Lab Technical Report HPL-2002-180, June 21st, 2002.

C. Castillo, G. N. Rouskas, and K. Harfoush On the Design of Online Scheduling
Algorithms for Advance Reservations and QoS in Grids Proceedings of the 28rd
IEEE International Parallel and Distributed Processing Symposium (IPDPS’07),
March 26-30, 2007, Long Beach, California, US.

A. Sahai, S. Graupner, V. Machiraju, A. Van Moorsel Specifying and Monitoring
Guarantees in Commercial Grids through SLA Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid (CCGrid’03), pages
292-299, May 12-15, Tokyo, Japan.

L. Dubois, G. Mounie, and D. Trystram Analysis of Scheduling Algorithms with
Reservations Proceedings of the 21st IEEE International Parallel and Distributed
Processing Symposium, Long Beach, CA, USA, March 26-30,2007.

M. Siddiqui, A. Villazon, and T. Fahringe Grid Capacity Planning with
Negotiation-based Advance Reservation for Optimized QoS. Proceedings of the
2006 IEEE/ACM Conference in Supercomputing (SC2006), pages 103-118, Novem-
ber 15-21, Phoenix, Arizona, 2006.

25.

26.

27.

28.

29.

30.

31.

T. Fahringer,R. Prodan, R. Duan, F. Nerieri,S Podlipnig, J Qin,M Sid-
diqui,H. Truong,A. Villazon, and M. Wieczorek ASKALON: A Grid Applica-
tion Development and Computing Environment Proceedings of 6th International
Workshop on Grid Computing (Grid 2005), IEEE Computer Society Press, Seattle,
Washington, USA.

W. Smith, I. Foster, and V. Taylor. Scheduling with advanced reservations. In
Proceedings of IPDPS’00, pages 127-132, 2000.

R. Min and M. Maheswaran. Scheduling Advance Reservations with Priorities in
Grid Computing systems. In Proceedings of PDCS’01, pages 172—176, 2001.

E. Caronand, P. K. Chouhan, and F. Desprez. Deadline scheduling with priority
for client-server systems on the grid. IEEE/ACM International Workshop on Grid
Computing, pages 410—414, 2004.

H-L. Chan, T. Lam, and K. To Nonmigratory online deadline scheduling on mul-
tiprocessors. SIAM Journal on Computing, Volume 3, Number 4, pages 669-682,
2005.

A. Takefusa, H. Casanova, S. Matsuoka, and F. Berman. A study of deadline
scheduling for client-server systems on the computational grid. In Proceedings of
IEEE Symposium on High Performance and Distributed Computing (HPDC"01),
pages 406-415, August 3-6, Redondo Beach, CA, 2001.

R. J. Al-Ali, K. Amin, G. von Laszewsky, O. F. Rana, D. Walker, M. Hategan,
and N. Zaluzec Analysis and provision of QoS for distributed grid applications.
Journal of Grid Computing, Volume 2, Number 2, pages 163-182, June 2004.

