
On Service Composition Algorithm for
Open Marketplaces of Network Services

Shireesh Bhat, Robinson Udechukwu, Rudra Dutta, George N. Rouskas
Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Abstract—Network service composition provided as a service
in an Open Marketplace enables users to obtain customized end-
to-end composed service(s) using the services advertised by the
providers in the marketplace. By providing a semantic language
for advertising services and offering choice for the composed
service(s) we provide a level playing field for the providers
and alternatives for the users to choose from based on their
requirement. This is similar to the services offered in the cloud,
but without the provider monopoly or the limitation of having
to select from limited options.

I. INTRODUCTION

Service composition [1], [2], Service orchestration and

choreography [3], Service concatenation or stitching [4], [5],

all point to a single objective of bringing together multiple

services to form a meta-service, which can be used to satisfy

a user request. The difference lies in the way these services

are realized in the real world and the ease with which these

services can be combined. As we extend the concept of a

meta-service to a diverse set of domains: web service, domain

independent planners, and network services, it is becoming

difficult to separate the methodology involved in the creation

of the meta-service and hence the liberal use of these terms

seems to be justified. We use the term Service composition to

explain the functionality of the Planner which is described in

this work.

This work makes several contributions:

• Introduces a semantic language to fully automate the

service composition process by describing service func-

tionality in a way that it can be advertised in an Open

Marketplace [6] and can be interpreted by the Planner.

This is a paradigm shift from the earlier approach [4],

which involved reinterpreting the service syntax for inte-

grating the Planner.

• Supports aggregating service advertisements to make it

more compact and manageable.

• Presents an extension to Yen’s k-shortest loopless paths

algorithm [7] which has been modified to run on a

graph where the nodes are sets of addresses and formats

while the edges are service advertisements. The modified

algorithm is responsible for providing multiple composed

(meta) services sorted in non-decreasing order of cost.

The composed (meta) services are formed using the

services advertised in the marketplace.
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A new semantic language design was undertaken as some

of the more established [8] and developmental [9] semantic

language designs do not provide the flexibility in modeling

compact network services. We do not claim our design can

be used for modeling all the network services which are now

being realized through SDN but we make our design extensible

allowing modeling of new services.

Some of the earlier work on Service Composition has dealt

with either web service composition [1], finding a shortest cost

path in a layered graph [4], [5] or finding a plan based on state

space [10]. This work fills in the gap of providing multiple

composed services using the network service composition al-

gorithm. The motivation for this work is online travel services,

for example Orbitz, Kayak, Expedia, and TripAdvisor. They

present a list of itineraries for the customer to choose from

consisting of flights, hotels, cars, etc. The billions of dollars

in revenue generated by the online travel agencies is a strong

indicator of a successful technological and economic model. In

this work, we would like to replicate some of the principles of

online travel agencies and extend the notion of choice when it

comes to selecting network services in an Open Marketplace.

ChoiceNet [6] was designed to provide an infrastructure,

which would enable choice in an Open Marketplace to fa-

cilitate economic contracts on short term or long term time

scales. Some of the related work have used the marketplace

for advertising path services [11]–[13], while some have used

a marketplace for advertising virtualized networks and theirs

functions [14], [15]. Some of the cloud service providers

advertise services, which can be provided as an edge service in

their respective cloud domains, for example transcoding, com-

pute, storage, etc. In this work, we consider two broad classes

of services: path (routing) and data modification service, being

advertised in the marketplace. We develop a new algorithm

which is inspired by Yen’s [7] algorithm to complement

the ChoiceNet marketplace by providing alternative service

offerings, comprising of a list of end-end paths, a list of

data modification services, or a combination of both of them

matching the user’s requirement.

Following the introduction, we present the semantics lan-

guage which is responsible for shaping the marketplace in

Section II. In Section III we discuss the Planner. In section

IV we present numerical results and finally we conclude the

paper in section V.



II. MARKETPLACE AND GRAPH MODEL

The ChoiceNet Marketplace [6] consists of Service ad-

vertisements, which are used by the Planner to construct a

graph while finding a list of composed services to satisfy the

user request. In this section we define the role of semantics

language in the workings of a Planner, and also highlight

how it encourages competition in the Marketplace, among the

various service providers, and how it is advantageous to the

service users.

A. ChoiceNet Semantics Language (CSL)

CSL helps define a service advertisement and the user

requirement, the essential pieces in the working of the Planner.

The extensible CSL schema/vocabulary enables building a

consensus between the entities interacting with the Market-

place. This schema/vocabulary may be managed by a regulated

and widely accepted authority such as the Internet Assigned

Numbers Authority (IANA), which enforces the vocabulary’s

syntax and semantics. The attributes are fully specified using

the triple: (attribute name, attribute value, vocabulary loca-

tion), the attribute name and value are defined in the context

of the vocabulary whose location is specified in the last part

of the triple. The service advertisement and requirement are

illustrated in Figure 1. The attributes which make up the CSL

are described below:

• Service Overview: The service name and description

mentions in brief the service being advertised.

• Address: The source and destination addresses along

with the addressing schemes are used for specifying the

location(s), where the service is being offered. The values

for the address fields are specified using a set consisting

of host or network (range) addresses.

• Format: The source and destination formats along with

the format schemes (types) are used for specifying the

handling of application data. The values for the format

fields are specified using the set syntax.

• Consideration: The consideration attribute denotes the

cost of purchasing or spending ability for a service

advertisement and requirement respectively.

• Provisioning: The provisioning field has information on

using the service post purchase.

• Purchase: The purchase portal has details of the site,

where the consideration amount needs to paid for pur-

chasing the service.

• Alternatives: The number of composed services expected

by the user is specified in the requirement using K.

The list of attributes mentioned above provides the nec-

essary information for composing a network service. The

service advertisement and requirement can be extended to

accommodate services which need more attributes to describe

the service. The extension would require changes in the

composition algorithm for new attributes to be considered

while finding alternative composed services matching the user

requirement but the underlying design and principle would still

remain the same.

Fig. 1: Service Advertisement and Requirement Schema

B. Functionality

The objective of CSL and the purpose of the fields which

makeup the service advertisement and requirement are de-

scribed below:

1) Layer Abstraction: Since we are dealing with network

services it becomes important to state the layer at which a

particular service is being provided. We use a layering abstrac-

tion which is realized using the address type and format type

fields of the service advertisement. In this work we classify

network services, which offer routing, as path services, which

are realized at layer 2 of the TCP/IP protocol architecture and

the remaining services, as being realized at layer 2 or above

of the TCP/IP protocol architecture. The layering abstraction

enables us to extend this work to realize services at layer 1 of

the TCP/IP protocol architecture or to any other architecture

which follows the layering model.

2) Address Decode: While interpreting a service advertise-

ment/requirement if the “SRC” and “DEST” addresses are

different and the format fields are identical, we interpret this

as a path service. If the address fields are identical and the

format fields are different, or if both the address fields and the

format fields are different then we interpret this as a non-path

service.

3) Format Decode: The format schema is used to specify

the functionality of the data plane service with respect to how

it treats the user data. To define path services, we support wild

card formats to represent them. While interpreting a service

advertisement if the “SRC” and “DEST” formats are different

we interpret that this service either modifies/stores/analyzes

the data, if they are identical then we interpret that this may

be a path service. If the “SRC” and “DEST” formats have

wild card formats then we are dealing with a routing service

which transports any data, else we are dealing with a routing

service which transports data selectively. In this work, we use

formats to refer to the data at the application layer of the

TCP/IP architecture.



4) Mode of Payment: To allow multiple ways of being

compensated for the service, we provide a way to specify

the consideration type and the amount of consideration in the

service advertisement. The consideration type and the value in

the service requirement indicate the cost the user is willing to

pay for a composed service. We assume all the services which

are part of the “composed service” have the same consideration

type and the value is the accumulated sum of the values of

the services which make up the “composed service”. We can

extend this work, to have services with different consideration

types being part of the “composed service” but we would need

a service which can convert between different consideration

types.

5) k-composed services: The user request has the option of

specifying the number of “composed services” which should

be returned by the Planner, which are below the threshold con-

sideration value specified in the user request. The other fields

in the Service advertisement including the Service Name,

Service Description, Provisioning Detail, and Purchase Portal

do not influence the service composition and are mentioned

here for completeness.

6) Pricing Mechanism: The marketplace with inputs from

the service providers determines the smallest unit of time

for which a service advertised in the marketplace needs to

be available. The consideration value represents the cost of

using this service for at least this unit of time. Usually a user

requirement cannot be accomplished just based on a service

advertisement and there are other differentiating factors such

as bandwidth for a path service, a continuous duration of time

for which the service is needed, the time when the service is

needed i.e., instantly or sometime in the future, which can be

negotiated by contacting the providers of the services which

make up the k-composed services. Advertising services for all

combinations is not feasible for both, the providers, and the

marketplace administrator. Further, revealing the pricing mech-

anism/modeling in the marketplace along with the complete

network topology would not be something which the providers

would do, mainly for two reasons. First, it gives out way too

much information which can be exploited by competitors and

malicious users. Second, if they want to change their pricing

model they have to handle the existing advertisements which

are already in the marketplace using the old pricing model.

By decoupling the connectivity information from the pricing,

we ensure that frequent updates to the graph are reduced.

III. PLANNER

A. Input and Output

The input to the Planner is the service requirement from

the user and the set of advertisements in the Marketplace

which is illustrated in Figure 1. The output of the Planner is

a list of “composed service(s)” which is structured as shown

in Figure 2. In a K-Composed Service, the “K” stands for

the number of “composed service(s)” which are returned by

the Planner. The number of “composed service(s)” returned

may be less than or equal to the number of “composed

services(s)” requested by the user. Each composed service

consists of the consideration type which is uniform across all

the services in the “composed service” and the accumulated

cost. This is followed by the service advertisement instances

arranged sequentially in the order the services need to be

executed. Each service advertisement instance consists of

the Service Advertisement Identifier, which corresponds to

a Service advertisement in the Marketplace, followed by the

address and format information, each of which contains one

of the set elements from the original service advertisement.

The format values in the instance need to take into account

wild card formats, which is the universal set containing all

formats supported by CSL. This can be achieved by replacing

the wild card formats, if present, in a service advertisement

with a specific format value and type being requested by the

user. So, it is possible for two composed service(s) to have

the same advertisement identifiers but what sets them apart is

the service instance which is returned by the Planner. If the

Planner cannot find a “composed service” which matches the

user request it returns an empty list of “composed service(s)”.

Fig. 2: Composed Service Schema

B. Notations

We denote a service advertisement by Sservice id =
{SA, DA, SF , DF }, SA, DA, SF , and DF are the set of source

addresses, destination addresses, source formats and destina-

tion formats respectively and service id is used to uniquely

identify a advertisement. We denote the service instance

corresponding to a service advertisement by Sservice id,j =
{sa, da, sf , df}, sa ∈ SA, da ∈ DA, sf ∈ SF , df ∈ DF and

j = 1, ..., |SA| × |DA| × |SF | × |DF |. We denote the require-

ments specified by the user as U = {SU
A , DU

A , S
U
F , DU

F ,K,C},

SU
A , DU

A , S
U
F , and DU

F are the set of source addresses, des-

tination addresses, source formats and destination formats,

and at least one element from the source set i.e. {SU
A , SU

F }
should be present in the first service of a composed service,

similarly at least one element from the destination set i.e.



{DU
A , D

U
F } should be present in the last service of the com-

posed service, K represents the number of such composed

services required and C represents the threshold cost which

shouldn’t be exceeded by any of the composed service. Let

Hservice id represent the set of service instances corresponding

to service id which are now part of the already found

composed services. Let N denote the set of source service

instances i.e. {sa, sf} which have been deleted as part of the

extended Yen’s algorithm. Let T [sa, sf ] denote the cost of

reaching the service instance node {sa, sf} from the virtual

source node. Let Q represent the set of destination service

instances which have been explored i.e. {da, df}. Let F [] be

an array of size K consisting of up to K composed services.

Let P be a set of potential composed services.

C. Pseudocode

The algorithm assumes that a virtual source node exists

which can reach all nodes, represented by the (source address,

source format) combination of the user request at zero cost.

Similarly, there exists a virtual destination node which can

be reached from all nodes, represented by the (destination

address, destination format) combination of the user request

at zero cost. A variation of Yen’s algorithm [7] is used to

find the K lowest cost composed service(s) between this

virtual source, and destination node and is represented using

Algorithm 1. We use the same notations as the original Yen’s

algorithm [7] to highlight the similarities and differences, the

parts of the pseudocode which are almost identical to the Yen’s

algorithm have been blurred. We have included the pseudo

code of the extended Yen’s algorithm here to make this work

self contained. We now explain the part where our algorithm

deviates from the original Yen’s algorithm.

• We represent a node by the tuple (address(s), format(s))

and an edge by the tuple (SA, DA, SF , DF ). In the case of

a composed service each edge is represented by a service

instance tuple (sa, da, sf , df ).

• A path in our case is a concatenation of service instances

formed from the service advertisements.

• The place where the original Dijkstra’s algorithm [16]

would have been called is now replaced by a

call to the modified Dijkstra’s algorithm denoted by

Modified Dijkstra.

• We use Hservice id to keep track of edges which are part

of the previously calculated composed service instance(s)

and we use N to keep track of the rootNodes which share

the same path.

In Algorithm 2 we use a variation of Dijkstra’s [16] shortest

path algorithm to compute a lowest cost composed service. We

summarize the description of the modified Dijkstra’s algorithm

below:

• In this variation we query the Marketplace repeatedly till

we find an end-to-end composed service or we are certain

that no such end-to-end composed service exists which

satisfies the user constraints.

• While we are extending the list of explored nodes, we

decompose a service advertisement into individual service

instances if any of the set elements are part of the

previous composed service(s). From the perspective of

the graph this involves splitting the two nodes which

form the end points of a service advertisement into

|SA| × |DA| × |SF | × |DF | nodes.

Initialization:

N = Q = Hservice id = ∅
F[0] = Modified Dijkstra(U)

for k = 1, ...,K do

for i = 0, ..., |F [k − 1]| − 1) do
N = Q = Hservice id = ∅
spurNode = F [k − 1].service instance(i)
rootPath = F [k − 1].service instance(0, i)
forall the c ∈ F do

if rootPath == c.service instance(0, i)
then

Hservice id =
Hservice id ∪ c.service instance(i, i+ 1)

end

end

forall the

rootPathNode′s ∈ rootPath except spurNode
do

N = N ∪ rootPathNode
end

U = {spurnodea, D
U
A , spurnodef , D

U
F ,K,C}

spurPath = Modified Dijkstra(U)
totalPath = rootPath+ spurPath
P = P ∪ {totalPath}

end

while P 6= ∅ do
composed service = delete min{P}
if composed service 6= duplicatePath then

F [k] = composed service
break

end

end

end

Algorithm 1: Extended Yen’s Algorithm

IV. NUMERICAL RESULTS

We now present some preliminary results to evaluate the

composition algorithm discussed in the previous section.

We have used two topologies, the 14-node NSF network

and the 24-node US network [17]. We have used two

different models to analyze the results corresponding to

this algorithm. In the first model we run the traditional

Yen’s algorithm [7] which outputs K shortest cost paths

on the above topologies and compare it with the service

composition algorithm which outputs K lowest cost

composed path services. For Yen’s algorithm and service

composition algorithm, nodes are represented as integers

and as a tuple (addresses, format) respectively, and the

edges are represented using path service advertisements. In



Initialization:

vSource = {SU
A , SU

F }
vDestination = {DU

A , D
U
F }

Q = Q ∪ {vSource}
T [sa, sf ] = 0 ∀ {sa, sf} ∈ {SU

A , SU
F }

while vDestination /∈ Q do
//Query the Marketplace

T [swa , s
w
f ] = min{T [sva, s

v
f ] + Cvw}

s.t. v ∈ Q,w /∈ Q, Cvw = service instance cost,

{sva, d
w
a , s

v
f , d

w
f } /∈ Hservice id and {sva, s

v
f} /∈ N

Q = Q ∪ {w}
if T [swa , s

w
f ] > C then

return error;//Cost exceeded

end

end

//construct a composed after tracing back

return (composed service)

Algorithm 2: Modified Dijkstra’s Algorithm

the second model, we add transformation services to the

24-node topology on top of the existing path services added

in the first model. We add stream transcoding services,

[HLS MPEG-2 H.264 AAC, HLS MPEG-2 H.264 MP3,

HDS FMP4 H.264 AAC, HDS FMP4 H.264 MP3,

MPEG-DASH FMP4 H.264 AAC, MPEG-

DASH FMP4 H.264 MP3, MSS FMP4 H.264 AAC,

MSS FMP4 H.264 MP3], at nodes which have nodal

degree even and > 3, we add video transcoding

services, [MP4 H.264 AAC, MP4 H.264 MP3,

FLV H.264 AAC, FLV H.264 MP3, MPG MPEG-2 MP2],

and audio transcoding services, [MP3 MP3, MP4 AAC,

OGG VORBIS, OGG FLAC, OGA FLAC], at nodes which

have nodal degree odd and > 3, the reasoning is, this helps

evenly distribute services in the core of the network. The

cost of the transcoding is proportional to the nodal degree;

the reasoning is, for a core node to be doing something

other than routing, there should be an incentive for doing

transcoding. In this experiment, a stream transcoding service

can convert from any of the eight formats to another, while

a video or audio transcoding service can convert from any

of the five listed formats to another. We use the second

model to compare the impact of service advertisements on

the composition algorithm. In the first instance we advertise

one transcoding service per node which can convert between

any of the supported formats, while in the second instance

we advertise one transcoding service per node which can

convert from only one supported format to the other. The

first instance represents a compact representation of the

Marketplace, while the second instance represents a layered

representation of the Marketplace. We compare the time it

takes to find K composed services on these two instances

for the composition algorithm. In the first model, we have 41

compact service advertisements for the 14-node network and

73 compact service advertisements for the 24-node network
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representing the path services. In the second model, we have

90 compact service advertisements for the first instance and

593 service advertisements for the second instance, for the

24-node network.

For the first model in the 14 and 24 node networks SU
A

and DU
A consists of the IP address of one of the 14 and 24

nodes respectively, while SU
F and DU

F consists of a wild card

which denotes a path service. For the second model, SU
F and

DU
F consists of a combination of one of the eight streaming

formats, or a combination of one of the five video formats, or

a combination of one of the five audio formats. C is assigned

a very high value.

We have implemented the K lowest cost service composition

algorithm in C, and we run the simulation experiments on

a 64bit machine with 4 cores and Intel i5 processor @

2.90GHz. In the figures we present in this section, each data

point corresponds to the average of 200 randomly generated

problem instances for a 14 node network and an average of

600 randomly generated problem instances for a 24 node

network.

Figure 3 plots the running time of the original Yen’s

algorithm against the composition algorithm for the NSF 14-

node and US 24-node networks as a function of K the number

of shortest/lowest cost paths/composed services respectively.



We observe that our composition algorithm adds a overhead

to the original Yen’s algorithm on account of supporting IP

subnet addresses and set notation schema. The overhead is

not constant and is a function of K as shown in the previous

section. We also observe that finding composed services when

K > 10 takes more time on the US 24-node network than the

NSF 14-node network. This observation is made for both the

original and extended Yen’s algorithms. Although the running

time of the K composed services algorithm is proportional to

the size of the graph, for small graphs, the nodal degree also

influences the running time such that a larger degree allows the

algorithm to find a composed service faster. Since the average

nodal degree of the NSF 14-node network is 3 while that of

the US 24-node network is 3.58, the algorithm runs somewhat

faster in the latter.

Figure 4 plots the running time of the composition algorithm

for the US 24-node network which now has both path and

transcoding services and compares the compact and layered

notation for stream transcoding and video transcoding services.

We observe that the compact notation although saves space by

expanding selectively it definitely increases the running time

of the composition algorithm. We conclude that advertising

services in the compact notation has its pros and cons. The

flip side of using the compact notation is the slight increase

in the running time of the algorithm but the advantage is

the decreased overhead of managing fewer services which is

realized by both the service providers and the marketplace

administrator.

V. CONCLUDING REMARKS

We have presented a new semantic language and a Planner

for advertising network services and constructing composed

services respectively in an automated way. The semantic

language is extensible allowing for a wide variety of network

services to be modeled. The novel algorithm presented in the

planner to work with set notation to find multiple composed

services can be extended to domains beyond network services.
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