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Abstract. We consider the problem of supporting multipoint communication at the MAC layer of broadcast WDM
networks. We first introduce themulticast throughputas the performance measure of interest and we show that it depends
on two measures that have previously been considered in isolation, namely, the efficient use of channel bandwidth and
wavelength throughput. We then present a new technique for the transmission of multicast packets based on the concept
of avirtual receiver, a set of physical receivers which behave identically in terms of tuning. We also demonstrate that the
number of virtual receivers naturally captures the performance of the system in terms of multicast throughput. Conse-
quently, we focus on the problem of optimally selecting the virtual receivers to maximize multicast throughput, and we
prove that it isNP-complete. Finally, we present four heuristics of varying degree of complexity for obtaining a set of
virtual receivers that provide near-optimal performance in terms of multicast throughput.

1 INTRODUCTION

Many applications and telecommunication services in
future high-speed networks will require some form of mul-
tipoint communication [1]. The problems associated with
providing network support for multipoint communication
have been widely studied within a number of different net-
working contexts. As current network technologies evolve
to an all-optical, largely passive infrastructure, these prob-
lems take on new significance, and raise a number of chal-
lenging issues that require novel solutions. In this paper we
consider the problem of supporting multipoint communica-
tion at the media access control (MAC) layer of broadcast-
and-select wavelength division multiplexed (WDM) net-
works [7], when tunable receivers are available at all nodes.

In multiwavelength optical broadcast-and-select net-
works, information transmitted on any channel is broad-
cast to the entire set of nodes, but it is only received by
those with a receiver listening on that channel. This fea-
ture, coupled with tunability at the receiving end, makes
it possible to design receiver tuning algorithms [9, 3] such
that asingletransmission of a multicast packet can reach all
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receivers in the packet’s destination set simultaneously. Its
efficient use of network resources makes this approach es-
pecially appealing for transmitting multicast traffic. How-
ever, the design of appropriate receiver tuning algorithms
is complicated by the fact that (a) tunable receivers take
a non-negligible amount of time to switch between chan-
nels, and (b) different multicast groups may have several
receivers in common. On the other hand, waiting until all
receivers become available before scheduling a multicast
packet results in low wavelength throughput, especially for
medium to large size multicast groups. To improve the sit-
uation, it was proposed in [5] to partition a multicast group
into several sub-groups, and to transmit a packet once to
each sub-group. This approach leads to higher wavelength
throughput despite the fact that each packet is transmitted
multiple times, indicating the existence of a tradeoff be-
tween wavelength throughput and the degree of efficiency
in using the bandwidth. Also, [6] presents an approach sim-
ilar to the one in [5] in that a packet is also transmitted mul-
tiple times, until all members of its multicast group receive
the packet. Instead of partitioning the multicast group in
advance, however, each receiver follows a set of rules to
listen to a packet transmission in each slot.

In this paper we present a novel solution to the prob-
lem of scheduling multicast traffic in broadcast-and-select
WDM networks. Our approach is based on the concept of
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a virtual receiver, a set of physical receivers that behave
identically in terms of tuning. By partitioning the set of
all physical receivers into virtual receivers, we effectively
transform the original network with multicast traffic, into
a new network with unicast traffic. Consequently, we can
take advantage of the scheduling algorithms in [10] that
have been shown to work well under non-negligible tun-
ing latencies. We also introduce themulticast throughput
as a performance measure that naturally captures the trade-
off between two conflicting objectives: the efficient use of
channel bandwidth and wavelength throughput. Hence, our
main focus is to select a partition of physical receivers into
virtual receivers so as to maximize multicast throughput.

In section 2 we introduce the concepts of multicast
throughput and of a virtual receiver. Lower bounds on the
schedule length are given in section 3, and some important
properties of the bounds are also derived. We formulate the
problem of optimally selecting a virtual receiver set in sec-
tion 4, and we show that it isNP-complete. Heuristics for
this problem are developed in section 5. We present some
numerical results in section 6, and we conclude the paper
in section 7.

2 SYSTEM MODEL

We consider an optical broadcast WDM network with a
setN = f1; � � � ; Ng of nodes and a setC = f�1; � � � ; �Cg
of wavelengths, whereC � N . Each node is equipped
with one fixed transmitter and one tunable receiver. The
tunable receivers can tune to, and listen on any of theC
wavelengths. The fixed transmitter at stationi is assigned
a home channel�(i) 2 C. We letXc; c = 1; : : : ; C;
denote the set of nodes with�c as their home channel:
Xc = fi : �(i) = �cg. We also let integer� � 1 rep-
resent the normalized tuning latency, expressed in units of
packet transmission time. Parameter� is the number of
slots a tunable receiver takes to tune from one wavelength
to another.

The network is packet-switched, with fixed-size pack-
ets. Time is slotted, with a slot time equal to the packet
transmission time, and all network nodes are synchronized
at slot boundaries. We only consider multicast traffic in
this paper, and we letg � N = f1; 2; � � � ; Ng represent
the destination set or multicast group of a packet. We will
also usej g j to denote the cardinality of groupg.

Let G represent the number of currently active multi-
cast groups, andM = [mig ] be aN � G multicast traf-
fic demand matrix, wheremig is the number of multi-
cast packets originating at sourcei and destined to mul-
ticast groupg. Information about the traffic demandsmig

may be collected using a distributed reservation protocol
such as HiPeR-` [11]. Given the assignment of trans-
mit wavelengthsfXcg, we construct a newC � G traf-
fic demand matrixA = [acg], where acg is the total
amount of traffic to multicast groupg carried by chan-

nel �c: acg =
P

i2Xc
mig 8 c; g. We also letM de-

note the total traffic demand over all channels and groups:
M =

PN

i=1

P
gmig =

PC

c=1

P
g acg .

We define thewavelength throughputS; S � C of the
network as the average number of packet transmitted on
theC channels per unit of time (slot). We note, however,
that while high wavelength throughput is certainly desir-
able, this traditional definition of throughput does not accu-
rately reflect the performance of a network with multicast
traffic, as it fails to capture thedegree of efficiencyin the
use of channel bandwidth. A measure of this efficiency is
the average number�l of times a packet is transmitted be-
fore it is received by all members of its multicast group.
Thus, bothS and�l are important in characterizing the per-
formance of the network. For example, a system that can
achieve high wavelength throughput only by unnecessar-
ily replicating each multicast packet (resulting in a high
�l value) may actually be inferior to one with a somewhat
lower wavelength throughput but which is very efficient in
how it transmits packets (i.e., it achieves a very low value
for �l).

Let amulticast completiondenote the completion of a
multicast transmission of a packet to all receivers in its mul-
ticast group. We define themulticast throughputD of the
system as the average number of multicast completions per
slot. This definition of throughput is independent of how
multicast is actually performed (i.e., by performing a sin-
gle or multiple transmissions), and thus is applicable to any
network with multicast traffic. The multicast throughput
is related to wavelength throughput and the degree of effi-
ciency through the expression:D = S=�l. As we can see,
the multicast throughputD combines both parametersS
and�l in a meaningful way, and it naturally arises as the per-
formance measure of interest in a WDM network with mul-
ticast traffic. While previous work has considered either
wavelength throughput or the degree of efficiency as the
objective in the design of scheduling algorithms for multi-
cast traffic, in this paper we are interested in techniques to
maximize the multicast throughputD.

2.1 THE THROUGHPUT -EFFICIENCY TRADEOFF

Given a traffic matrixM , there are several possible ap-
proaches to delivering the multicast packets to all receivers
in their corresponding multicast groups. One extreme ap-
proach is to separately transmit a copy of a packet to each
of the packet’s destinations. This solution can achieve high
wavelength throughput since a number of transmissions
may take place simultaneously on different channels. Its
main drawback is the inefficient use of channel bandwidth,
since all packets to a multicast groupg must be transmit-
ted exactlyj g j times. Let�g denote the average multi-
cast group size. Then, even if the wavelength throughputS
is equal to the number of channelsC (the maximum pos-
sible), the multicast throughput is onlyC=�g. Thus, this
approach is inefficient, even for relatively small multicast
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group sizes.

Another possibility would be to somehow schedule all
receivers of each multicast groupg such that they simulta-
neously tune to a channel with packets forg. This approach
makes very efficient use of channel bandwidth, since only
a single copy of each packet needs to be transmitted, there-
fore multicast throughput is equal to the achievable wave-
length throughput. However, transmissions to multicast
groups with at least one receiver in common cannot be
scheduled simultaneously. An algorithm based on a sim-
ilar scheduling principle was presented in [3], and it was
found to utilize only one channel (out ofC) on average.
Again, therefore, multicast throughput can be very low.

As we can see, wavelength throughput and efficient use
of bandwidth are two conflicting objectives arising in the
design of multicast traffic scheduling techniques. The two
approaches just described can be thought of as two oppo-
site extremes, each optimizing one objective but perform-
ing poorly in terms of the other. A third possibility that
might achieve a reasonable performance in terms of both
objectives would be to split multicast groups with common
receivers into smaller sub-groups, and to transmit packets
in multiple phases [5]. However, this approach introduces
two problems: (a) how to split groups with common re-
ceivers, and (b) how to coordinate the tuning of sets of
receivers among the various channels. Both problems ap-
pear to be difficult to deal with, especially in the presence
of non-negligible tuning latencies and when receivers may
belong to multiple multicast groups.

In this paper we introduce a new technique for the
transmission of multicast packets that achieves a good bal-
ance between wavelength throughput and efficient use of
bandwidth, leading to high multicast throughput. Our work
differs from previous research in two novel ways. First, in-
stead of attempting to partition the multicast group of each
packet into sub-groups (a shortsighted approach, since it
considers each packet independently of others), our objec-
tive is to partition the receiver setN by taking into account
the overall traffic offered to the network. Since our solution
is obtained by considering the total traffic demands, it is ex-
pected to achieve better performance than if each packet
were considered in isolation. Second, our approach de-
couples the problem of determining how many times each
packet should be transmitted, from the problem of schedul-
ing the actual packet transmissions. As a result, we can
take advantage of the scheduling algorithms in [10] that
have provingly optimal properties and have been shown
to successfully hide the effects of tuning latency. Since
we do not require the development of similar algorithms
for scheduling multicast traffic (a rather difficult task [5]),
we can therefore concentrate on the important problem of
tradeoff selection between the two conflicting objectives,
as described in the next subsection.
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Figure 1: Example schedule for a network withN = 5, C = 2,
� = 2, and 2 virtual receivers.

2.2 THE VIRTUAL RECEIVER MODEL

We define avirtual receiverV � N as a set ofphysical
receivers that behave identically in terms of tuning. Thus,
from the point of view of coordinating the tuning of re-
ceivers to the various channels, all physical receivers inV
can be logically thought of as a single receiver. We also
define ak-virtual receiver setV(k); 1 � k � N , as a
partition of the setN of receivers intok virtual receivers,
V(k) = fV

(k)
1 ; V

(k)
2 ; � � � ; V

(k)
k g. Given ak-virtual receiver

setV(k) and a traffic matrixM , transmission of multicast
packets proceeds as follows. While a virtual receiverV

(k)
l

is on channel�c, each node inXc (i.e., each node with�c
as its transmit wavelength) transmits all its multicast pack-
ets to groupsg such thatg \ V

(k)
l 6= � (i.e., at least one

member ofg has its receiver inV (k)
l ). All receivers inV (k)

l

have to filter out packets addressed to multicast groups of
which they are not a member, but they are guaranteed to re-
ceive the packets for all groups of which they are members.

Figure 1 shows a schedule forN = 5 nodes,C = 2
channels, three multicast groupsf , g, andh, � = 2, and
the following parameters.

M =

2
66664

0 3 2
3 0 2
2 0 1
0 2 2
1 1 0

3
77775 ;

f=f2,3,4g
g=f1,2g
h=f4,5g

;

X1 = f1; 2g
X2 = f3; 4; 5g

V1 = f4; 5g
V2 = f1; 2; 3g

(1)

In this case the wavelength throughput isS = 25=15 =
1:67 since 25 packets are transmitted over 15 slots, but the
multicast throughput isD = 19=15 = 1:27, since exactly
19 multicast transmissions, corresponding to the 19 packets
of matrixM , are completed within 15 slots.

We now observe that, given thek-virtual receiver set
V(k), a nodei 2 Xc; c = 1; � � � ; C, must transmit a num-
ber of packets to virtual receiverV (k)

l ; l = 1; � � � ; k, equal
to the sum of its packets for any multicast groupg with
members whose receivers are inV (k)

l . Let B= [bil] be
theN � k matrix with bil =

P
g:g\V

(k)

l
6=�

mig . Quantity

bil represents the amount of traffic originating at sourcei

and destined to virtual receiverV (k)
l . By specifying the

k-virtual receiver set we have effectively transformed our
original network with multicast traffic matrixM , to an
equivalent network withunicasttraffic matrixB. This new
network has the same number of transmitters and chan-
nels, and the same tuning latency as the original one, but
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only k receivers, corresponding to thek virtual receivers
in V(k). We can then immediately employ the algorithms
in [10] (which were developed for unicast traffic) to con-
struct schedules for clearing matrixB in the new network.
The reader is referred to [10] for details on the optimality
properties of these scheduling algorithms. For the rest of
this paper we concentrate on the problem of selecting the
virtual receiver setV(k) to use.

Whenk = 1, each multicast packet is transmitted only
once, but there is no transmission concurrency; only one
channel is utilized at a time and wavelength throughput
is very low. For larger values ofk, each of thek virtual
receivers can be independently tuned to the various chan-
nels, and a higher degree of transmission concurrency can
be achieved, resulting in higher wavelength throughput. On
the short side, multicast packets may have to be transmitted
multiple times whenk > 1, since members of a multicast
groupg may belong to different virtual receivers, result-
ing in less efficient use of bandwidth. Whenk = N , each
virtual receiver consists of exactly one physical receiver,
and each multicast packet to groupg has to be transmitted
exactly j g j times. Hence, the numberk of virtual re-
ceivers naturally captures the tradeoff between wavelength
throughput and efficient use of bandwidth.

As we can see, multicast throughput is maximized only
when the virtual receiver sets are selected so as to mini-
mize the length of time to clear the traffic demands rep-
resented by traffic matrixM . Let’s say that such a virtual
receiver set and the corresponding scheduled has been ob-
tained. This schedule achieves the multicast packet com-
pletions denoted by matrixM in the shortest time possi-
ble, therefore, by definition, multicast throughput is max-
imized. Furthermore, a short schedule length implies low
delay for delivering the multicast packets. Thus, the objec-
tive of our work is to selectk and the virtual receivers so as
to minimize the schedule length for a given matrixM .

We also note that, traffic demands may vary over time,
resulting in a different matrixM , for which the current re-
ceiver set is suboptimal. However, in this paper we assume
that matrixM represents the long-term traffic in the net-
work, and that changes in this traffic take place over longer
time scales. Although we expect that the instantaneous traf-
fic offered to the network will vary, we assume that the
network will operate with the same virtual receiver sets un-
til the long-term behavior of the traffic changes. At that
time, a new set of virtual receivers may be computed (us-
ing the techniques developed here) and communicated to
the nodes (using the techniques described in [2]), effec-
tively reconfiguring the network to adapt to the new traffic
pattern. Therefore, this work is only concerned with the
problem of obtaining the virtual receiver sets for a given
matrixM .

3 LOWER BOUNDS ON SCHEDULE LENGTH

Let V(k) = fV
(k)
1 ; � � � ; V

(k)
k g be ak-virtual receiver

set. We observe that the length of any schedule cannot be
smaller than the number of slots required to carry all traffic
from the transmitters of any given channel to virtual re-
ceivers, yielding thechannelbound:

F̂ch(V
(k)) = max

c=1;���;C

8><
>:

kX
l=1

X
g:g\V

(k)

l
6=�

acg

9>=
>; (2)

We can obtain a different lower bound by adopting a
virtual receiver’s point of view. LetTl; 1 � Tl � C; repre-
sent the number of channels to which virtual receiverV

(k)
l

must tune (these are the transmit channels of nodes that
have packets for multicast groups with at least one mem-
ber in the virtual receiverV (k)

l ). Each virtual receiverV (k)
l

needs a number of slots equal to the number of packets it
has to receive, plus the number of slots required to tune to
each of theTl wavelengths. We call this thereceiverbound;
it can be expressed as:

F̂r(V
(k)) = max

l=1;���;k

8><
>:
2
64 CX
c=1

X
g:g\V

(k)

l
6=�

acg

3
75+ Tl�

9>=
>; (3)

We have written the channel and receiver bounds as func-
tions of the virtual receiver set to emphasize the fact that
their values depend on the actual receivers comprising each
virtual receiver, not just on the numberk of virtual re-
ceivers. We now obtain the overall lower bound as:

F̂ (V(k)) = max
n
F̂ch(V

(k)); F̂r(V
(k))
o

(4)

To gain some insight into how the numberk of virtual
receivers may affect the relative values of the two bounds
in (2) and (3), let us consider the two extreme scenarios,
k = 1 andk = N . For k = 1, there is only one virtual
receiver,N , which includes all physical receivers, and we
can rewrite (2) and (3) as follows:

M

C
� F̂ch(V

(1)) = max
c=1;���;C

(X
g

acg

)
< M (5)

F̂r(V
(1)) =

(
CX
c=1

X
g

acg

)
+ C� = M + C� (6)

In (5) we have assumed that no single channel will carry
all traffic, and thus the channel bound will be strictly less
thanM , while in (6) we have assumed that at least one
transmitter at each channel will have traffic for at least one
multicast group, and thusTl = C. Obviously, the receiver
bound dominates in this case, even if� = 0 or Tl < C.
On the other hand, fork = N , the virtual receiver set is
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ff1g; � � � ; fNgg, and (2) and (3) become:

F̂ch(V
(N)) = max

c=1;���;C

(X
g

j g j acg

)
(7)

F̂r(V
(N)) = max

l=1;���;N

8<
:
2
4 CX
c=1

X
g:l2g

acg

3
5 + Tl�

9=
; (8)

It is not clear from (7) and (8) which bound dominates
in this case. The channel bound in (7) depends on the num-
ber of receivers in each multicast groupg, since packets to
g must be individually transmitted to each member of the
group. On the other hand, the receiver bound depends on
(a) the value of the tuning latency�, and (b) the amount of
traffic destined to each receiver. In general, we expect the
channel bound (7) to be the dominant one whenk = N ,
unless� � 1 and/or there is ahot-spotreceiver, i.e., one
that is a member of a large number of multicast groups.

The following lemma establishes a lower bound on the
length of any schedule for matrixM . We note, however,
that this absolute lower bound is not necessarily achievable.

Lemma 3.1 Regardless of the method used to transmit
multicast packets, a lower bound on the length of any
schedule to clear matrixM , is given by:

F̂ = max
n
F̂r(V

(N)); F̂ch(V
(1))
o

(9)

Proof. The length of any schedule forM cannot be smaller
than the number of multicast packets to be transmitted on
any channel, which is given bŷFch(V(1)) in (5). Simi-
larly, the length of any schedule cannot be smaller than the
sum of the number of packets destined to a particular re-
ceiver plus the receiver’s tuning requirements, as expressed
by F̂r(V(N)) in (8). QED.

3.1 MONOTONICITY PROPERTIES

Let us now study the behavior of the receiver and chan-
nel bounds as a function of the numberk of virtual re-
ceivers. Intuitively, the smaller (larger) the number of vir-
tual receivers, the larger (smaller) the number of physi-
cal receivers within each virtual receiver, and the larger
(smaller) the number of multicast groups with members
within each virtual receiver. Consequently, we expect the
receiver bound to increase as the number of virtual re-
ceivers decreases, and vice versa, while we expect that
the channel bound move in the opposite direction, that is,
it should decrease as the number of virtual receivers de-
creases, and vice versa.

Although given two arbitrary virtual receiver sets there
is no way to reacha priori any conclusions regarding the
relative ordering of their channel and receiver bounds, the
two bounds do exhibit behavior that is in agreement with
the one discussed above when two special operations are
applied to virtual receiver sets. The two operations are:

� JOIN(V(k); n), 1 � n < k � N . JOIN creates a
(k � n)-virtual receiver set by replacing anyn + 1
of the virtual receivers inV(k) with their union, and
keeping the otherk�n�1 virtual receivers the same.

� SPLIT(V(k); n), 1 � k < k+ n � N . SPLITcreates
a (k + n)-virtual receiver set by arbitrarily splitting
any virtual receiver inV(k) with at leastn+1 physi-
cal receivers inton+1 virtual receivers, and keeping
the otherk � 1 virtual receivers the same.

The following lemma states the monotonic behavior of
the channel and receiver bounds when theJOIN operation
is applied.

Lemma 3.2 (Monotonicity Property of JOIN) Let V(k)

be ak-virtual receiver set, and letV(k�n); 1 � n < k,
be the(k�n)-virtual receiver set obtained by applying the
JOIN(V(k); n), 1 � n < k � N , operation. Then,

F̂ch(V
(k�n)) � F̂ch(V

(k)) ; F̂r(V
(k�n)) � F̂r(V

(k)) (10)

Proof. LetV(k) = fV (k)
1 ; � � � ; V (k)

k g be the initialk-virtual
receiver set. Without loss of generality, we assume that the
(k � n)-virtual receiver set is formed by taking the union
of the lastn+ 1 virtual receivers ofV(k). Hence, we have
thatV (k�n)

1 = V
(k)
1 ; � � � ; V (k�n)

k�n�1 = V
(k)
k�n�1; V

(k�n)
k�n =

V
(k)
k�n [ � � � [V

(k)
k . Then, the relative values of the channel

and receiver bounds for thek- and(k � n)-virtual receiver
sets depend only on the contributions of virtual receivers
V
(k)
k�n; � � � ; V

(k)
k andV (k�n)

k�n , respectively, to these bounds.
Let us first consider the receiver bound in (3). By con-

struction, the value of the term within the brackets in (3)
for V (k�n)

k�n is at least equal to the value of the same term

for any of V (k)
k�n; � � � ; V

(k)
k . Also, the number of chan-

nels to which virtual receiverV (k�n)
k�n has to tune is at

least equal to the maximum number of channels to which
any of the virtual receiversV (k)

k�n; � � � ; V
(k)
k have to tune.

Therefore, the receiver bound forV(k�n) cannot be smaller
than that forV(k). Thus, the second inequality in (10)
holds. For the first inequality in (10), note that the nodes
in Xc; c = 1; � � � ; C, will transmit a number of packets
to virtual receiverV (k�n)

k�n which is at most equal to the
sum of the packets they would transmit to virtual receivers
V
(k)
k�n; � � � ; V

(k)
k (refer to (2)). Therefore, the first inequal-

ity in (10) also holds true.QED.
As a consequence of the monotonicity property of

JOIN, if we start with theN -virtual receiver setV(N) and
apply an arbitrary sequence ofJOINoperations, we will ob-
tain a sequence of virtual receiver sets, each with a smaller
number of virtual receivers, such that the channel (receiver)
bound of any virtual receiver set in the sequence is no
greater (smaller) than the channel (receiver) bound of the
previous set in the sequence. This behavior is illustrated
in figure 3. A similar monotonicity property holds for
theSPLIToperation and is stated in the following lemma.
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Lemma 3.3 is in a sense the inverse of Lemma 3.2. Its proof
is omitted since it is very similar to that of Lemma 3.2.

Lemma 3.3 (Monotonicity Property of SPLIT) Let V(k)

be ak-virtual receiver set, and letV(k+n); 1 � n < k, be
the (k + n)-virtual receiver set obtained by applying the
SPLIT(V(k); n), 1 � k < k + n � N , operation. Then,

F̂ch(V
(k+n)) � F̂ch(V

(k)); F̂r(V
(k+n)) � F̂r(V

(k)) (11)

4 THE VIRTUAL RECEIVER SET PROBLEM

Our objective is to determine a virtual receiver set such
that the length of the schedule to transmit the multicast de-
mand matrixM is minimum over all virtual receiver sets,
since such a schedule would maximize multicast through-
put. Unfortunately, given a virtual receiver set, the length
of the corresponding schedule is not known until after we
run the algorithms in [10]. Thus, we will instead seek a
virtual receiver set that minimizes the lower bound in (4),
a known quantity, rather than the actual schedule length.
This problem, which we will call theVirtual Receiver Set
Problem (VRSP)arises naturally as a decision problem, and
can be formally expressed as follows.

Problem 4.1 (VRSP) GivenN nodes,C channels, trans-
mitter setsXc, tuning latency�, G multicast groups, a
multicast traffic demand matrixM , and a real numberF ,
does there exist ak-virtual receiver setV(k); 1 � k � N;
such that the lower bound in (4)̂F (V(k)) � F?

The following simpler version ofVRSP, whereby the
value ofk is fixed to 2, isNP-complete.

Problem 4.2 (2-VRSP)Given N nodes, C channels,
transmitter setsXc, tuning latency�, G multicast groups,
a multicast traffic demand matrixM , and a real numberF ,
does there exist a 2-virtual receiver setV(2) such that the
lower bound in (4)F̂ (V(2)) � F?

Theorem 4.1 2-VRSPisNP-complete.

Proof. By transformation from thePARTITION prob-
lem [4]; for details the reader is referred to [8].QED.

SinceVRSPisNP-complete, we expect the problem of
determining a schedule that minimizes the actual schedule
length (rather than the lower bound) to beNP-hard.

4.1 SPECIAL CASES

Although VRSPis NP-complete in the general case,
there do exist two interesting special cases for which the
optimal solution can be obtained in polynomial time. The
first case is the all-to-all broadcast problem, whereby there
is a single multicast groupg = N encompassing all nodes
in the network. We letmi denote the number of broadcast

packets originating at nodei, andM =
PN

i=1mi. Then,
the two bounds (2) and (3) can be rewritten as

F̂ch(V
(k)) = k max

c=1;���;C

(X
i2Xc

mi

)
(12)

F̂r(V
(k)) =

NX
i=1

mi + C� = M + C� (13)

The bounds are independent of the actual virtual receiver
sets, and only the channel bound depends on the numberk
of virtual receivers. Therefore, for the all-to-all broadcast
case,VRSPreduces to obtaining the numberk of virtual
receivers that minimizes the overall lower bound.

To obtain the optimal value fork, we observe that
the channel bound depends on the assignment of transmit
wavelengthsfXcg, but that it cannot be less thankM

C
. Let

� be a real number such that the channel bound in (12)
is equal tokM

C
+ �. Since the receiver bound is inde-

pendent ofk, the overall lower bound is minimized when
F̂ch(V(k)) � F̂r(V(k)), or equivalently, if

k
M

C
+ � �M + C�, k � C +

C2�� C�

M
(14)

Let us now consider the case when there areG < N
disjoint multicast groupsg1; � � � ; gG. Let V(G) denote the
G-virtual receiver setfg1; � � � ; gGg. The channel bound
of V(G) is equal to the sum of the traffic demands on the
dominant channel, which is a lower bound on anyk virtual
receiver set. Similarly, the receiver bound ofV(G) is deter-
mined by the traffic and tuning requirements of the dom-
inant multicast group; again, the latter is a lower bound
on anyk-virtual receiver set. We conclude that, when the
G multicast groups are disjoint, theG-virtual receiver set
where each virtual receiver corresponds to a different mul-
ticast group, is an optimal solution toVRSP.

5 OPTIMIZATION HEURISTICS FOR VRSP

In this section we develop four heuristics for the opti-
mization problem corresponding toVRSP. Our heuristics
exploit the monotonicity properties stated in Lemmas 3.2
and 3.3. Although it is not guaranteed that the heuristics
will find the virtual receiver set with the minimum bound,
we will prove that they do converge to a local minimum.
The Greedy JOIN (G-JOIN)Heuristic. Our first approach
is to start with theN -virtual receiver setff1g; � � � ; fNgg
for which we expect the channel bound in (7) to be greater
than the receiver bound in (8). We then repeatedly apply the
JOIN(V(k); 1) operation to obtain a sequence of virtual re-
ceiver sets, each with one fewer virtual receiver. Because of
the monotonicity property (10) of theJOIN operation, we
expect the channel (receiver) bound to decrease (increase)
after eachJOIN, yielding a virtual receiver set with a lower
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Greedy JOIN (G-JOIN)Heuristic
Input: N , C, Xc; c = 1; � � � ; C; G multicast groups,
and multicast traffic matrixM
Output: A virtual receiver set

1. begin
2. Setk = N

3. SetV(k) = ff1g; � � � ; fNgg

4. SetF̂ch = F̂ch(V(k))

5. SetF̂r = F̂r(V(k)) // Because of (7) and (8),
// we expect that̂Fch � F̂r at this step

6. while F̂ch > F̂r do
7. Setk = k � 1
8. Select two virtual receivers inV(k+1) using

the greedy rule described in Section 5
9. SetV(k) to the set resulting fromV(k+1) by

joining the two virtual receivers in Step 8
10. SetF̂ch = F̂ch(V(k))

11. SetF̂r = F̂r(V(k))
12. end while
13. Return the virtual receiver set with the

smallest overall bound amongV(k) andV(k+1)

14. end of algorithm

Figure 2: TheG-JOINheuristic forVRSP.

overall bound. When the virtual receiver set isV(k), we
select two (out ofk) virtual receivers to join into a single
virtual receiverV by employing the following greedy rule:

Select the pair of virtual receivers such that the
quantity corresponding toV ’s term in the re-
ceiver bound (3) forV(k�1) is minimum over
all pairs of virtual receivers inV(k). If there
are more than one pairs that achieve the mini-
mum, select the pair that minimizes the chan-
nel bound (2) forV(k�1). If again there is a
tie, then break it arbitrarily.

A detailed description of theG-JOINheuristic is provided
in figure 2. Regarding its complexity, we note that, for a
k-virtual receiver set, Step 8 of the heuristic takesO(k2)

time, since one of a possiblek(k�1)2 pairs of virtual re-
ceivers must be selected. Since thewhile loop will be ex-
ecuted at mostN times, the overall complexity isO(N3).
We now state and prove the optimality property of theG-
JOINheuristic.

Lemma 5.1 TheG-JOINheuristic in figure 2 returns a vir-
tual receiver set that achieves a local minimum with respect
to the lower bound in (4).

Proof. We first observe that, because of (5) and (6), if the
value ofk in theG-JOINheuristic becomes 1, then the re-
ceiver bound will be greater than the channel bound, the
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condition of thewhile loop in figure 2 will become false,
and the algorithm will terminate. Therefore, the heuristic
will always return a valid virtual receiver set.

Let k? � 1 be the value ofk upon termination of the
G-JOIN heuristic. Because of the monotonicity property
of theJOINoperation, the sequence of virtual receiver sets
constructed byG-JOINare such that:

F̂ch(V
(N)) � � � � � F̂ch(V

(k?+1)) � F̂ch(V
(k?)) (15)

and

F̂r(V
(N)) � � � � � F̂r(V

(k?+1)) � F̂r(V
(k?)) (16)

Since the heuristic terminates when the condition of the
while loop becomes false, we also have that

F̂ch(V
(k?+1)) > F̂r(V

(k?+1)); F̂ch(V
(k?)) � F̂r(V

(k?))
(17)

From (15) – (17) it immediately follows that (a) the
overall lower bound ofV(k?+1) is minimum among virtual
receiver setsV(N); � � � ;V(k?+1), since the channel bound
decreases from̂Fch(V(N)) to F̂ch(V

(k?+1)) and the re-
ceiver bound increases from̂Fr(V(N)) to F̂r(V(k?+1)), but
the latter is not greater than̂Fch(V(k?+1)), and (b) any vir-
tual receiver set obtained fromV(k?) will not have a smaller
overall lower bound sincêFr(V(k?)) � F̂ch(V(k?)) and the
monotonicity property ofJOINguarantees that the receiver
bound of any subsequent virtual receiver set may not de-
crease. Therefore, we cannot do any better by usingJOIN
operations, and the heuristic terminates by returning the
virtual receiver set with the smallest lower bound among
V(k?+1) andV(k?). QED.

Figure 3 illustrates the optimality property ofG-JOIN,
as well as the monotonicity property of theJOIN opera-
tion for a sample network withN = 30 nodes. Starting
with k = N virtual receivers, we applied a sequence of
JOINoperations as dictated by theG-JOINheuristic in fig-
ure 2, and we plotted the receiver and channel bounds of
the resultingk-virtual receiver sets,k = N; � � � ; 1, in fig-
ure 3. The monotonic behavior of the two bounds, derived
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in section 3.1, is obvious from this figure. We also note
that the overall bound decreases ask decreases fromN to
15, and it increases thereafter, hence the 15-virtual receiver
set is the one that achieves the minimum bound among all
the virtual receiver obtained through theJOIN operations.
(TheG-JOINheuristic would have stopped after construct-
ing the virtual receiver set withk = 14, since the overall
bound cannot be improved any further; in figure 3 we show
the virtual receiver sets for all possible values ofk to illus-
trate the monotonicity properties of the two bounds.)
The Random JOIN (R-JOIN)Heuristic. This heuristic is
very similar toG-JOIN. The main difference is that, when
the virtual receiver set isV(k), we randomly select two of
thek virtual receivers to join into a single virtual receiver.
As a result, the complexity isO(CN), since Step 8 of the
R-JOINheuristic (compare to figure 2) takes constant time,
and the execution time of thewhile loop is dominated by
the computation of the new channel bound at Step 10. An
optimality property similar to the one in Lemma 5.1 also
holds forR-JOIN.
The Greedy SPLIT (G-SPLIT)Heuristic. The Greedy
SPLIT (G-SPLIT)heuristic is similar toG-JOIN, but it
works in the opposite direction, searching from smaller to
larger values ofk. Specifically, it starts with the1-virtual
receiver setN = f1; 2; � � � ; Ng, and repeatedly applies the
SPLIT(V(k); 1) operation to obtain a sequence of virtual re-
ceiver sets, each with one more virtual receiver. Recall that
the receiver bound (6) is greater than the channel bound
(5) whenk = 1. The heuristic continues until (a) a virtual
receiver set is found such that its channel bound is greater
than or equal to its receiver bound, or (b)k = N , whichever
occurs first. When the virtual receiver set isV(k), we ap-
ply the following greedy rule for splitting one of its virtual
receivers into two sets.

Let V (k)
l be a virtual receiver with cardinality

n > 1 such that the quantity corresponding to
V
(k)
l ’s term in the receiver bound (3) is maxi-

mum over all virtual receivers inV(k) with car-
dinality greater than one. Select two receivers
in V

(k)
l that have the least number of multicast

groups in common, say,i and j. Repeat the
following for all other receivers inV (k)

l . Find
a receiverm that has the most multicast groups
in common withi or j. If m has more mul-
ticast groups in common withi (respectively,
j), put it in a virtual receiver set withi (j). If
m has the same number of groups in common
with i andj (or it has nothing in common) then
compute the receiver bound (3) for the virtual
receiver set ofi andj as ifm was added to the
set, and addm to the set that has the smaller
bound.

Selecting and splitting one of the virtual receivers of ak-
virtual receiver set takes timeO(GN2), and thus, the over-
all complexity of this heuristic isO(GN3).

Because of the monotonicity property ofSPLIT, theG-
SPLITheuristic has an optimality property similar to the
one in Lemma 5.1.

The Random SPLIT (R-SPLIT)Heuristic The Ran-
dom SPLIT (R-SPLIT)heuristic operates exactly likeG-
SPLIT, but uses a different rule for splitting a virtual re-
ceiver when the virtual receiver set isV(k); k < N . Let
V
(k)
l be a virtual receiver with cardinalityn > 1 such that

the quantity corresponding toV (k)
l ’s term in the receiver

bound (3) is maximum over all virtual receivers inV(k)

with cardinality greater than one. A random integer be-
tween 1 andn� 1 is chosen, say,p, and thenp elements of
V
(k)
l are randomly selected to form a new virtual receiver.

Since, in the worst case, the value ofp will be one for allk,
and the heuristic may not terminate untilk = N , its com-
plexity isO(N2). An optimality property similar to the one
in Lemma 5.1 also holds forR-SPLIT.

6 NUMERICAL RESULTS

We now study the relative performance of the four
heuristics forVRSPpresented in the previous section,
namely,G-JOIN, R-JOIN, G-SPLIT, andR-SPLIT. Let F̂
in (9) be the lower bound on an instance ofVRSP, and let
F̂ (V(k)) be the lower bound in (4) corresponding to thek-
virtual receiver setV(k) returned by one of the heuristics.

Quantity F̂ (V(k))�F̂

F̂
100% represents how far thek virtual

receiver setV(k) is from the lower bound. We are interested
in the average performance of the four heuristics, therefore,
in this section we plot the above quantity (averaged over a
large number of random instances ofVRSP) for various val-
ues of the numberN of nodes, the numberC of channels,
and the numberG of multicast groups.

We have generated random instances ofVRSP, i.e.,
random matricesA and random multicast groups, as fol-
lows. The elements of each matrixA were selected as in-
tegers uniformly distributed in the range [0,20]. To con-
struct theG multicast groups, we assigned a probability
pj to receiverj, representing the probability that the re-
ceiver would belong to a particular group. Each multicast
group was determined by drawingN random numbersqj
uniformly distributed in (0,1), and including all receivers
for which qj < pj in the group. We have used two sets
of values forpj . In theuniformcase, we letpj = 0:5 for
all j, that is, each receiver is equally likely to belong to a
multicast group. To study how the existence ofhot spots
affects the behavior of the heuristics, we have also used
pj = 0:6; j = 1; � � � ; 5, andpj = 0:5N�3

N�5 ; j = 6; � � � ; N .
In other words, the first five receivers were more likely to
belong to a multicast group than the otherN � 5 receivers;
however, the average size of a multicast group wasN

2 , the
same as for the uniform case. Finally, we have let the tun-
ing latency� = 2 in all test cases.

In figure 4 we plot the performance of the four heuris-
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tics for a small number of nodesN � 12 and forC =
3; G = 10. The figure also shows how far theoptimal
solution is from the lower bound in (9); the optimal was
obtained through a branch-and-bound technique forVRSP
(see [8]). Our first observation is that the lower bound does
not accurately characterize the optimal solution toVRSP,
since the value at the optimal can be up to 15% higher than
the lower bound. Although we could not obtain the optimal
solution for larger values ofN , it seems reasonable to as-
sume that the performance of our heuristics relative to the
optimal solution is significantly better than what the com-
parison against the lower bound (in the following figures)
suggests. This assumption is further supported by the fact
that the behavior of the optimal solution in figure 4 appears
to be similar to that of the four heuristics.

Regarding the relative performance of the heuristics,
the behavior emerging in figure 4 is typical of the results
that follow. We first note that the greedy heuristics per-
form better than the random ones; this is simply a reflection
of the level of sophistication of the two types of heuris-
tics. TheR-SPLITheuristic has a slight edge overR-JOIN,
probably because inR-JOINthe two virtual receivers to be
joined are chosen completely at random, while inR-SPLIT
the virtual receiver to be split isnot chosen randomly (al-
though it is split randomly). On the other hand, the higher
complexity ofG-SPLITdoes not pay off in terms of perfor-
mance compared toG-JOIN, which shows the best behav-
ior among all four heuristics.

The three figures 5 - 7 plot the behavior of the heuris-
tics against the number of nodesN for three values of the
number of multicast groups,G = 10; 20; 30 (C = 10 in
all cases). We note that the behavior of our heuristics is
very similar in all cases, and that the difference from the
lower bound ranges from 2% to 45%. We also note that
R-JOIN, R-SPLIT, andG-SPLITappear to perform identi-
cally for large values ofN , while G-JOINemerges as the
clear winner, although not by a large margin. Similar ob-
servations can be drawn from figure 8 where we keep the
number of nodes and the number of multicast groups con-
stant (N = 100; G = 50) and vary the number of channels.

In all our results so far, we have considered the situ-
ation where all receivers are equally likely to belong to a
multicast group. To study how the existence of hot spot re-
ceivers affects our heuristics, in figure 9 we plot the differ-
ence from the lower bound againstN for C = 10; G = 10.
Comparing the results to figure 5 we see that the behavior
is similar.

Overall, our results indicate that the four heuristics
can obtain virtual receiver sets with values close to the
lower bound for a wide range of system and traffic param-
eters, and receiver characteristics. In all cases,G-JOINhas
shown the best performance among the four heuristics, al-
though the performance of the other three heuristics is not
significantly different. Therefore, for systems with a large
N overC ratio, the simplest and fastestR-JOINheuristic
(O(CN) complexity) may be the one that provides the best
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tradeoff between speed and quality of the final solution.

7 CONCLUDING REMARKS

We considered the problem of scheduling multicast
packet transmissions in a broadcast WDM network with
tunability provided at the receiving end only, and with non-
negligible receiver tuning latencies. We introduced multi-
cast throughput as an important performance parameter in
this environment, and we showed how it can capture the
tradeoff between wavelength throughput and efficient use
of bandwidth in a meaningful way. We also introduced the
concept of a virtual receiver as a set of physical receivers
that behave identically in terms of tuning. We then studied
the problem of optimally partitioning the set of physical re-
ceivers into virtual receivers. We proved that this problem
isNP-complete, and we developed a number of heuristics
which exhibit good average performance.
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