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Abstract

An instance of a p-median problem gives n demand points. The objective is to locate p supply points in order to min-
imize the total distance of the demand points to their nearest supply point. p-Median is polynomially solvable in one
dimension but NP-hard in two or more dimensions, when either the Euclidean or the rectilinear distance measure is used.
In this paper, we treat the p-median problem under a new distance measure, the directional rectilinear distance, which
requires the assigned supply point for a given demand point to lie above and to the right of it. In a previous work, we
showed that the directional p-median problem is polynomially solvable in one dimension; we give here an improved solu-
tion through reformulating the problem as a special case of the constrained shortest path problem. We have previously
proven that the problem is NP-complete in two or more dimensions; we present here an efficient heuristic to solve it. Com-
pared to the robust Teitz and Bart heuristic, our heuristic enjoys substantial speedup while sacrificing little in terms of solu-
tion quality, making it an ideal choice for real-world applications with thousands of demand points.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction are NP-complete. The choice of distance measure

impacts the complexity of the problem as well as

The traditional p-median problem asks us to find,
for a given set of n demand points, the set of p sup-
ply points that minimizes the total distance of each
demand point to its nearest supply point. Hassin
and Tamir [6] give a O(np) algorithm to solve the
p-median problem on the real line, and Megiddo
and Supowit [9] prove that rectilinear and Euclidean
versions of the p-median problem in the plane
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the approach needed to find a solution.

In this paper, we explore the p-median problem
under a new distance measure, the directional recti-
linear distance. On the real line, this restriction
requires that the assigned supply point for a given
demand point be located to the right of it, while
in the plane, the assigned supply point for a given
demand point must lie above and to the right of
it. In general, the rectilinear /-directional, k-dimen-
sional p-median problem forces a supply point to
achieve or exceed the values of the first / coordinates
of its assigned demand points. This variant of the
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p-median problem arises naturally in certain quanti-
zation applications, which we discuss shortly.

In a previous work [7] we showed that the direc-
tional p-median problem is polynomially solvable in
one dimension; we give here an improved solution
through reformulating the problem as a special case
of the constrained shortest path problem. We have
previously proven that the problem is NP-complete
in two or more dimensions [8]; we present here an
efficient heuristic to solve it. Compared to the
robust Teitz and Bart heuristic, our heuristic enjoys
substantial speedup while sacrificing little in terms
of solution quality, making it an ideal choice for
our target applications which may have thousands
of demand points.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes previous results, defines the direc-
tional rectilinear distance metric, and describes
applications of directional p-median. Section 3 con-
siders the one-dimensional problem, directional p-
median on the real line, and gives the constrained
shortest path formulation. Section 4 presents a fast
heuristic algorithm for solving the directional p-
median in multiple dimensions, and Section 5 con-
cludes the paper.

2. Problem definition
2.1. The traditional p-median problem

In k-dimensional space, k > 1, the continuous p-
median problem allows supply points to be located
anywhere in k-space. The discrete problem provides
a list of candidate points from which supply points
may be chosen. In two-dimensional space, let
d((x:y:),(z,1;)) be the distance from point (x;,y;) to
point (z;,0;) according to some distance metric.
The decision version of the continuous p-median
problem in the plane may be formally stated as:

Problem 2.1 (Continuous-PM?2). Given a set X =
{(x1,»1),(x2,12),- - -, (X, ¥,)} of demand points in
the plane, an integer p, and a bound B, does there
exist a set

S = {(21,11)7 (Zz,lz), ey (Zp,lp)}
of p supply points such that

Z mln{d xtvyz) (Zjvtj))} < B?

1<j<p

Continuous-PM2 is NP-complete under either
the Euclidean (d,) or the rectilinear (d,) distance
measure [9], where d. and d, are defined as:

del(51,2,), (21, 17)) = /(5 = 23 + 0y — 1)
e, (25,1)) =

Under the rectilinear distance measure, it is well
known that only demand points and intersection
points need be considered as candidates for supply
points. Intersection points are found by crossing
the set {x1,x,,...,x,} with the set {y1,y2,...,7,.},
and subtracting the demand points, yielding at most
n* —n new points. Thus the continuous p-median
problem under the rectilinear distance measure
reduces to a discrete p-median problem. For a com-
plete treatment of discrete location problems, the
reader is referred to [4].

The discrete p-median problem in the plane can
be formulated as the following integer program.

Problem 2.2 (Discrete-PM?2)

Minimize E E d;iry

b =z + |y — ]

iex jeC

s.t. Zrl/zl VZGX, rU<S/ VIGX,JEC,
jec
2:%::Erm%e{QH-Wekﬂjea
Jec

where i € X is the the set of demand points, j € Cis
the the set of candidate points, dj; is the distance
from point, i to point j, p is the number of supply
points to be chosen,

1 if point i is assigned to candidate j,
W= { 0 otherwise,

1 if candidate j is chosen,
%= {0 otherwise.

The distance matrix [d;] holds distances between
demand and candidate points. Section 4.1 discusses
distance matrix properties that affect the difficulty of
finding a good quality solution [13].

2.2. The directional p-median problem

We now define the directional rectilinear distance
measure. In general, an /-directional, k-dimensional
rectilinear metric (with / < k) defines distance from
point (rq,...,r) to (¢q,--.,qx) to be oo if r; > g; for
at least one i€ {1,...,/} and }_,_,_|g, — ri| other-
wise. Thus, in a dlrectlonal p-median problem, a
supply point must achieve or exceed the values of
the first / coordinates of all its demand points. On
the real line, this restriction requires that the nearest
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supply point for a given demand point be located to
the right of it, while in the plane, the nearest supply
point for a given demand point must lie above and
to the right of it. In the plane, the 2-directional rec-
tilinear distance is:

ddr((xivyi)v (x/7y/))
{xjx,»erjyi if x; > x; and y; > y,,
| o, otherwise.

We define directional intersection points to be the
subset of intersection points that lie above (at least)
one demand point as well as to the right of (at least)
one demand point, as illustrated in Fig. 1. Specifi-
cally, the point (x;,y;) is a directional intersection
point if:

1. (x5, € X, that is, (x;,y)) is not itself a demand
point, and

2. there exist points (x;,y;) € X and (xg, yx) € X for
which x; = x; and y;= y; and x;> x; and y;> y;.

Analogous to the case of the (non-directional) rec-
tilinear p-median problem, the continuous 2-direc-
tional rectilinear p-median problem also reduces to
a discrete problem; specifically, we need only con-
sider demand points and directional intersection
points as candidates for supply points. Thus the num-
ber of candidate points ¢ is at most n + (1> — n)/2.

2.3. Applications

The directional p-median problem arises natu-
rally in problem domains where it is important to
quantize a set of inputs taking values from a contin-
uous set of values under the constraint that each
input is mapped to a quantization level with an

® demand point

* directional intersection point

X

Fig. 1. A downward sloping line of demand points yields the
most directional intersection points, (n* — n)/2.

equal or higher value. We now consider two such
applications.

Preemptive scheduling of periodic tasks on multi-
processor systems. In the slotted time model we con-
sider, a periodic task (“demand point” in p-median
terminology) is characterized by a rate x;, 0 < x; < 1.
Writing x; as a fraction in lowest terms, x; = g—:‘, then
C; is the computation time and D; is the period; that
is, C; is the number of unit-length subtasks that
must be processed every D; time slots, starting at
time 0. A processor may work on at most one task
at a time, and a task may be processed by no more
than one processor at a time. A schedule is feasible
if each task i receives C; units of processing every D;
time slots, starting at time 0. This model is nearly
identical to the one considered in [3], which does
not require the ratio % to be in lowest terms.

A feasible schedule for this problem exists if and
only if > x; < m [3], where m is the number of
processors, and the fastest scheduling algorithm
runs in time O(mlogn) at each slot [2]. Therefore,
this algorithm may not be appropriate for applica-
tions with a very large number n of tasks, such as
a web server for a popular web site which might
receive thousands of requests per minute, or a Grid
serving very large task sets that are also highly
dynamic in nature. For these applications it is essen-
tial to have a scheduling algorithm with a running
time independent of the number of requests.

In [7,8], we proposed to quantize the set of n task
rates into a small, fixed set p < n of offered rates
(“supply points”). Specifically, the system assigns
a task with requested rate x; to the next higher
offered rate z;, such that x; < z;. By doing so, each
task is guaranteed to receive at least the required
amount of computation time with each period,
hence the system will meet the quality of service
(QoS) requested by the user. For such a quantized
system we devised a new scheduling algorithm
[7,8] which runs in time O(m) per slot, i.e., indepen-
dent of the input size n; the new algorithm is also
significantly simpler than the one in [2]. While quan-
tization has the disadvantage of requiring more
resources (e.g., processor time) than a continuous-
rate system to accommodate a given set of tasks,
the tradeoff is more than paid for by the resulting
gains in speed and simplicity.

Control and management of packet-switched net-
works. A transmission link in a typical backbone net-
work operates at data rates of 2.5-10 Gbps, and can
carry hundreds of thousands of independent traffic
flows (users). Each flow is typically characterized
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by a number of traffic parameters, such as band-
width and burst size, as well as QoS parameters, such
as a delay bound. Accommodating such a large
number of flows poses significant scalability prob-
lems for a number of network control and manage-
ment functions. The service provider may prefer to
group (quantize) similar requests into a single service
level, such that any given user receives at least the
amount requested of each resource. This quantiza-
tion problem is equivalent to a directional p-median
problem in multiple dimensions. The operations of
traffic engineering, packet scheduling, network man-
agement, traffic policing, and billing are greatly sim-
plified in such a quantized network. Performance
analysis is also more tractable, since systems with
continuous rates give rise to analytical models with
infinite dimensions, and such models are usually
approximated by finite-dimensional ones.

3. The directional p-median problem on the real line

In [7], we considered two variants of the
one-dimensional directional p-median problem. In
DPM1, the input is a finite set of demand points,
while in SDPM1, the input is the probability density
function representing the population of demand
points. We presented optimal solutions in each case.
In this work we first formally define problem DPM1
and then show how to translate DPM1 into a con-
strained shortest path problem, allowing a faster
solution than that given in [7].

Let X be a set of n demand points on the real line
{x1,...,x,}, such that x; < x, <---< x,,. A set of
supply points S={zy,...,z,}, z; <z <<z,
1 < p < n,is a feasible solution for X if and only if
X, < z,. For notational convenience, we assume
zo =0. Associated with a feasible solution is an
implied mapping from X — S, where x; — z; if and
onlyif z; ; <x; < z,. Fig. 2 shows a sample mapping
from a set of 13 demand points onto a solution set
of 6 supply points.

L.E. Jackson et al. | European Journal of Operational Research 179 (2007) 1097-1108

Letting X be the set of demands mapped to sup-
ply point z; and n; = | X}|, problem DPMI is:

Problem 3.1 (DPM1). Given a set X of n demand
points, x; < x, <---< X,,, find a feasible set S of p
supply points, z; <z, <---<z, 1<p<n, which
minimizes the following objective function:

gz =3 S - x)

j=1 xi€X;

(1)

The objective function g(zy, .. ., z,) is simply the sum
of the distances from each demand point to its near-
est (under the new directional distance measure)
supply point. The minimum (optimal) value of g is
called g*, and a feasible set S at which g* is obtained
is an optimal solution set for X.

We have the following lemma; its proof, which
can be found in [7], is straightforward.

Lemma 3.1. Let X be a set of n demand points such
that x; < xo <---< x,,. There exists an optimal solu-
tion set S={zy,...,2,}, 21 <2, <<z, of X, for
which z; € X, for each j=1,...,p.

3.1. Graph representation of DPM1: A faster
algorithm

In [7] we present an O(n’p) algorithm that opti-
mally solves DPM1. We can improve the solution
time to O(ny/plogn) by restating DPMI1 as a
constrained shortest path problem (Garey and
Johnson’s problem ND30) (see also [15]). Let
G = (V,E) be a weighted, complete, directed acyclic
graph (DAG), with vertex set V'=1{0,1,...,n} and
arc weights w(i,j) for arc (i,j) from vertex i to j,
0 <i<j. Solving DPMI is equivalent to finding a
minimum weight p-link path from vertex 0 to n in
G. Further, we show that the arc weights in the
DPM1 graph representation obey the concave
Monge property, allowing a solution in time

X: X X X X
MY MU % % Yoo N1 28
| | - - | i i P
RIREE 1 bb
l Y !
1 A A >
o : ! v
| : | i
| - i ' 1 ]
S: b4 z b4 z z zZ
1 2 3 4 5 6

Fig. 2. Sample mapping of task densities to service levels.
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O(n+/plogn) [1]. These results are stated in the fol-
lowing two lemmas.

Lemma 3.2. Solving an instance of DPM1 with a set
X of n demand points is equivalent to finding a
minimum weight p-link path in a DAG.

Proof. Given an instance of DPM1, we construct a
DAG as follows: Demand x; gives rise to node 7, and
we create a dummy node 0. Arc weight w(i, k) repre-
sents the cost of mapping demand points i + 1,i +
2,...,k, to point k:

0, k=i+1,
AN k=1
W“”"(k4—wa—§j@,k>i+L
j=i+1
The objective is to find the minimum weight path
from vertex 0 to n that has exactly p arcs. A path
t = (io, 1), (i1, 12), - - -, (§—1,1;) 18 @ (0-n)-path if ip =0
and i, = n. The weight of path ¢ is:

w(t) = wlip, ir) +w(ir, i2) + -+ + w(ip_1, i)

Any p-link path = (i, 1), (i1, 1), . ., (ip—1,ip) With
ip=0 and i, =n is a feasible solution for DPMI,
with the following interpretation: the demand
points corresponding to nodes iy, i, . . .,1, are desig-
nated as supply points. [

As an example, Fig. 3 shows the graph for a
DPM1 instance with n =5. Suppose p = 3, and let
(0, 2, 4, 5) be a 3-link path in Fig. 3. Then the cor-
responding feasible solution for DPMI1 is z; = x»,
z> = X4, and z3 = xs5. The sum of the arc weights

for this path equals the objective function value
for the implied mapping for the corresponding solu-
tion S = {zy,2,,23}, namely:
w(t) = w(0,2) + w(2, 4) + w(4,5)

= (XZ —.X'l) + (JC4 —X3) —|—O

Lemma 3.3. The arc weights for the graph represen-
tation of DPM1 obey the concave Monge condition.

Proof. A weighted, complete DAG G satisfies the

concave Monge condition if

w(i,j) +w(i+1,7+1) <w(i,j+1)+w(i+1,))
2)

holds for all 0 <i+ 1<j<n. We evaluate the left-

hand side (LHS) and right-hand side (RHS) of Eq.
(2), and then show that RHS — LHS > 0.

LHS = w(i,j) + w(i + 1,j + 1)
j—1
=(—i=1x— > x

m=i+1

J
+(G—i—1)x — me

m=i+2

RHS =w(i,j + 1)+W(i+ 1,])
J
= (j_ i)ijrl - Z Xm

m=i+1
j—1
FG—i=2x— > X

m=i+2

(= X )+ (x = x )+(x, = x) )+(x = X )

()c5 - X, )+()c5 - x3)+(x5— xz)

Fig. 3. Graph representation of an instance of DPM1 with n = 5.
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RHS — LHS
=U=i=0U=i=1hm
HU—i=2=0-i=Dy

J=1 j—1
+ E Xm — E Xm + E Xm — § Xm
m=i+1 m=i+1 m=i+2 m=i+2
=X =X+ (=34 x))

= Xjr1 — X
=0

The last step above follows from x; < xp <---<
X, O

Due to Lemmas 3.2 and 3.3, DPM1 can be solved
in time O(n\/plogn) using the algorithm in [1].

4. The directional p-median problem in two or more
dimensions

Formally, we define the directional p-median
problem in two dimensions (DPM2) to be:

Problem 4.1 (DPM?2). Given a set X = {(x1,y1),
(X2,¥2), - - -»(X,¥,)} of points in the plane, an integer
p, and a bound B, does there exist a set

S = {(Z],I])7 (22,12), . (Zp,tp)}
of p points such that

Z min {du:((x:,,), (z,;))} < B? 3)

I<j<p

In [8], we prove that DPM2 is NP-complete; we
omit the proof due to its length and complexity. It
follows that the directional rectilinear p-median
problem in three or more dimensions is also NP-
complete.

We now present an efficient heuristic algorithm
for DPM2 that produces good quality results for a
variety of input distributions. The new heuristic,
which we refer to as the TB restricted (TBr) heuris-
tic, uses as building blocks the vertex substitution
heuristic of Teitz and Bart (TB) [14], described in
Section 4.2, and the Heuristic Concentration
approach (HC) from Rosing and ReVelle [12],
described in Section 4.3. Compared to the robust
TB, our heuristic enjoys substantial speedup while
sacrificing little in terms of solution quality, making
it an ideal choice for our target applications that
have thousands of demand points. In Section 4.5,
we describe a simulation study that evaluates our
new heuristic under a variety of input conditions.

TBr may also be easily extended to the direc-
tional rectilinear p-median problem in 3 or more
dimensions.

4.1. Effect of distance characteristics on
computational effort

Recall that the n X ¢ distance matrix [d;] holds the
distances from demand points to candidate points (¢
is the number of candidate points). Different dis-
tance metrics produce distance matrices with differ-
ent characteristics that influence the performance of
a heuristic. Two such characteristics are symmetry
and the ability to satisfy the triangle inequality
[13]. The lack of symmetry has a minor impact on
performance, but failure to satisfy the triangle
inequality is a much graver crime, making optimal
or even good quality solutions hard to find. (Non-
directional) rectilinear and Euclidean distance
matrices both are symmetric and obey the triangle
inequality. A randomly generated distance matrix
in general will neither be symmetric nor obey the tri-
angle inequality. As for our directional rectilinear
distance metric, the outlook is positive as regards
the more critical attribute: the distance matrix obeys
the triangle inequality but fails to be symmetric
(recall that if dg((x;,y:),(x;, ;) is finite and >0, then
dal(x},;), (x; ;) 1s infinite).

ReVelle labels certain Discrete-PM?2 problems as
integer friendly, meaning that “either integer termi-
nation of linear programming formulations are fre-
quent, or little branch and bound is needed to
resolve the problem in integers” [10]. The conclu-
sions of [13] are that the characteristic of obeying
the triangle inequality has greatest impact on the
integer friendliness of an instance of Discrete-
PM2. The question of why this is the case remains
open.

4.2. Teitz and Bart vertex substitution heuristic for
p-median

The Teitz and Bart [14] vertex substitution heu-
ristic (TB) for Discrete-PM2 is well-known and
much studied. A study comparing TB to exact meth-
ods showed that TB rarely becomes trapped in local
minima [11]. Although created for the non-direc-
tional p-median problem, TB works similarly for
the directional problem.

TB begins with an initial solution of p supply
points which are numbered arbitrarily from 1 to p.
Assigning each demand point to its nearest supply
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point, the heuristic evaluates the objective function
for this solution. The heuristic next replaces the first
supply point with the candidate point (not already
in the solution) that causes the greatest decrease in
the objective function. The heuristic then repeats
this process with each of the remaining supply
points in turn. At each step, the heuristic seeks the
best candidate to replace the supply point being
considered for removal, given that all other supply
points in the solution are fixed. The first major iter-
ation ends when the heuristic has tried removing
each of the p solution points, and the final solution
becomes the initial solution for the second major
iteration. TB terminates when a major iteration
results in no changes to the solution, usually within
only a few (<5) iterations.

Each major iteration of TB runs in time
O(np(c — p)), where ¢ is the number of candidate
points in an instance of DPM2. There are p existing
supply points and ¢ — p alternate candidate points,
for a total of p(c — p) pairs to be considered; for
each pair we need to examine each of the n demand
points to find its closest supply point. Recall from
Section 2.2 that the ¢ candidate points in DPM2
include all » demand points as well as all directional
intersection points, i.e., ¢ = (n> + n)/2 possible can-
didate points in the worst case. Therefore, the
worst-case running time of each major iteration of
TB is O(n’p).

The performance of TB depends on the starting
solution. A common approach is to generate a num-
ber of random starting solutions as input for multi-
ple TB runs, and then to choose the best solution
from among the local optima that are found.

4.3. Heuristic concentration

Rosing and ReVelle present a two-stage meta-
heuristic called Heuristic Concentration (HC) [12].
Although they demonstrate how HC works by
applying it to Discrete-PM2, HC can be applied
to many different combinatorial problems. HC
attempts to glean information from the many local
minima obtained from repeated runs of a heuristic.
For example, the (local minima) solutions resulting
from separate TB runs may have differing objective
function values, as well as different supply points in
the solution set. HC takes advantage of the fact that
there is frequently a great deal of overlap in the
solution sets corresponding to these local minima.
First, HC builds a concentration set (CS) by taking
the union of the several local minima solutions. The

CS has a high likelihood of containing the supply
points that make up the optimal solution set. The
second stage locates the best solution from among
the members of the CS; if the size of the CS is suffi-
ciently small, an integer linear program can be used
to optimally select the best solution from the CS.

4.4. A new heuristic for DPM?2

The motivation for designing a new algorithm for
DPM2 is to find a very fast heuristic that does not
sacrifice much in solution quality yet can tackle effi-
ciently large instances of the problem where the
number n of demand points is on the order of thou-
sands or even hundreds of thousands. We refer to
our new algorithm as the TB restricted (TBr) heuris-
tic. TBr follows the two-stage approach of heuristic
concentration. In the first stage, TBr builds the con-
centration set by running the one-dimensional algo-
rithm for DPM1 (from Section 3.1) twice, once on
the x-values and once on the y-values of the n
demand points, to obtain the p best xs and the p best
ys (when each dimension is considered independently
of the other). Crossing these two sets yields p? points
that form the CS. In the second stage, TBr ran-
domly generates a number m of initial solutions
from among all possible candidate points. Each ini-
tial solution serves as input into a separate run of
the TB heuristic', which only chooses points for
exchange from the CS. The final TBr solution is
the best outcome from the m TB runs. Note that
the final TBr solution may include a point that is
not in the CS: each initial solution is drawn from
all candidate points, and then TB looks only in
the CS for possible replacement points.

The first stage of TBr builds the CS in time
O(ny/plogn), the time required to solve DPMI.
Each major iteration of TBr then runs in time
O(p(p* — p)n) or O(np?). In contrast, each major
iteration of TB runs in time O(p(c —p)n) or
O(n’p). Thus the overall complexity of TBr repre-
sents a substantial improvement over TB, especially
for applications in which n > p.

! We have chosen to use TB at the second stage rather than the
Densham and Rushton Global/Regional Interchange Algorithm
(GRIA) [5]. On the traditional (non-directional) p-median prob-
lem, GRIA improves the runtime of TB. However, GRIA is not
appropriate for a directional p-median problem.
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4.5. Evaluation of the TBr heuristic

Simulation set-up and input parameters. To inves-
tigate the performance of TBr, we designed a simu-
lation study using a variety of demand sets X. To
generate points in the plane, we chose one discrete
probability density function (pdf) for the x-values
and one for the y-values, from among the possible
pdf’s defined in Table 1: EquallyLikely (E), Bimodal
(B), and Quadrimodal (Q). We selected these den-
sity functions as representatives from the larger set
of functions we considered in the comprehensive
experimental study presented in [8].

An input combination is denoted by a two-letter
combination — EE, EB, BB, or QQ — in which the
first (respectively, second) letter represents the pdf
used for the x’s (respectively, y’s). Fig. 4 shows scat-

1000 — -

BOOF -« " et Lo R e

a00F .

0 200 400 600 800

X

(a) EE input

1000 —— —
800 [
600 -

400 |

200 S . N g

0 200 400 600 800 1000

X
(c¢) BB input
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Table 1
Probability density functions for input distributions
Distribution fix) Domain
EquallyLikely 1/1000 [1,1000]
Bimodal 1/4000 [1,250], [351,650], [751,1000]
16/4000 [251,350], [651,750]
Quadrimodal 5/24,000 [1,95], [106,145], [156,445],
[456,595], [606,1000]
480/24,000 [96,105], [146,155],
[446,455], [596,605]

ter plots of demand sets of size n = 1000 generated
from the four input combinations. From each input
combination, we generated fifty demand sets with
n=100 and another fifty with »=200. Each
demand set was generated starting from a unique
seed for a Lehmer random number generator with

1000 ———— T — i

o . .
0 200 400 600 800 1000
X
(b) EB input
1000 — — T T
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600k . & a--. B BT
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400 . . C i
200 ¢ o . . "
e #e e R R
e a et e gl e B
0 _ T | - 1
0 200 400 600 800 1000

(d) Qé input

Fig. 4. Scatter plots of n = 1000 for the four input distribution combinations.
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modulus 2°' — 1 and multiplier 48,271. Each normalized effectiveness
demand set then served as input to the TB and (S)
TBr heuristics. The TB result for each demand set =1+ S ST 4)
is the best of 100 runs of the TB heuristic. =1 =i 2
We define the normalized effectiveness as a mea- where g(S) is the objective function from expression
sure of the quality of a heuristic algorithm for (3) evaluated at the set S of supply points returned
DPM2: by the algorithm. This definition is motivated by
1 ' ' "1=200, EE input, TBr heuristic ———
145 g n=200, EE input, TB heuristic :--x---1 |
EAN n=100, EE input, TB heuristic :-& --:
1351 @\ .
. 13F .
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2125} .
3
i
3 t2r .
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Fig. 5. Normalized effectiveness vs. p, TB and TBr heuristics, instances of size n = 100 and n = 200, EE input.
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Fig. 6. Normalized effectiveness vs. p, TB and TBr heuristics, instances of size n = 100 and n = 200, EB input.
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the observation that if p = n, the set of supply points than 1. Therefore, one is a legitimate lower bound
is the same as the set of demand points; in this case, on the normalized effectiveness. Since we cannot
the objective function g(S) =0, and the normalized compute the optimal value, we can characterize
effectiveness is equal to 1. Whenever p < n, we have the relative quality of the solutions produced by
2(S) > 0 (assuming that the n demand points are dis- two different heuristics by observing which of the
tinct), and the normalized effectiveness is greater normalized effectiveness values is closer to one. In

In=200, BB input, 'II'Br heuristic »—+—<I
n=200, BB input, TB heuristic :-->---:
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Fig. 7. Normalized effectiveness vs. p, TB and TBr heuristics, instances of size n = 100 and n = 200, BB input.
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Fig. 8. Normalized effectiveness vs. p, TB and TBr heuristics, instances of size n = 100 and » = 200, QQ input.
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other words, a better algorithm produces solutions
with a lower value of the normalized effectiveness.
We also note that the normalization allows us to
compare results among problem instances with very
different sets of demand points. For problem in-
stances sets of size n = 100, we calculated the nor-
malized effectiveness for p=75,10,15,20,25,30.
For problem instances of size n = 200, we calculated
the normalized effectiveness for p = 5,10, 15,20, 25.
In addition, we calculated the normalized effective-
ness for p = 30 for QQ instances of size n = 200.
Simulation results. The four graphs in Figs. 5-8
correspond to the four input combinations, EE,
EB, BB, and QQ. For a given input, the graph
shows the normalized effectiveness plotted against
p for both the TB and the TBr heuristics, for prob-
lem instances of size n =100 and n =200. Each
point is the mean of 50 problem instances, with
error bars designating a 95% confidence interval.
We note that, for each input, the n = 200 curve lies
above the n =100 curve. Holding p fixed, it is rea-
sonable to expect a higher normalized effectiveness
value for a demand set of size n = 200 as compared
to n=100. We also note that the TBr curve lies
slightly above the TB curve, illustrating the quality
of the TBr solution. We pay little penalty in solution
quality for using TBr instead of TB, yet we realize
great gains in speed. Finally, we note that the rela-
tive performance of the two heuristics is not affected

significantly as the number p of supply points
increases; in other words, the solutions returned
by TBr are close to those returned by TB across
the range of p values we considered in these
experiments.

From the figures we observe that, for all values of
p, the curves for input EE are the highest, followed
by EB, BB, and QQ. We can attribute this result to
the nature of the input. Namely, in the sample scat-
ter plots for each input shown in Fig. 4, the level of
“order” increases as we move from EE to EB to BB
to QQ. (Or, said another way, the level of random-
ness decreases as we move from EE to EB to BB to
QQ.) The EE input appears to be the worst case sce-
nario, with points scattered evenly over the plane. In
contrast, the other inputs possess natural clusters
where points fall with higher density: EB has two
horizontal strips, BB has four squares, and QQ
has 16 squares. The more natural clustering that
exists in the input, the easier it is for an algorithm
to select appropriate supply points.

Finally, in Fig. 9 we present results of the TBr
heuristic on instances of size n = 1000. Since the
number of candidate points is O(n%/2), then moving
from an instance of size n=100 to one with
n = 1000 represents a 100-fold increase in problem
size. Due to the high complexity of the TB heuristic,
we were not able to obtain results for n > 200 within
a reasonable amount of time, (e.g., a few hours).
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n=1000, EE input, TBr heuristic —+—— 4
n=1000, EB input, TBr heuristic :--x---:
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Fig. 9. Normalized effectiveness vs. p, TBr heuristic, instances of size n = 1000.
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Each point in the graphs is the mean of 25 problem
instances, and for each instance, TBr takes the best
solution of 10 runs; error bars designate a 95% con-
fidence interval. We observe that the curves corre-
sponding to the four input combinations (EE, ED,
BB, and QQ) exhibit the same relative behavior
we described above. We also note that the curve
for a particular input combination lies just above
the corresponding curve for n =200 in Figs. 5-8,
indicating that the incremental penalty as the prob-
lem size increases is relatively small.

5. Concluding remarks

We have explored the p-median problem under a
new distance measure: the rectilinear /-directional,
k-dimensional p-median problem forces a supply
point to achieve or exceed the values of the first /
coordinates of its assigned demand points. We have
shown that the one-dimensional directional p-med-
ian problem can be solved in time O(n./plogn)
through a constrained shortest path reformulation.
For the NP-complete 2-dimensional problem, we
presented a new heuristic that builds upon the Teitz
and Bart (TB) heuristic and the Heuristic Concen-
tration metaheuristic from Rosing and ReVelle.
Our heuristic is a faster alternative for applications
with very large demand sets. Although TB consis-
tently returns solutions of slightly better quality,
our heuristic tracks TB’s performance closely and
enjoys a significant speedup, running in time
O(np?) as compared to TB’s time of O(n’p).
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