
0018-9162/02/$17.00 © 2002 IEEE72 Computer

Deterministic
Preemptive Scheduling
of Real-Time Tasks

S cheduling is the science of allocating lim-
ited resources to competing tasks over
time. A feasible schedule satisfies the con-
straints that accompany any particular
collection of tasks and resources. Often,

however, finding a single feasible schedule is not
enough. In some scheduling problems, the goal is
to find the optimal schedule from among all feasi-
ble schedules, according to a desired optimality
principle.

In a multiprocessor system, the limited resources
consist of one or more processors, which can be
either identical or distinct with respect to function
and speed. The systems we focus on process real-
time tasks, characterized by their computation time,
ready time, and deadline. Task parameters are deter-
ministic: A task first becomes available for pro-
cessing at its ready time, and it must receive an
amount of processing equal to its computation time
within the next deadline units of time. Task pre-
emptions are allowed, meaning that the system can
interrupt the processing of one task to process
another task.

Scheduling problems are characterized by the
types of processors and tasks in the system and by
the scheduling constraints imposed on them. For a
given task set, a number of processors greater than
or equal to one, and a set of constraints, schedul-
ing addresses two problems:

• The decision problem: Does a feasible sched-
ule exist?

• The search problem: What scheduling algo-
rithms produce a feasible schedule?

Although researchers typically have studied peri-
odic real-time task scheduling in the context of mul-
tiprocessor systems, similar problems arise in the
context of ATM networks and the Internet, where
the objective is to provide quality-of-service guar-
antees to packet flows. In a network environment,
packet scheduling takes place within an ATM
switch or Internet router, and the outgoing link
bandwidth is the limited resource of interest.

PACKET-SCHEDULING ALGORITHMS
Many algorithms developed for multiprocessor

systems in the 1970s were applied successfully in
commercial products in the late 1990s to solve
packet-scheduling problems. For example, the infi-
nite time slicing (ITS)1 technique, also known as
generalized processor scheduling (GPS), led to the
development of a theory for providing delay bounds
and bandwidth guarantees in a network of routers
and switches.2

Weighted fair queuing (WFQ) is a practical
scheduling algorithm that emulates GPS and shares
its QoS properties. A network in which each node
implements a version of the earliest-deadline-first3

algorithm can achieve similar bounds and guaran-
tees.4 Developers based the weighted round-robin
(WRR) algorithm on a concept similar to minimal
time slicing (MTS). These algorithms are all widely
implemented in the Internet today.

So far, packet-scheduling applications use only
uniprocessor algorithms because an outgoing link’s
bandwidth represents a single resource, much like
a uniprocessor’s capacity. The emergence of wave-
length division multiplexing (WDM), on the other

Algorithms for the preemptive scheduling of deterministic, real-time
tasks can have applications in providing quality-of-service guarantees
to packet flows in multichannel optical networks.

Laura E.
Jackson
George N.
Rouskas
North Carolina
State University

R E S E A R C H F E A T U R E

hand, has led to the deployment of multichannel
optical networks that divide a link’s bandwidth into
several independent channels, each operating on a
different wavelength. The channels are identical if
they operate at the same data rate; otherwise they
are distinct. Therefore, each link in a WDM net-
work can be modeled as a multiprocessor system.

Projects such as the differentiated services (Diffserv)
initiative of the Internet Engineering Task Force
(http://www.ietf.org/html.charters/diffserv-charter.
html) are increasingly emphasizing the importance
of guaranteeing QoS for real-time traffic. Combining
the deployment of WDM with the need for QoS will
spawn considerable interest in developing and imple-
menting appropriate packet-scheduling algorithms.
Already, government-sponsored research projects
are moving in this direction, including MIT’s
Onramp project5 and the Helios project (http://
helios.anr.mcnc.org/.

Unlike previous work surveying real-time sched-
uling results,6 our survey focuses on the relative per-
formance of preemptive scheduling algorithms that
are applicable to computer network traffic.
Preemption is appropriate in this setting because

the dataflow is already broken into small, atomic
chunks—data packets or cells.

SCHEDULING PROBLEMS
The “Explanation of Terms” sidebar lists and

defines the terms we use in working with schedul-
ing problems.

In its general form, we define a real-time task sys-
tem S with n processors and m tasks, m > n ≥ 1, as
a 4-tuple (R, C, D, T) as follows:

• R = {R1, …, Rm} is the set of ready times for
the m tasks.

• C = [Cij] is the m × n matrix of computation
times, where Cij is the computation time of
task i on processor j. If all processors are iden-
tical, then C = {C1, …, Cm}, where Ci is the
computation time of task i on any processor.

• D = {D1, …, Dm} is the set of deadlines for the
m tasks.

• T = {T1, …, Tm} is the set of periods for the m
tasks, with 0 < Ci < Di ≤ Ti.

The set T is relevant only for periodic real-time

May 2002 73

The following terms are used in working with
real-time scheduling problems:

• Static versus dynamic problems. The parame-
ters describing a task set, such as arrival times,
are known in advance in static problems but
may be initially unknown in dynamic problems.

• Slotted versus continuous time. Slotted time
divides time into equal-length slots and requires
that a processor begin new work only at slot
boundaries. In continuous time, tasks can begin
processing or be preempted at any time.

• Single versus multiple processors. A system can
be a uniprocessor or a multiprocessor.

• Identical versus distinct processors. Identical
processors can execute all tasks, and each proces-
sor executes a given task at the same speed.
Distinct processors can vary in processing speed
or in functionality in that a given processor may
only be capable of processing a subset of tasks.

• Partitioning versus global schemes. In a multi-
processor system, a partitioning scheme assigns
each task to a processor before execution
begins. The processor to which the task initially
was assigned must then execute all instances of
a periodic task. In a global scheme, any proces-
sor is eligible to process a task.

• Fixed-priority versus dynamic-priority algorithms.
A fixed-priority algorithm assigns priorities to
tasks only once, during a preprocessing phase. A
dynamic-priority algorithm can reevaluate task

priorities over the course of the schedule.
• Real-time tasks. These tasks are characterized

by ready time Ri, computation time Ci, and
deadline Di, 0 < Ci ≤ Di. A task requires pro-
cessing units Ci to begin on or after time Ri. The
task must be completed by Ri + Di.

• Periodic real-time tasks. These tasks are char-
acterized by Ri, Di, Ci, and period Ti, 0 < Ci ≤
Di ≤ Ti. The first instance of task i occurs on the
interval [Ri, Ri + Di); the (ki + 1)-th instance of
task i occurs on [Ri + kiTi, Ri + kiTi + Di). Each
task instance requires Ci processing units.

• Hard real-time versus soft real-time scheduling.
Although soft real-time scheduling can tolerate
the lateness of tasks, hard real-time scheduling
requires that every deadline be respected.

• Feasible schedule. A schedule is feasible if it
meets each task’s deadline without violating any
scheduling-problem constraints.

• Optimality criteria. An optimality criterion
assesses the relative merits of competing feasible
schedules. Examples of such criteria include min-
imizing schedule length, minimizing maximum
lateness, or minimizing the number of late tasks.

• Real-time versus periodic real-time task sys-
tems. In a real-time task system, (Ri, Di, Ci)
specifies each task. Such a system can include
one or more periodic tasks. In this case, each
instance of a periodic task is a distinct task. A
periodic real-time task system characterizes
every task as (Ri, Di, Ci, Ti).

Explanation of Terms

Tasks

1 (1)

1 (1)

0 (1)

1 (1)

0 (1)

1 (1)

1 (1)

0 (1)

0 (1)

1 (1)

1 (1)

1 (1)

1 (1)

1 (1)

2 (2)

1 (1)

2 (2)

Time slots

iR

0

0

2

iD

4

2

3

1

2

3

2

1

2

iCTask i

5 3

4

3

2

1 1

2

74 Computer

tasks. The density—or load factor—of a periodic
task is ρi = Ci/Ti, i = 1, …, m, and lies strictly
between 0 and 1. The density ρi is the fraction of
time that a processor must dedicate to the task over
the long run to successfully meet its deadlines. The
density of a set of m tasks is ρ = Σm

i=1 ρi.

Scheduling constraints classification
Three constraints apply to all the deterministic

preemptive-scheduling problems we consider. The
task constraint states that, at any point, no task
can be executed at more than one processor. The
processor constraint requires that, at any point, no
processor can work on more than one task. Last,
the zero-time context switch constraint ensures that
a processor loses no time switching from one task
to another. Other constraints that uniquely distin-
guish a particular scheduling problem include the
following:

• task sets can involve periodic or nonperiodic
real-time tasks ;

• time can be continuous or slotted;
• task parameters can be static or dynamic; and
• the number of processors determines whether

the system is a uniprocessor or a multiproces-
sor.

Stating the applicable constraints for each variation
of a scheduling problem provides a quick reference
point to facilitate comparisons between problems.

Packet scheduling in WDM networks
Sending packet traffic over WDM networks

requires delay and bandwidth QoS guarantees. For
real-time tasks such as transmitting voice or video
traffic, a deadline Di typically expresses a delay
guarantee in which a packet i of length Ci arriving
at time Ri must complete service—be transmitted
out of the router or switch—by time Ri + Di. These
services can be periodic or nonperiodic. The trans-
mission time for periodic requests such as a typical
uncompressed voice application is 20 ms and 1/30
second for high-quality video. In general, the dead-
line Di at each router or switch in the packet’s path
is Di < Ti. Nonperiodic requests are delay-sensitive
messages containing network control and monitor
information that must be received promptly to be

useful. Examples include alarm messages, such as
alerts of node or link faults, and network and traf-
fic management messages, such as congestion noti-
fications.

A bandwidth guarantee for a packet flow is the
amount of service Ci that the packets must receive
within each interval of length Ti. These requests are
periodic because the flow must receive Ci units of
service every Ti units of time. For example, an
uncompressed voice application requires 64 Kbps
of bandwidth or it becomes unusable. Usually, the
Ci service units can take place anywhere in the time
interval of length Ti, thus Di = Ti.

NONPERIODIC REAL-TIME
TASKS IN SLOTTED TIME

Figure 1 shows the network formulation from
Paul Bratley and colleagues for scheduling a sam-
ple nonperiodic real-time task set.7 The leftmost set
of nodes in the network contains the possible time
slots for scheduling tasks, where time slot 1 is the
interval [0,1), time slot 2 is [1,2), and so on. The
rightmost set contains one node for each task in the
task set.

Arcs entering each time slot node have unit
capacity because the single processor can execute at
most one unit of work per time slot. The arcs join-
ing time slots to tasks also have unit capacity
because the processor will execute no more than
one unit of work from a task in a time slot. An arc
joins each task to each time slot in which the
processor can execute it. For example, task 3
arrives at time Ri = 2 and must finish by time Ri +
Di = 5; therefore the processor can execute task 3
in slots 3, 4, or 5. Finally, each task node i has one
exiting arc with capacity equal to Ci.

A task set is feasible if a feasible flow assignment
fills each arc leaving a task node to capacity. The
arc labels indicate one feasible flow assignment for
the problem in Figure 1. While Bratley and col-
leagues offered no conditions to ensure the feasi-
bility of a task set, their variation of the Ford-
Fulkerson primal-dual algorithm for the trans-
portation problem maximizes the flow through the
network. Successful termination of the algorithm
results in a feasible schedule, while unsuccessful ter-
mination indicates that the problem is infeasible.

In the multiprocessor version of this problem,
increasing the capacity of the arcs entering the time
slot nodes from one to n extends the network rep-
resentation to a system of n identical processors. If
there is a feasible schedule, the same primal-dual
algorithm will produce a feasible multiprocessor
schedule.

Figure 1. Network
representation of
a sample task set.
A feasible flow
assignment—and
the arc capacity,
in parentheses—
appears on each
arc.

PERIODIC REAL-TIME TASKS
WITH DEADLINE EQUAL TO PERIOD

In a periodic task scheduling problem in which the
deadline equals the period for each task,3 another
task instance becomes available for processing as
soon as the deadline from a task instance expires.

In this case, Mi(t) is the amount of processing that
the (ki +1)-th instance of task i has received by time
t, where t falls in the interval [Ri + kiDi, Ri + (ki +
1)Di). A task is active at time t if it has requested
processing but has not yet received an amount of
processing equal to its computation time, Ci. That
is, task i is active at time t if Mi(t) < Ci, where t falls
in the interval [Ri + kiDi, Ri + (ki + 1)Di). An algo-
rithm is optimal if it always finds a feasible sched-
ule when one exists.

Uniprocessor algorithms for
continuous and slotted time

Four optimal algorithms apply to the single-
processor version of this problem. The earliest
deadline first and slack time algorithms achieve
scheduling through dynamic priority assignment,
while the infinite time slicing and minimal time slic-
ing algorithms use processor sharing.

Earliest deadline first. Developed in 1967,8 the ear-
liest deadline first (EDF) algorithm—also referred
to as the relative urgency algorithm or the dead-
line driven rule—dictates that at any point, the sys-
tem must assign highest priority to the active task
with the most imminent deadline. The processor
executes tasks according to their priority. The
assignment is dynamic because a task’s priority
changes as time passes.

The processor only reassigns priorities when a new
task instance becomes active. If the highest priority
task completes processing before another task
instance becomes active, the processor doesn’t need
to reassign priorities; it simply turns to the task with
the next highest priority. Full processor utilization is
possible for an arbitrarily large task set.3 EDF yields
a feasible schedule for a set of m tasks whenever

(1)

A task set cannot request a quantity of work that
exceeds the processor’s available capacity. Thus,
Equation 1 is a necessary and sufficient condition
for the feasibility of a task set, and the EDF algo-
rithm is optimal for building a feasible schedule.

Slack time. The slack time algorithm—also
referred to as the least laxity algorithm6—is opti-
mal in a continuous-time environment.9 ST

ρ ρ= ≤
=
∑ i

i

m

1
1

dynamically assigns priorities to active tasks
in order of nondecreasing slack time—the
difference between the task’s relative dead-
line and its remaining computation time. For
the (ki + 1)-th instance of task i at time t,
where t lies in the interval [Ri + kiDi, Ri + (ki

+ 1)Di), the relative deadline Di(t) and
remaining computation time Ci(t) are

Di(t) = Ri + (ki + 1)Di − t
Ci(t) = Ci – Mi(t)

Thus, for task i at time t, the slack time is
Di(t) − Ci(t).

ST measures a task’s relative urgency. Suppose
that a particular task becomes active while the
processor is occupied with other work of higher
priority, preventing the task from receiving pro-
cessing. The task’s initial slack time is equal to
Di − Ci but, as time passes, this ignored task’s slack
time steadily decreases until it reaches 0.

At this point, the processor must begin executing
the task—there is just enough time remaining
before the deadline to process the task to comple-
tion. If the processor does not begin executing the
task at this critical moment, the slack time becomes
negative, and the task is sure to miss its deadline.

Infinite time slicing. The infinite time slicing algo-
rithm1 is fundamentally different from the EDF and
ST dynamic priority assignment algorithms.3, 9, 10

ITS provides insight into the relationship between
processor load and the individual densities of tasks
in the task set. This algorithm divides time into
small intervals of length ∆L, and the processor exe-
cutes each task on each interval in any order for a
period ρi∆L. By allowing ∆L to approach zero, ITS
achieves infinitely small time slices.

Applying the ITS policy to one processor oper-
ating at a speed S is equivalent to a system of m dis-
tinct processors, one for each task in the task set,
in which processor i operates at a speed ρiS and
processes task i exclusively. On each interval ∆L,
task i receives an amount of processing equal to
ρi∆L, and on each period of length Ti, task i receives
(Ti/∆L)ρi∆L = ρiTi = Ci units of processing. Since
each task receives exactly its computation time on
each period, ITS is an optimal scheduling policy.

Minimal time slicing. Since an exact ITS policy
requires that ∆L approach 0, processors cannot
implement ITS. However, a processor capable of
rapid context switching can achieve a good approx-
imation of ITS by allowing ∆L to be small relative
to the task periods Ti. Thus, the minimal time slic-
ing algorithm offers a practical alternative to ITS.

May 2002 75

The infinite time
slicing algorithm

provides insight into
the relationship

between processor
load and individual

task densities.

76 Computer

In an MTS implementation, a scheduling event is
any event affecting the processor load, such as a task
arrival or deadline, and a scheduling interval is the
time between two successive scheduling events.
Instead of the infinitely short intervals ITS uses,
MTS considers successive scheduling intervals.

On each scheduling interval, MTS allocates to
each task an amount of processing time commen-
surate with its density. Thus, for a scheduling inter-
val of length L, each task is processed in an arbitrary
order for a length of time ρiL, which ensures that
each task meets its deadline. Consequently, MTS is
an optimal scheduling policy.

Periodic and nonperiodic real-time task mix. This set
of real-time tasks can contain either periodic or non-
periodic tasks. Both EDF and ST are optimal for
scheduling static real-time tasks in continuous time,
producing a feasible schedule if one exists. Even bet-
ter, these two algorithms can handle dynamic task
parameters, meaning the scheduler has no knowl-
edge of upcoming tasks until the instant they arrive
at the system. Thus, a system using EDF or ST will
fare well even when tasks are unexpectedly added
to or removed from the task set.

Multiprocessor algorithms
The system containing multiple identical proces-

sors has a single necessary and sufficient condition
for the feasibility of a task set, for both slotted and
continuous time.

Continuous time. In a system with n identical
processors, the condition in Equation 1 becomes

(2)

which is both necessary and sufficient for feasibil-
ity.11 In Equation 2, a task set requires at most ρt
units of processing time on an interval of length t,
and n processors can complete at most nt units of
work. To establish sufficiency, it must always be
possible to build a feasible schedule whenever
Equation 2 is satisfied. An algorithm must only
build a schedule from time 0 to D, where D is the
least common multiple of all task periods. At D, a
new period begins for each task, just as at time 0.
Therefore, if there is a feasible schedule for task sys-
tem S on the interval [0, D), this schedule can repeat

ρ ρ= ≤
=
∑ i

i

m

n
1

at time lD, l = 1, 2, …, to effectively form a feasi-
ble schedule for S for all times.

Building a simple assignment scheme that achieves
feasible scheduling requires making two assump-
tions. First, we will consider only task sets for which
ρ = n. If the density ρ of the task system S is strictly
less than n, we can add one or more dummy tasks
until the total density equals n. Scheduling a dummy
task effectively schedules idle time on that proces-
sor. Second, we assume that the start time of each
task is t = 0. At t = 0, every task begins requesting its
full computation time, and the amount of available
processor time is just enough to meet all requests.

To build a feasible schedule, we focus on sched-
uling intervals, like MTS. On any scheduling inter-
val of length L, each task i will receive an amount
of processing proportional to its density, or ρiL.
Because the processors are identical, we can assign
tasks to processors arbitrarily, as long as we do not
violate the task constraint: At any point, no task
can be executed at more than one processor.

We begin by arbitrarily numbering the processors
1 to n and the tasks 1 to m. As Figure 2 shows, we can
view the processor resources available on the sched-
uling interval as a continuous ribbon of length nL,
divided into n sections each of length L. Likewise, we
can view the work to be completed on the schedul-
ing interval as a ribbon of length nL, divided into m
sections, in which section i corresponds to task i and
has length ρiL. We can overlay the work ribbon with
the resource ribbon to effectively assign tasks to
processors over the scheduling interval without vio-
lating the task constraint.

If one task happens to overlay the boundary
between two processors, as Task 3 does in Figure 2,
it will receive processing time on both processors.
Task 3 will receive y units of processing time on
Processor 2 at the beginning of the scheduling inter-
val, then x units on Processor 1 at the end of the
scheduling interval. No task will be assigned to dif-
ferent processors at the same time because ρi < 1 for
each i. Since each task receives exactly ρiL processing
time on each scheduling interval of length L, all dead-
lines will be met.

Slotted time. In the slotted time environment, we
first consider the decision problem of whether a fea-
sible schedule exists for a given task set and n
processors. In 1996, Sanjoy Baruah and col-
leagues12 proved that the condition is necessary and
sufficient for the existence of a feasible schedule. They
proposed an additional scheduling constraint that is
stricter than the requirement that every deadline be
respected. A schedule that satisfies this new require-
ment also respects every deadline.

L LL LL L L3 m2 m-14 51

x y

Time:

Work:

Resources:

TaskTask
1

Task
2

Processor 2Processor 1 Processor n

Task
m-1

Task
m3

Task Task
4 5

L L L

Figure 2. Assigning
tasks to processors
during a scheduling
interval of length L.
Task 3 overlays the
boundary between
Processors 1 and 2
and will thus receive
processing time on
both processors.

This proportionate fairness or P-fairness re-
quirement attempts to allocate slots of processor
time to each task proportional to its density. In par-
ticular, at each time t, the amount of processing that
task i has received must lie between ρit and ρit.
Baruah and colleagues proved that the condition
in Equation 2 is both necessary and sufficient for
the existence of a P-fair schedule. This P-fairness
requirement applies only to problem instances in
which ρ = n. If a task set’s density falls short of n,
the algorithm can add one or more dummy tasks.

To prove the sufficiency of Equation 2 for the
existence of a P-fair schedule, Baruah and col-
leagues first transform the scheduling problem of
m periodic tasks on n processors into a directed
graph G with integer-valued arc capacities; Figure
3 shows this network representation for a sample
problem of three tasks and two processors. They
next demonstrate how to map a particular integer-
valued flow in G to a P-fair schedule for the sched-
uling problem, and they prove that such a flow
always exists in G. The proof relies on Ford and
Fulkerson’s Integrality theorem, which states that
since each edge in G has an integer-valued capac-
ity, if there is a maximum fractional flow, there is
also a maximum integer-valued flow.

An online polynomial-time algorithm generates
a P-fair schedule, which chooses the n tasks for pro-
cessing at each slot with a running time that is lin-
ear in the size of the input in bits. Baruah later gave
an algorithmthat improves the running time at each
slot to O(min{ n log m, m}).

PERIODIC REAL-TIME TASKS
WITH DEADLINE LESS THAN PERIOD

When a task’s deadline equals its period, a new
task instance always becomes available for process-
ing the moment the previous instance’s deadline
expires. Allowing the deadline to be less than the
period creates a stretch of dead time—after the dead-

line passes but before the period ends—during which
no instance of the task is available for processing.

Uniprocessor algorithms for continuous time
Researchers have found that both EDF and ST

are optimal for this scheduling problem. However,
optimality implies that these algorithms will find a
feasible schedule whenever one exists.

Joseph Leung and M.L. Merrill13 proved that the
problem of determining whether a feasible sched-
ule exists for a given task set is NP-hard, and they
presented an exponential-time algorithm to solve
the problem. They also showed that a sufficient but
not necessary condition for the feasibility of a task
set is

while a necessary but not sufficient condition is

Later, Leung10 posed a different decision prob-
lem: Can a fixed-priority scheduling algorithm such
as ST or EDF build a feasible schedule for a given
task set and n = 1 processor? He showed this prob-
lem to be co-NP-hard and presented an exponen-
tial-time algorithm to solve it.

Multiprocessor algorithms
for continuous time

Another decision problem concerns whether a fea-
sible schedule exists for a multiprocessor system
given a task set and n > 1 processors. Eugene Lawler
and Charles Martel14 introduced an exponential-
time algorithm to solve this problem. Leung found
that ST is more effective than EDF for each fixed
n > 1: Every task set schedulable by EDF can also be

May 2002 77

iR

0

0

0

iD

4

4

4

1

2

3

.75

.5

.75

3

2

3

iC iTask i

Eligible time slots

Tasks
3 (3)

2 (2)

3 (3)

Units of work

.25 (1)

.5 (1)

.75 (1)
.25 (1)

.5 (1)

.75 (1)

.75 (1)

.5 (1)

.25 (1)

.25 (1)

.5 (1)

.75 (1)

.5 (1)

.5 (1)

.5 (1)

.5 (1)

Time slots

2 (2)

2 (2)

2 (2)

2 (2)1 (1)

1 (1)

1 (1)

1 (1)

1 (1)

1 (1)

1 (1)

1 (1)

.7
5

(1
)

.75
 (1

)

.75
 (1

)

.75 (1)

.75 (1)

.75 (1)

.75 (1)

.5 (1)

.5 (1)

.5 (1
)

.5 (1)

.75 (1)

1

3

2

3

4

1

2

3

4

1

1

2

2

3

3

4

4

1

2

3

1

2

1

2

3

1

2

Figure 3. Network
representation of
a P-fair schedule.
A fractional feasible
flow assignment—
and the arc capacity,
in parentheses—
appears on each arc.

78 Computer

scheduled under ST, but one or more task sets
are schedulable under ST that EDF fails to
schedule.11

Finally, Leung considered the multiple
processor decision problem: this is co-NP-
hard, and the exponential-time algorithm
that solves the single-processor equivalent
also solves this problem.

PARTITIONING SCHEMES
In global scheduling schemes, any processor

can execute successive task instances. In con-
trast, partitioning schemes assign tasks to a
processor exactly once, and every instance of

a given task must be executed on its assigned proces-
sor. The task constraint is never violated because only
one processor can execute a given task. Compared
to a global scheme, a partitioning scheme requires
less runtime overhead because it assigns tasks to
processors only once, before scheduling begins.

A partitioning scheme consists of two phases.
During the task assignment phase, a bin-packing
heuristic treats the processors as bins to fill with as
many tasks as possible; a schedulability condition
tests whether a processor can accept more tasks.
During the scheduling phase, each processor uses a
uniprocessor scheduling algorithm to schedule its
assigned tasks. In contrast to a global approach in
which the number of processors is fixed, a parti-
tioning scheme usually fixes the uniprocessor sched-
uling algorithm and then seeks a task assignment
algorithm that achieves a feasible schedule using as
few processors as possible.

For a given uniprocessor scheduling algorithm,
an optimal task assignment algorithm produces a
feasible schedule with the smallest number of
processors. When either a fixed- or dynamic-pri-
ority scheduling algorithm is used, the problem of
finding an optimal assignment of tasks to proces-
sors is NP-hard.15 Therefore, most studies concen-
trate on partitioning schemes that strike a balance
between computational complexity and perfor-
mance. Employing an extra processor or two
beyond the optimal number can be a small price to
pay when it significantly reduces the complexity.

Almut Burchard and colleagues16 examined par-
titioning schemes that use the rate-monotonic algo-
rithm during the scheduling phase. RM, a
fixed-priority algorithm, gives higher priority to
tasks with shorter periods. A fixed-priority algo-
rithm has lower computational overhead than a
dynamic-priority algorithm, and RM in particular
has been proven optimal among all fixed-priority
algorithms.3

Burchard and colleagues considered the problem
of scheduling periodic real-time tasks on multiple
processors in continuous time for a task set in
which each task’s deadline equals its period. They
studied two variants of this problem, the first
requiring that all task parameters be known at the
start, and the second allowing tasks to enter and
exit the system dynamically. Their major contribu-
tion is the introduction of tight schedulability con-
ditions that yield a greater maximum achievable
load per processor than previous partitioning
schemes. Under the further assumption that task
densities are small relative to processor capacity,
these partitioning schemes can achieve nearly full
processor utilization.

Sylvain Lauzac and colleagues17 also employed
RM during the scheduling phase, but they achieved
higher processor utilization than the Burchard
scheme through innovations to the partitioning
phase. First, they transformed the task set to obtain
a tighter schedulability condition. Second, using the
first-fit bin-packing algorithm, they assigned com-
patible tasks—tasks that have the same or nearly
the same period—to a single processor, resulting in
fuller utilization of that processor. The Lauzac
scheme performs best under heavy loads that
require approximately 15 to 50 processors, better
enabling the first-fit algorithm to assign compati-
ble tasks to the same processor.

Sergio Saez and colleagues18 relaxed the require-
ment for an equal deadline and period, allowing a
task’s deadline to be less than its period. They pre-
sented two partitioning schemes, one using RM and
the other using EDF, that both sacrifice computa-
tional efficiency to obtain close-to-optimal proces-
sor utilization. Introducing a two-step schedula-
bility test to determine whether a processor can
accept another task increases the complexity in the
partitioning phase. This additional requirement
transforms the bin-packing problem into the more
difficult restricted bin-packing problem. Given this
increased complexity, Saez and colleagues advised
that their approach is better suited for multi-
processor systems with fewer than 16 processors.

T he scheduling of real-time tasks in multi-
processor systems bears similarities to packet
scheduling in multichannel optical networks.

While many of the algorithms described in this sur-
vey can be applied directly in a network context,
existing multiprocessor scheduling algorithms do
not address certain aspects of packet scheduling.

Partitioning
schemes assign

tasks to a processor
exactly once, and

every instance of a
given task must be

executed on its
assigned processor.

Examples include the need to provide quantitative
delay guarantees, the fair allocation of excess
capacity (bandwidth) to packet flows, and the per-
formance of algorithms when a packet must tra-
verse a sequence of identical schedulers in a
network path. We are currently studying some of
the problems in this exciting research area, which
is likely to become more essential in the future. �

Acknowledgment
This work was supported by a GAANN fellow-

ship and the NSF under grant NCR-9701113.

References
1. O. Serlin, “Scheduling of Time Critical Processes,”

Proc. AFIPS Spring Joint Computer Conf., AFIPS
Press, Montvale, N.J., 1972, pp. 925-932.

2. A.K. Parekh and R.G. Gallagher, “A Generalized
Processor Sharing Approach to Flow Control in Inte-
grated Services Networks: The Multiple Node Case,”
IEEE/ACM Trans. Networking, vol. 2, no. 2, 1994,
pp. 137-150.

3. C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Envi-
ronment,” J. ACM, Jan. 1973, pp. 46-61.

4. L. Georgiadis et al., “Efficient Network QoS Provi-
sioning based on Per Node Traffic Shaping,”
IEEE/ACM Trans. Networking, vol. 4, no. 4, 1996,
pp. 482-501.

5. A.C. Kam, K-Y. Siu, and R.A. Barry, “Toward Best
Effort Services over WDM Networks with Fair
Access and Minimum Bandwidth Guarantee,” IEEE
JSAC, Sept. 1998, pp. 1024-1039.

6. J.A. Stankovic et al., “Implications of Classical Sched-
uling Results for Real-Time Systems,” Computer,
June 1995, pp. 16-25.

7. P. Bratley, M. Florian, and P. Robillard, “Scheduling
with Earliest Start and Due Date Constraints,” Naval
Research Logistics Quarterly, Dec. 1971, pp. 511-
519.

8. M.S. Fineberg and O. Serlin, “Multiprogramming for
Hybrid Computation,”Proc. AFIPS Fall Joint Com-
puter Conf., Thompson, Washington, D.C., 1967.

9. M.L. Dertouzos and AK-L. Mok, “Multiprocessor
On-Line Scheduling of Hard-Real-Time Tasks,”
IEEE Trans. Software Eng., Dec. 1989, pp. 1497-
1506.

10. J.Y-T. Leung, “A New Algorithm for Scheduling Peri-
odic, Real-Time Tasks,” Algorithmica, vol. 4, 1989,
pp. 209-219.

11. E.G. Coffman Jr., “Introduction to Deterministic
Scheduling Theory,” Computer and Job-Shop Sched-

uling Theory, E.G. Coffman Jr., ed., John Wiley &
Sons, New York, 1976, pp. 1-50.

12. S.K. Baruah et al., “Proportionate Progress: A Notion
of Fairness in Resource Allocation,” Algorithmica,
vol. 15, no. 6, 1996, pp. 600-625.

13. J.Y-T. Leung and M.L. Merrill, “A Note on Preemp-
tive Scheduling of Periodic, Real-Time Tasks,” Infor-
mation Processing Letters, Nov. 1980, pp. 115-118.

14. E.L. Lawler and C.U. Martel, “Scheduling Periodi-
cally Occurring Tasks on Multiple Processors,” Infor-
mation Processing Letters, vol. 12, no. 1, 1981, pp.
9-12.

15. J.Y-T. Leung and J. Whitehead, “On the Complex-
ity of Fixed-Priority Scheduling of Periodic, Real-
Time Tasks,” Performance Evaluation, vol. 2, 1982,
pp. 237-250.

16. A. Burchard et al., “New Strategies for Assigning
Real-Time Tasks to Multiprocessor Systems,” IEEE
Trans. Computers, Dec. 1995, pp. 1429-1442.

17. S. Lauzac, R. Melhem, and D. Mosse, “An Efficient
Rms Admission Control and Its Application to Mul-
tiprocessor Scheduling,” Proc. 12th Int’l Parallel Pro-
cessing Symp. (IPPS98), IEEE CS Press, Los Alamitos,
Calif., 1998, pp. 511-518.

18. S. Saez, J. Vila, and A. Crespo, “Using Exact Feasi-
bility Tests for Allocating Real-Time Tasks in Multi-
processor Systems,” Proc. 10th Euromicro Work-
shop Real-Time Systems (Euro-RTS98), IEEE CS
Press, Los Alamitos, Calif., 1998, pp. 53-60.

Laura E. Jackson is a doctoral candidate in the
Department of Computer Science at North Car-
olina State University and a network research engi-
neer in the Advanced Network Research group at
MCNC in Research Triangle Park, N.C. Her
research interests include real-time packet sched-
uling and quality of service in all-optical networks.
Jackson received a master’s degree in operations
research from the College of William and Mary.
She is a student member of the IEEE. Contact her
at lojack@ mcnc.org.

George N. Rouskas is an associate professor in the
Department of Computer Science at North Car-
olina State University. His research interests include
network architectures and protocols, optical net-
works, multicast communications, and perfor-
mance evaluation. Rouskas received a PhD in
computer science from the College of Computing
at Georgia Institute of Technology. He is a member
of the IEEE, the ACM, and the Technical Chamber
of Greece. Contact him at rouskas@eos.ncsu.edu.

May 2002 79

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

