
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Performance Evaluation of Brute Force Techniques

for Routing and Spectrum Assignment in Elastic

Optical Network using MPI and CUDA
Mahmoud Fayez

Computer Systems Department
Ain Shams University

Cairo, Egypt
mahmoud.fayez@cis.asu.edu.eg

Tarek F. Gharib
Information Systems Department

Ain Shams Univesity
Cairo, Egypt

tfgharib@cis.asu.edu.eg

Iyad Katib
Computer Science Department

King Abdulaziz Univesity

Jeddah, KSA
iakatib@kau.edu.sa

H. Khaled
Computer Systems Department

Ain Shams University
Cairo, Egypt

heba,khaled@cis.asu.edu.eg

George N. Rouskas
Computer Science Department

North Carolina University

NC, USA
rouskas@ncsu.edu

H. M. Faheem
Computer Systems Department

Ain Shams University
Cairo, Egypt

hossam.faheem@cis.asu.edu.eg

Abstract— In Elastic Optical Networks, Routing and

Spectrum Assignment algorithms find a routing table and

assign spectrum slots for each traffic demand such that the

consumed spectrum on each optical link is minimized. This

work deploys brute force algorithm to investigate all possible

routing tables and select best candidates. Those candidates are

then evaluated using the Spectrum Allocation algorithm to

select the optimum spectrum utilization on the links. Routing

table selection process depends on a scoring function that can

be computed in linear time. Starting with an initial routing

table (depending on shortest path algorithm) as an initial seed,

the Selection criteria of the routing table decide whether to

keep the initial seed or replace it with the one that can lead to a

much more better solution. This in turn will eliminate the need

to solve the spectrum assignment problem for each routing

table. Consequently, the time needed to solve the problem will

be dramatically reduced. Parallel computing paradigms are

used to implement the brute force algorithm on parallel

architectures to speed up the processing time. Performance

comparison between MPI implementation and CUDA

implementation is presented which shows that single GPU can

perform better than high-end set of servers.

Keywords—EON, RSA, CUDA, MPI, Brute Force

I. INTRODUCTION

Elastic Optical Network (EON) is getting more attention
as it has a huge potential to support the increasing demand
for data communication and telecommunication. Elastic
optical spectrum can optimally support 400 GB/s and 1Tb/s.
It requires a lot of changes to the optical network
components [1] such as Reconfigurable Optical Add-Drop
Multiplexer (ROADM) and Bandwidth Variable
Transceivers (BV-T) that are be able to generate Elastic
Optical Paths (EOPs). The continuous improvement in such
network components is opening up exciting and promising
new fields in optical network research.

The need to enhance the spectrum utilization of the C-
Band (wavelength 1530 to 1565 nm) is pushing the optical
networks towards elastic network[1]. EON is facing a lot of
challenges; one of them is the Routing and Spectrum
Assignment (RSA) problem. One of the common RSA
problems is the selection of EOP which depends mainly on
both the traffic demand’s bit-rate and the distance between
the source and the destination. Another challenge is
assigning a common spectrum for a message travelling
across multiple links.

This article presents a brute force (BF) algorithm for
finding the optimum routing table of a given network that
has actual/estimated traffic demand matrix. The BF solves
the RSA problem in offline/static mode. The goal is to find
the optimum routing table (EONs) such that the required
spectrum of each optical link is minimum. BF evaluates all
routing tables against a scoring function and picks the one
with the highest score. The scoring functions used to
evaluate those Routing Tables is the Spectrum Assignment
Algorithm based on Longest First Fit (LFF) technique. BF
also keep track of top performing Routing Tables based on
the scoring function; so it accommodates link failure by
providing alternative routing tables.

The rest of the paper is organized as follows, Section 2
will demonstrate the RSA problem categories and the
progress made by researchers to address the static RSA
problem. Section 3 will present the problem formulation.
Section 4, 5, and 6 will demonstrate the Brute Force
algorithm, MPI Algorithm, and CUDA algorithm
respectively. Section 7 will show the results and our
concluding remarks..

II. RELATED WORK

The Routing and Spectrum Assignment (RSA) problem
is categorized into 2 groups which are Dynamic RSA and
Static RSA. Dynamic RSA deals with already allocated
optical paths and check if a new traffic demand can be
accepted or not. Static RSA has a complete traffic demand
matrix and start finding the optimum route for each traffic
demand in order to minimize the spectrum on each optical
link. The Static RSA problem is NP-hard problem[2]; and
the optimum solution is difficult to find for large networks.
The optimum solution cannot be better than the lower-bound
which will be discussed in the next section. The lower-bound
for the RSA problem varies depending on the routing table,
i.e. routing table that directs all traffic demands through a
certain optical link will cause the lower-bound to be very
large. On the other hand routing table that make sure the
traffic demands are balanced across links will cause a lot of
spectrum fragmentation over the links.

Wan X et al [3] developed a dynamic RSA algorithm that

solves RSA problem while handling different parameters like
signal format, bit-rate, and spectrum bandwidth. The goal of
the algorithm was to minimize the path length, and keep the
spectrum continuity condition valid across all links without

overlapping. Klinkowski et al. [4] has proposed a solution to
the static RSA problem with estimated traffic as integer
linear programming problem (ILP); which is using a
heuristic approach. It is difficult to characterize the
performance of such heuristic approach. It does not scale to
other problem variants [2]. S. Talebi et al. [2] have proposed
4 different scheduling techniques for the path network by
transforming the problem into multiprocessor task
scheduling. They developed some progress in problem
transformation and utilized multi-core task scheduling
algorithms to solve the SA problem. The best scheduling
techniques they proposed are Longest First Compact
Algorithm (LFC) and Widest First Compact Algorithm
(WFC). Roza et al. [5] has proposed a metaheuristics
approach to solve the Routing, Modulation, Spectrum
Allocation (RMSA) problem with four different objective
functions. They showed a near optimal solution for small
networks which shows a promising solution that can be
enhanced using the metaheuristics solution based on Tabu
Search to support larger networks.

The multiprocessor task scheduling techniques have been
in study for a decade. The transformation of the Spectrum
Assignment (SA) problem to multiprocessor task scheduling
problem has proven that SA problem is NP-Hard [2]. The
similar characteristics of SA problem and Task Scheduling
problem would allow utilizing schedulability analysis
techniques [6], [7] to find out whether the current SA
problem has sufficient spectrum on all links or not.

III. RSA PROBLEM

RSA problem in Elastic Optical Network (EON) is
defined as in (1), (2) and (3).

 (1)

 (2)

 (3)

 Where:
 G is a undirected graph,

 V is the set of nodes in the graph,

 A is the set of undirected arcs (Optical
Links) connecting the graph nodes,

 T is the traffic demand matrix.

 O is the routing table matrix where each
item in the matrix is an optical path
corresponding to the source and
destinations donated by the row and
column indices respectively.

Each traffic demand from a source node s to a destination
node d is assigned an optical path and contiguous spectrum
based on the RSA algorithm. The assigned path is selected to
minimize the total required spectrum used on any link. Each
Optical Path (OP) must satisfy the following three
conditions:

 Spectrum Contiguity Constraint restricts each traffic
demand to be assigned to a contiguous spectrum.

 Spectrum Continuity Constraint restricts each
demand to be assigned to the same spectrum across
all links of its path.

 Non-overlapping Constrains requires that traffic
demands that share the same link to be assigned non-
overlapping spectrums with guard band between
them.

There are multiple possible paths from source node s to

destination node d. The number of possible paths varies
depending on the topology and can be obtained using depth
first search (DFS) or k-shortest paths algorithms. Choosing
the shortest path for all traffic demands would result in
converting the problem to a smaller special case problem
called Spectrum Assignment (SA)[8], [9].

The problem can be divided into a set of sub problems

and each one can have one or more solutions that can be used
as input to the next sub problem. The RSA problem can be
divided into the following sub problems:

 Find the routing-table based on the routing
algorithm.

 Choose the modulation for each traffic demand
based on the bit-rate and the distance.

 Define the actual spectrum slots and the optical path
for each traffic demand that satisfy the 3 conditions
mentioned before.

In this work we are focusing on solving sub problems 1
and 3 and the sub-problems are treated separately. We are
comparing the lower-bound of the routing table against the
best make-span to make sure the solution of the first sub-
problem produce good candidates (inputs) for the next sub-
problem.

A. Solution Quality (Make-Span)

Each optical link may be included in one or more optical
paths. Those optical paths are used to fulfill certain traffic
demands with certain bandwidth requirements. The required
spectrum on that optical link will be the total sum of all
traffic going through the optical link along with the guard
bands. This is the lower-bound which is considered the
optimum solution that may be achieved. The lower-bound
not necessarily means it can be achieved. Make-Span on the
other hand includes the fragmentations in the spectrum of the
optical link due to the EON constraints that we discussed
before.

Comparing two routing tables based on make-span will
be wrong as this not necessarily the optimum solution due to
the fact that the scoring function is using heuristics
algorithm. Therefor comparing the best known make-span
based on the best know algorithm against all other routing
tables lower-bounds to find any routing table that may lead
to better make-span is the right decision. The lower-bound is
calculated for each routing table and is compared with the
make-span of the best solution in hand, if the lower-bound
indicates a possibility to have a better solution the sub-
problem 3 is then solved for this routing table otherwise this
routing table will not be further processed and it will be
ignored.

IV. BRUTE FORCE ALGORITHM

The algorithm requires the input adjacency matrix A to
be symmetric and the links to be designated by a sequence
starting from one. i.e. a four node complete mesh is
represented in (4) and (5) which has 6 links as shown in
Figure 1. If there is no link the corresponding element of the
matrix will have zero value. BF calculates all the possible
acyclic paths from any source to any destination and store it
into a matrix called , i.e. a four nodes complete mesh paths
matrix is shown in (6).

Fig. 1. Example of 4-node complete mesh with the links labeled starting

from 1.

(4)

 (5)

(6)

 (7)

 is a set of acyclic paths between Node s and Node d.
Each acyclic path can be represented as a Boolean array

where the element of the array represent whether this link
will be included in the optical path or not. This Boolean
array would take too much memory in case of generating all
possible paths so it has been presented as a set of M-bit
integers where M is the total number of links in the graph. If

the bit is set this means the corresponding link will be
used to transfer data between s and d.

The optimum representation of the path lead to optimum
memory footprint of the algorithm such that we can generate
all optical paths for a network with 100 links using less than
256 GB of memory. The numbers that are presented at (7)
are calculated based on Table 1 which shows how the paths
are converted to binary value of length M-bits.

TABLE I. POSSIBLE PATHS FROM NODE A TO NODE B

Path
Required

Links

Binary Encoded
Decimal

Value

6 5 4 3 2 1

A ->

B
1 0 0 0 0 0 1 1

A ->

C ->

B

5,2 0 1 0 0 1 0 18

A ->

D ->

B

4,6 1 0 1 0 0 0 40

A ->

C ->

D ->

B

5,3,6 1 1 0 1 0 0 52

A ->

D ->

C ->
B

4,3,2 0 0 1 1 1 0 14

The matrix is calculated using a Depth First Search
(DFS) Algorithm; another algorithm like k-shortest paths can
be used but it would be biased to the shortest path solution. It
is assumed that the route between any two nodes will be the
same for both traffic directions. i.e route from A to B and
from B to A are the same. This assumption reduced the
search space significantly. The DFS algorithm is used in two
cycles the first cycles is used to count the number of the
required paths and allocate enough memory for those paths.

The second cycle of DFS builds the matrix into the
memory. Finally the BF algorithm iterates over all possible
routing tables and find the lower-bound for each RT, RT
whose lower-bound is less than the best make-span we have
will be further processed and its make-span is calculated
using LFF technique. If the new make-span is better, the list
of the best RTs is updated. The pseudo code is shown in
Figure 2.

1. RSA Program

2. Input: A the adjacency matrix of the network nodes.

3. Input: T the actual/expected traffic demand matrix in terms of how

many slots.

4. Output: O[] array of optimum routing tables sorted by the scoring

function.

5. Begin

6. Call Provision All Paths(A) → L

7. For i 1 → N

8. For j 1 → N

9. RT(i,j) ← L(i,j,0) !select the first path from each set as

initial seed.

10. RT_idx(i,j) = 0

11. END FOR

12. END FOR

13. While (RT IS NOT NULL)

14. BEGIN

15. IF (LowerBound(RT) < BestScore) THEN

16. Score = LFF(RT)

17. IF (Score < BestScore) THEN

18. BEGIN

19. Call InsertRTInPlace(RT, Score) → BestScore;

20. END

21. ENDIF

22. CALL IncrementRT(0, 1, L, RT, RT_idx, BestScore) → (RT,

RT_idx)

23. End While

24.End

25.Subroutine IncrementRT

26.Input: i the source index

27.Input: j the destination index

28.Input: L all possible paths matrix

29.Input: RT the current routing table.

30.Output: RT next routing table

31.BEGIN

32. IF (j > N) THEN

33. RT ← NULL

34. ELSE IF (i > j) THEN

35. IncrementRT(0, j+1, L, RT)

36. ELSE

37. RT(i,j) ← (RT(i,j) + 1) % length(L(i,j))

38. IF (RT(i,j) == 0) THEN

39. IncrementRT(i+1, j, L, RT)

40. ENDIF

41. ENDIF

42.END

Fig. 2. Pseudo code for BF

The score is calculated based on the Longest First
scheduling technique that was presented in a previous paper
by Fayez et. al [8]. Other scoring functions like Widest First
Fit (WFF) can be used but as the results shown in the
previous work Longest First was performing better than the
Widest First technique. WFF may perform better under
certain conditions. So better solution would be calculating
the score of each RT (that has good lower bound) using all
possible techniques but this would add more layer of
complexity and would increase the time required to process
all RTs in the search space.

V. MPI ALGORITHM

The brute force algorithm takes many hours as shown in
the results section. So we had to parallelize it using MPI. The
search space is divided among the MPI ranks evenly. Each
MPI rank start provision all possible paths L. Instead of
waiting for master rank to calculate L and broadcast it to
other ranks. This eliminates the need to broadcast L to all
other ranks. Each MPI rank start with different initial seed as
shown in Error! Reference source not found. (lines 13-15).
There is not communication among the ranks as each rank
produce different output file. Python script is used to merge
the output of the MPI processes later as a post-processing
step and the results section do not include the post-
processing time as it is insignificant.

Each MPI rank will stop when it reaches the start offset
of the sub-space of the next MPI rank. As it is shown in
Error! Reference source not found. (line 35).

1. RSA Program_MPI

2. Input: A the adjacency matrix of the network nodes.

3. Input: T the actual/expected traffic demand matrix in terms of how

many slots.

4. Output: O[] array of optimum routing tables sorted by the scoring

function.

5. Begin

6. Call Provision All Paths(A) → L

7. For i 1 → N

8. For j 1 → N

9. RT(i,j) ← L(i,j,0) !select the first path from each set as

initial seed.

10. RT_idx(i,j) = 0

11. END FOR

12. END FOR

13. Offset ← L(N-1, N).Size() / MPI_Size * MPI_Rank

14. RT(N-1,N) ← L(N-1,N,Offset)

15. RT_idx(N-1,N) = Offset //Update the initial seed of last entry of RT

to point to correct sub-space based on MPI Rank

16. While (RT IS NOT NULL)

17. BEGIN

18. IF (LowerBound(RT) < BestScore) THEN

19. Score = LFF(RT)

20. IF (Score < BestScore) THEN

21. BEGIN

22. Call InsertRTInPlace(RT, Score) → BestScore;

23. END

24. ENDIF

25. CALL IncrementRT(0, 1, L, RT, RT_idx, BestScore) → (RT,

RT_idx)

26. End While

27.End

28.Subroutine IncrementRT

29.Input: i the source index

30.Input: j the destination index

31.Input: L all possible paths matrix

32.Input: RT the current routing table.

33.Output: RT next routing table

34.BEGIN

35. IF (j = N) AND (i = N-1) AND (RT(i,j) = N / MPI_Size *

(MPI_Rank+1)) THEN

36. RT ← NULL

37. ELSE IF (i > j) THEN

38. IncrementRT(0, j+1, L, RT)

39. ELSE

40. RT(i,j) ← (RT(i,j) + 1) % length(L(i,j))

41. IF (RT(i,j) == 0) THEN

42. IncrementRT(i+1, j, L, RT)

43. ENDIF

44. ENDIF

45.END

Fig. 3. Pseudo code for BR with MPI

VI. CUDA ALGORITHM

GPU architecture is different from the regular processors.
GPU consists of Stream Multiprocessors (SMs) which have
many cores that executes the same instruction on different
data. Branching is very slow on GPU as some cores will be
idle in case their condition failed to enter the branch. So
optimum algorithm for GPU should avoid loops and
branches as much as possible. Another constraint is the
physical limits of the GPU as maximum number of threads
that can be deployed at a time is limited by hardware
resources (registers and memory). So to deploy sufficient
threads to calculate the lower-bound of all RTs we had to do
it in batches. The host side pseudo code is shown in Error!
Reference source not found. (lines 1-23). The device
pseudo code is shown in Error! Reference source not
found. (lines 24-37)

1. RSA Program_CUDA

2. Input: A the adjacency matrix of the network nodes.

3. Input: T the actual/expected traffic demand matrix in terms of how

many slots.

4. Output: O[] array of optimum routing tables sorted by the scoring

function.

5. Begin

6. Call Provision All Paths(A) → L

7. COPY TO GPU (L)

8. BatchSize ← 10240 * 1024 !we will start 10240 block *

1024 thread per block

9. B ← ∏_(i=1)^N▒(∏_(j=i+1)^N▒L(i,j)) / BatchSize

10. RT_Scores[i] ← ∞ where i ∈ [0,BatchSize]

11. FOR i ← 1 to B

12. CALL<<<10240,1024>>> BF_CUDA(i * BatchSize, L) →

(RT_Scores)

13. ! Each thread will process different RT in each batch and will

overwrite the

14. ! corresponding score in the RT_Score only if the new RT in the

new batch has

15. ! better solution.

16. BEGIN

17. END FOR

18. QSORT(RT_Scores)

19. SaveTop100(RT_Scores)

20.END

21.Subroutine BF_CUDA

22.Input: Offset the offset of this batch

23.Input: L all possible paths matrix

24.Output: RT_Scores next routing table

25.BEGIN

26. RT ← Decode(block_idx, thread_idx,)

27. LB ← LowerBound (RT)

28. IF (LB < RT_Scores(thread_idx)) THEN

29. Score ← LFF(RT)

30. IF (Score < RT_Scores(thread_idx)) THEN

31. RT_Scores(thread_idx) ← Score

32. ENDIF

33. ENDIF

34.END

Fig. 4. Pseudo code for BF with CUDA (Host and Device pseudo codes

are presented)

VII. RESULTS

The testing and benchmarking for the proposed
implementations requires the set of the following
inputs/resources:

 Traffic demand matrix, which was generated
randomly with normal probability distribution for
bit-rates [10, 40, 100, 1000] Gb\s. Any other
probability distributions would not affect the
proposed work as it is a brute force solution which
solves all RTs score function if necessary.

 A network topology and we used complete mesh
networks. Incomplete mesh networks have been
benchmarked too to show how the problem size
increases exponentially and how this affects the
optimum make-span achieved.

 Set of compute nodes which has a common
configurations for MPI testing. Each compute node
consist of dual socket XEON processors each has 12
cores, memory of 96GB for each compute node.
Each XEON core is running at 2.5 GHz.

 Single GPU node which has the same configurations
in addition to NVidia GPU K20 which has 13 SM,
each has 192 CUDA cores, total of 2496 CUDA
cores running at 700MHz.

TABLE II. RESULTS

Topology
Size

Number
of

Links

Time
(seconds)

MPI
10

Compute
Nodes

Time
(seconds)
CUDA

1

Compute
Node

4-Nodes 6 1 2

5-Nodes 7 4 2

5-Nodes 8 5 6

5-Nodes 9 170 546

5-Nodes 10 7380 23280

6-Nodes 15 13 Years
(estimate)

42 Years
(estimate)

The time to find the optimum routing table for different
topologies is presented in Error! Reference source not
found.. The percentage of the routing tables that have been

evaluated by LFF 0.000045%, which shows that most of the
RTs will not lead to better solution using LFF. This shows
how successful the skipping techniques is. The GPU
algorithm shows that single compute node running with less
than 750W can provide 33% of the performance of 10
compute nodes running at 3500W, the ratio of power
between GPGPU consumption and MPI solution is 72%
which means GPU is saving around 28% of the power. The
power consumption is extracted from the manufacturer
datasheets of the compute nodes.

Our future work will focus on skipping the need to
calculate the complete Lower-Bound for each routing table
and discard a group of routing tables based on their partial
common lower-bound due to the fact that many RTs will
have common routes.

REFERENCES

[1] O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical

networking: a new dawn for the optical layer?,” Communications

Magazine, IEEE, vol. 50, no. 2. pp. s12–s20, 2012.

[2] S. Talebi, E. Bampis, G. Lucarelli, I. Katib, and G. N. Rouskas,

“Spectrum assignment in optical networks: A multiprocessor
scheduling perspective,” Optical Communications and Networking,

IEEE/OSA Journal of, vol. 6, no. 8. pp. 754–763, 2014.

[3] X. Wan, L. Wang, N. Hua, H. Zhang, and X. Zheng, “Dynamic
Routing and Spectrum Assignment in Flexible Optical Path

Networks,” in Optical Fiber Communication Conference/National

Fiber Optic Engineers Conference 2011, 2011, p. JWA055.

[4] M. Klinkowski and K. Walkowiak, “Routing and Spectrum
Assignment in Spectrum Sliced Elastic Optical Path Network,”

Communications Letters, IEEE, vol. 15, no. 8. pp. 884–886, 2011.

[5] R. Goscien, K. Walkowiak, and M. Klinkowski, “Tabu search
algorithm for routing, modulation and spectrum allocation in elastic

optical network with anycast and unicast traffic,” Comput. Networks,

vol. 79, pp. 148–165, 2015.

[6] M. Marouf and Y. Sorel, “Schedulability conditions for non-

preemptive hard real-time tasks with strict period,” in 18th
International Conference on Real-Time and Network Systems

RTNS’10, 2010.

[7] O. Kermia and Y. Sorel, “Schedulability Analysis for Non-
Preemptive Tasks under Strict Periodicity Constraints,” Embedded

and Real-Time Computing Systems and Applications, 2008. RTCSA

’08. 14th IEEE International Conference on. pp. 25–32, 2008.

[8] M. Fayez, I. Katib, G. N. Rouskas, and H. M. Faheem, “Scheduling-

Inspired Spectrum Assignment Algorithms for Mesh Elastic Optical
Networks,” Adv. Comput. Commun. Networks From Green, Mobile,

Pervasive Netw. to Big Data Comput., p. 225, 2016.

[9] M. Fayez, I. Katib, G. N. Rouskas, and H. M. Faheem, “Spectrum
Assignment in Mesh Elastic Optical Networks,” in Proceedings of the

24th International Conference on Computer Communications and

Networks (ICCCN), 2015.

