
Author's personal copy

A practical fair queuing scheduler: Simplification through quantization

Z. Dwekat a, G.N. Rouskas b,⇑
a Sprint Network Services, Raleigh, NC, USA
b Department of Computer Science, North Carolina State University, Engineering Building 2, 890 Oval Drive, Raleigh, NC 27695-8206, USA

a r t i c l e i n f o

Article history:
Received 9 July 2010
Received in revised form 4 January 2011
Accepted 8 April 2011
Available online 16 April 2011
Responsible Editor: A.K. Somani

Keywords:
Packet scheduling
Fair queuing
Tiered service

a b s t r a c t

The design of fair packet schedulers involves a tradeoff between implementation complex-
ity, on one hand, and delay and fairness guarantees, on the other. In this paper, we present
tiered-service fair queuing (TSFQ), a new scheduler that exploits certain properties of Inter-
net traffic to speed up the bottleneck operations related to virtual time computation and
packet sorting. Specifically, TSFQ makes innovative use of quantization (along the two
dimensions of flow weights and packet lengths) her with specialized yet simple queuing
structures. TSFQ combines all three properties that are important to a fair queuing algo-
rithm, namely, a tight delay bound, worst-case fairness, and low complexity and amenabil-
ity to hardware implementation. Hence, we believe that, for network operators, deploying
TSFQ scheduling has the potential to enhance their ability to offer and guarantee a wide
range of services.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Internet has evolved into a ubiquitous global com-
munication medium that carries a constantly evolving traf-
fic mix that is becoming richer as innovation and technology
improvements spawn new telecommunications applica-
tions and services. Specifically, real-time and interactive
applications (including audio and video streaming, multi-
media conferencing, etc.) require performance bounds from
the network in terms of bandwidth, delay, or delay jitter. For
instance a voice-over-IP (VoIP) application requires both a
minimum bandwidth (generally, between 20 and 80 Kbps,
depending on the voice codec used) and a round-trip delay
of about 150 ms (dictated by human ergonomics) to ensure
a ‘‘good’’ user experience. Hence, the network must support
some form of quality of service (QoS) functionality in order
to serve large numbers of heterogeneous users and applica-
tions with a wide range of requirements in terms of through-
put and delay.

In packet-switched networks, packets from various
users (flows) have to share the network resources,

including buffer space at the routers and link bandwidth.
Whenever resources are shared, contention arises among
users seeking service. Consequently, shared resources em-
ploy a scheduling discipline to resolve contention by deter-
mining the order in which users receive service. In
particular, the scheduling algorithm is a central compo-
nent of the QoS architecture of packet-switched networks,
and the performance that applications receive is directly
affected by the service discipline employed by the nodes
along their path.

Fig. 1 illustrates the general scheduler model that we
will use in our discussion. Specifically, we assume that
the scheduler serves n flows and employs per-flow queu-
ing such that an arriving packet belonging to flow i,
i = 1, . . . ,n, is inserted at the tail of the queue dedicated to
this flow. As a result, each flow queue is sorted in increas-
ing order of packet arrival times and its packets are served
in a FCFS order. As shown in the figure, each flow i is asso-
ciated with a positive real weight /i that is determined in
advance (e.g., based on the application’s bandwidth or de-
lay requirements, or on economic factors). The scheduler
uses the weights in some discipline-specific manner to
determine which of the head-of-line packets in the flow
queues to serve next.

1389-1286/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.comnet.2011.04.004

⇑ Corresponding author.
E-mail address: rouskas@csc.ncsu.edu (G.N. Rouskas).

Computer Networks 55 (2011) 2392–2406

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet

Author's personal copy

A packet scheduler is desirable to possess three impor-
tant properties [11]: (1) isolation and fairness, (2) perfor-
mance bounds, and (3) low algorithmic complexity. We
elaborate on these properties next.

Isolation and fairness. The scheduler must provide isola-
tion among the competing flows in order to ensure that
each flow receives its allocated/fair share of the link band-
width. Isolation prevents misbehaving flows (e.g., flows
transmitting too fast) from affecting other flows sharing
the same link. For best-effort applications, fairness typi-
cally refers to max–min fair allocation [3] of the link band-
width among the flows, whereby flows with ‘‘small’’
bandwidth demands receive what they want while flows
with ‘‘large’’ demands receive an equal share of the
remaining link bandwidth. For applications with a guaran-
teed rate, two measures of fairness are typically
considered:

� Proportional fairness. Proportional fairness, a measure
introduced by Golestani [7], essentially requires that
the difference between the normalized service received
by any two backlogged flows i and j, over any time per-
iod (t1, t2), be bounded by a constant C:

Siðt1; t2Þ
ri

� Sjðt1; t2Þ
rj

����
���� 6 C; ð1Þ

where ri is the allocated rate of flow i and Si(t1, t2) is the
amount of data of flow i served during the time period
(t1, t2).
� Worst-case fairness. Worst-case fairness, introduced by

Bennett and Zhang [2], is a more refined notion of fair-
ness. Rather than comparing the relative amounts of
service received by two flows i and j, it compares the
service received by a single flow i to the service it would
receive in the ideal case, i.e., when i has exclusive access
to an output link of rate ri. Specifically, let Di denote the
maximum time a packet of flow i arriving to an empty
queue will have to wait before receiving its guaranteed
rate ri, under a certain service discipline. Di is called the
worst-case fair index (WFI) of flow i. A service discipline
is called worst-case fair if, for all flows i, Di is bounded by
a constant that depends on the discipline but is inde-
pendent of the queues of the other flows served by
the scheduler.

Performance bounds. Many streaming and multimedia
applications require a throughput bound, i.e., they must

be served at a minimum data rate. In addition, certain
real-time and/or interactive applications may require
bounds on packet delay. Such bounds may be expressed
deterministically (e.g., in the form of a worst-case delay that
no packet must exceed) or statistically (i.e., in the form of a
delay threshold and a probability that any packet’s delay
will not exceed the threshold). Other performance bounds
that have been considered include bounds on the delay jit-
ter and on packet loss.

Low algorithmic complexity. A link scheduler may need
to select the next packet to serve every time a packet de-
parts. As optical link speeds increase from a few Gbps cur-
rently to tens of Gbps and beyond, a scheduler may have
only a few microseconds or less to make a decision. Hence,
in order to operate at wire speeds, the scheduling disci-
pline must be amenable to hardware implementation and
require few, preferably simple, operations. In particular,
since the links of backbone networks may serve hundreds
of thousands of flows simultaneously, the number of oper-
ations involved in making a scheduling decision should be
independent of the number of flows sharing the link.

These requirements are often contradictory, and the
design of packet schedulers involves a tradeoff between
implementation complexity, on one hand, and fairness and
performance guarantees, on the other. In general, schedul-
ers can be classified according to their internal structure in
one of two broad classes:

1. Timestamp-based schedulers maintain a global variable,
usually referred to as virtual time, to sort arriving pack-
ets and serve them in that order. Timestamp schedulers
have good delay and fairness properties but high com-
plexity, hence they have found limited deployment in
high-speed routers. One of the differentiating charac-
teristics of timestamp scheduler variants is their
approach to alleviating the complexity, as we discuss
in the next section.

2. Frame-based schedulers divide time into slots of fixed or
variable length, and assign slots to flows in some sort of
round-robin fashion. Schedulers such as deficit round
robin (DRR) [19] are easy to implement in hardware
and have been widely deployed in commercial routers.
However, frame-based schedulers have poor behavior
in terms of delay bound and fairness.

In this paper, we present tiered-service fair queuing
(TSFQ), a new packet scheduler that exploits certain prop-
erties of Internet traffic to speed up the bottleneck opera-
tions related to virtual time computation and packet
sorting: that applications typically require one of a small
number of service levels [17,18], and that the Internet
packet length distribution exhibits a small number of
prominent modes. Specifically, TSFQ makes innovative
use of quantization (along the two dimensions of flow
weights and packet lengths) together with specialized yet
simple queuing structures. TSFQ combines all three prop-
erties that are important to a fair queuing algorithm,
namely, a tight delay bound, worst-case fairness, and low
complexity and amenability to hardware implementation.

The remainder of this paper is organized as follows. In
Section 2, we review the operation of timestamp schedulers

Scheduler

Flow queues

......

φ

φ

φ

φ

1

2

3

n

Packet Departures

Packet
Arrivals

Fig. 1. Model of link scheduler serving n flows; /i is the weight assigned
to flow i.

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2393

Author's personal copy

and classify them according to their approach to reducing
the implementation complexity. In Sections 3–5 we
introduce the TSFQ scheduler and describe the details of
its operation. We present an experimental evaluation of
TSFQ in Section 6, and we conclude the paper in Section 7.

2. Timestamp-based schedulers

Timestamp schedulers emulate the ideal but unimple-
mentable generalized processor sharing (GPS) algorithm
[15]. GPS is an ideal scheduler, a theoretical construct that
serves both as a starting point for designing practical
scheduling disciplines and as a reference point for evaluat-
ing the fairness and delay properties of these disciplines.
GPS visits each backlogged flow queue in turn and serves
an infinitesimal fraction of the head-of-line packet at each
queue. If flows are assigned different weights /i (refer to
Fig. 1), then the service they receive from GPS is propor-
tional to their weight.

If a queue is empty, GPS skips it to serve the next non-
empty queue. Therefore, whenever some queues are
empty, backlogged flows will receive additional service in
proportion to their weights. Consequently, GPS achieves
an exact max–min weighted fair bandwidth allocation
[11]. It also provides isolation (protection) among flows,
since a misbehaving flow is restricted to its fair share and
does not affect other flows.

GPS is defined in a theoretical fluid flow model in which
multiple queues may be served simultaneously. In a prac-
tical packet system, on the other hand, packet transmis-
sions may not be preempted and only one queue may be
served at any given time. The timestamp schedulers we re-
view in the following subsections are designed for packet-
ized systems, and emulate the operation of GPS by
maintaining a virtual time function. Packets are assigned
a timestamp based partly on the virtual time value at the
time of their arrival, and are transmitted in increasing or-
der of timestamp. In general, timestamp schedulers have
good delay and fairness properties, but high implementa-
tion complexity. The complexity of such schedulers arises
from two factors.

1. Virtual time computation. In order to assign a time-
stamp to an arriving packet, the scheduler must com-
pute the virtual time function at the time of arrival;
for n backlogged flows, this computation may take time
O(n).

2. Packet sorting. The scheduler selects among the head-of-
line packets of backlogged flows the one with the small-
est timestamp to serve next; this operation takes time
O(logn) using a priority queue. The logarithmic com-
plexity and the fact that the priority queue structure
is not suited to hardware implementation pose signifi-
cant challenges.

Most timestamp scheduler variants can be classified
according to their approach to alleviating the complex-
ity. Several schedulers use approximate virtual time
functions that are more efficient to compute, reducing
the O(n) worst-case complexity to as low as O(1). Other

schedulers employ some form of quantization (e.g., in
virtual time, flow weight, or both) to reduce the com-
plexity of the packet sorting operations. In the following
subsections, we review the operation and properties of
representative schedulers from each category, including
some that employ both techniques. For the sake of com-
pleteness, as well as to introduce notation that we will
use later for describing the TSFQ scheduler, we start our
discussion with two schedulers that do not use any
simplification.

2.1. Emulating GPS: no simplification

The first two schedulers we review do not attempt to
simplify the virtual time computation or packet sorting
operations. They differ in the scheduling policy they use,
which has implications on their respective fairness
properties.

2.1.1. Weighted fair queuing (WFQ)
Weighted fair queuing (WFQ) [6,15] is an approxima-

tion of GPS that serves packets in the order they would
complete service had they been served by GPS. Therefore,
the WFQ scheduler needs to emulate the operation of the
GPS server. To this end, a virtual time function V(t) was
proposed in [15] to track the progress of GPS. The rate of
change of V(t) is:

#Vðt þ sÞ
#s

¼ 1P
i2BðtÞ/i

ð2Þ

where B(t) denotes the set of backlogged flows at time t
and /i is the weight assigned to flow i. Let r be the rate
of the link (server). In GPS, if flow i is backlogged at time
t, it receives a rate of

#Vðt þ sÞ
#s

/ir ¼
/iP

i2BðtÞ/i
r: ð3Þ

In other words, V(t) is the marginal rate at which back-
logged flows receive service in GPS.

Suppose that the kth packet of flow i arrives at time ak
i ,

and has length Lk
i . Let Sk

i and Fk
i denote the virtual times at

which this packet begins and completes service, respec-
tively, under GPS. Letting F0

i ¼ 0 for all flows i, we have
[15]:

Sk
i ¼maxfFk�1

i ;Vðak
i Þg ð4Þ

Fk
i ¼ Sk

i þ
Lk

i

/i
: ð5Þ

The WFQ scheduler serves packets in increasing order of
their virtual finish times Fk

i , a policy referred to as ‘‘small-
est virtual finish time first (SFF)’’ [1].

Let us consider the complexity of WFQ. At packet depar-
ture instants, the SFF policy is used to select the next pack-
et to transmit. This selection can take O(logn) time, where
n is the number of (backlogged) flows, if packet virtual fin-
ish times are organized in a heap-based priority queue data
structure. In addition, there is the cost of maintaining the
virtual time function V(t) at packet arrival and departure
instants. The worst-case complexity of computing V(t)

2394 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

Author's personal copy

can be O(n), although the average-case complexity is O(1)
[7]. Therefore, WFQ is expensive to implement within core
routers that may handle hundreds of thousands to millions
of flows at any given time.

The degree to which WFQ approximates GPS is
determined by two properties that were established in
[15]:

� Bounded delay property. A packet will finish service in a
WFQ system no later than the time it would finish in the
corresponding GPS system plus the transmission time
of a maximum size packet.
� Weak service property. The service (in terms of total

number of bits) that a flow receives in a WFQ system
does not fall behind the service it would receive in the
fluid GPS system by more than one maximum packet
size.

While due to the second property above a WFQ system
may not fall behind GPS by more than one maximum pack-
et size, it may in fact be ahead of GPS in terms of the ser-
vice provided to some flows. In particular, it was shown
in [2] that WFQ may introduce substantial unfairness rela-
tive to GPS in terms of the worst-case fairness index (WFI).
Specifically, GPS has a WFI of zero, but the WFI of WFQ in-
creases linearly with the number of flows n. Consequently,
there may be substantial discrepancies in the service expe-
rienced by individual flows under the WFQ and GPS
schedulers.

2.2. Worst-case fair weighted fair queuing (WF2Q)

The WF2Q algorithm was introduced in [2] as a better
packet approximation of GPS than WFQ. Specifically,
WF2Q employs a ‘‘smallest eligible virtual finish time first
(SEFF)’’ policy for scheduling packets. A packet is eligible
if its virtual start time is no greater than the current virtual
time; hence, the WF2Q scheduler only considers the pack-
ets that have started service in GPS to select the one to be
transmitted next. It has been shown [2] that WF2Q is work-
conserving, maintains the bounded delay property of WFQ,
and has these additional two properties:

� Strong service property. The service (in terms of total
number of bits) that a flow receives from a WF2Q sys-
tem cannot fall behind (respectively, be ahead of) the
service it would receive in the fluid GPS system by more
than one maximum packet size (respectively, a fraction
of the maximum packet size).
� Worst-case fairness property. WF2Q is worst-case fair,

i.e., its WFI is a constant independent of the number n
of flows served by the scheduler.

The first property implies that the WF2Q scheduler clo-
sely tracks the GPS system in terms of the service received
by each flow, and due to the second property, WF2Q is an
optimal packet scheduler in terms of worst-case fairness
[2]. However, the worst-case complexity of WF2Q is O(n),
identical to that of WFQ, as both schedulers need to com-
pute the virtual time function V(t).

2.3. Emulating GPS: simplification through efficient virtual
time functions

2.3.1. WF2Q+
A lower-complexity scheduler, WF2Q+ was introduced

in [1]. The WF2Q+ scheduler is work-conserving, has the
same bounded delay, strong service, and worst-case fair-
ness properties of WF2Q, but uses a different virtual time
function that can be computed more efficiently than the
function V(t) in (2) used by WFQ and WF2Q. The new func-
tion is [1]:

VWF2Qþðt þ sÞ ¼max VWF2QþðtÞ þ s;min
i2BðtÞ

ShiðtÞ
i

n o� �
: ð6Þ

In the above expression, B(t) is the set of backlogged flows
at time t, hi(t) is the sequence number of the packet at the
head of flow i’s queue at time t, and ShiðtÞ

i is the virtual start
time of that packet. The minimum operation in the right-
hand side of (6) can be performed in time O(logn) in the
worst-case using a priority queue structure, hence the
overall complexity of WF2Q+ is O(logn), significantly lower
than the O(n) complexity of WFQ and WF2Q.

As pointed out in [1], the WF2Q+ scheduler implemen-
tation can be further simplified by maintaining a single
pair of start and finish virtual time values per flow, rather
than on a per-packet basis. Specifically, only a single pair of
values, Si and Fi, needs to be maintained for each flow i, cor-
responding to the virtual start and finish times, respec-
tively, of the packet at the head of the queue of flow i.
Let Qi(t�) denote the queue size of flow i just before time
t. When a new packet reaches the head of the queue at
time t, the values of Si and Fi are updated according to
the following expressions [1]:

Si ¼
Fi; Q iðt�Þ – 0;
maxfFi;VWF2QþðtÞg; Q iðt�Þ ¼ 0;

(
ð7Þ

Fi ¼ Si þ
Lk

i

/i
; ð8Þ

where Lk
i is the length of this packet and /i is the weight

assigned to the flow.
Overall, the WF2Q+ scheduler achieves tight delay

bounds and good worst-case fairness with a relatively
low O(logn) algorithmic complexity.

2.3.2. Self-clocked fair queuing (SCFQ)
The O(n) worst-case algorithmic complexity of the WFQ

and WF2Q schedulers is due to the fact that the order of
packet transmissions in these queuing schemes is deter-
mined by tracking the progress of the fluid-flow GPS refer-
ence system, which, in turn, requires the computation of
the virtual time function V(t) whose rate of change is de-
fined in (2). Self-clocked fair queuing (SCFQ) [7] avoids
the computationally expensive emulation of a hypothetical
reference system by adopting a self-contained approach to
fair queuing. Specifically, instead of using a virtual time to
compute the finish times of packets as in expressions (4)
and (5), SCFQ computes the finish time Fk

i of the kth packet
of flow i as:

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2395

Author's personal copy

Fk
i ¼ maxfFk�1

i ; Fcurg þ
Lk

i

/i
; ð9Þ

where Fcur is the finish time of the packet currently in ser-
vice, and finish times are initialized to F0

i ¼ 0 for all flows i.
Since the finish times can be computed in O(1) time using
expression (9), the algorithmic complexity of SCFQ is
O(logn) because of the requirement to select the packet
with the smallest finish time for transmission.

Although the rule (9) that SCFQ uses to compute packet
finish times is easy to implement, the tradeoff is a much
larger delay bound than WFQ. In particular, the delay
bound provided by SCFQ increases linearly with the num-
ber n of flows served by the scheduler, in the worst case
[8]. The worst-case fair index (WFI) of SCFQ is the same
as that of WFQ, i.e., proportional to the number n of flows.

2.3.3. Start-time fair queuing (SFQ)
Start-time fair queuing (SFQ) [9] is a variant of SCFQ

that maintains both a start time and a finish time for each
packet. Upon arrival, the kth packet of flow i is assigned the
start time:

Sk
i ¼maxfFk�1

i ; Scurg; ð10Þ

where Scur is the start time of the packet in service at the
time of arrival. The finish time Fk

i of the kth packet is com-
puted as:

Fk
i ¼ Sk

i þ
Lk

i

/i
: ð11Þ

Unlike the other packet fair schedulers we have considered
so far, SFQ serves packets in increasing order of their start
times, not their finish times.

It can be seen that expressions (10) and (11) may be
computed in constant time, hence SFQ has the same low
algorithmic complexity O(logn) as SCFQ. However, it has
been shown [9] that the worst-case delay of SFQ is signif-
icantly lower than with SCFQ. The worst-case fairness
properties of SFQ are similar to those of WFQ and SCFQ.

2.4. Emulating GPS: simplification through quantization

Even with simplified virtual time functions, timestamp-
based schedulers incur a substantial per-packet overhead
that is related to selecting the packet with the smallest
timestamp to be transmitted next. The schedulers we dis-
cuss in this section use some form of quantization to re-
duce the complexity of packet sorting operations.

2.4.1. Bin sort fair queuing (BSFQ)
Bin sort fair queuing (BSFQ) [5] uses quantization in the

(virtual) time domain in a way that reduces the computa-
tional effort required for sorting packets. To this end, vir-
tual time is divided into slots (bins) of length D, where D
is a configurable parameter, and the scheduler maintains
a virtual system clock that is equal to the left endpoint of
the current slot. Arriving packets are assigned a virtual fin-
ish time using an expression similar to the one for SCFQ in
(9), that can be computed in constant time. Packets with
finish times that fall within the same slot, are inserted in

a first-in, first-out (FIFO) queue associated with this slot.
In other words, there is no sorting of packets that have fin-
ish times ‘‘close’’ to each other, as determined by the
length D of a slot. Therefore, this ‘‘bin sorting’’ operation
takes O(1) time. When the virtual clock is equal to the left
endpoint of slot i, the scheduler serves all the packets in
the FIFO queue associated with slot i. When all the packets
of the queue have been transmitted, the virtual clock is
incremented by D and the scheduler serves the FIFO queue
of the next slot i + 1.

The BSFQ scheduler is scalable and is easy to implement
in hardware. Its fairness and delay guarantees depend
strongly on the value of parameter D. When D is large,
BSFQ reduces to FCFS, while when D is small, its operation
is similar to that of SCFQ. While smaller D values result in
better fairness and delay guarantees, the amount of state
information that the scheduler needs to maintain increases
and its efficiency decreases as the value of D decreases.
Therefore, determining an appropriate value for D is a
complex task that involves several tradeoffs.

2.4.2. Stratified round-robin (SRR)
Stratified round-robin (SRR) [16] also uses quantization,

but in the domain of flow weights. Specifically, flows are
grouped (‘‘stratified’’) into flow classes based on their
weights. An exponential grouping is used, such that the
kth flow class consists of flows i with weights such that:
1
2k 6 /i <

1
2k�1. SRR has two scheduling components: an in-

tra-class scheduler and an inter-class scheduler. The inter-
class scheduler assigns a scheduling interval to each flow
class such that the kth class is assigned an interval of
length 2k slots. Within a class, flows are scheduled in the
associated scheduling intervals using a variant of DRR
[19] that gives each flow a quantum that is proportional
to its weight.

SRR has low complexity and provides delay and fairness
guarantees similar to those of DRR. However, it improves
the worst-case delay a single packet may experience to a
small constant, whereas under DRR and BSFQ this value
is proportional to the number n of flows served by the
scheduler.

2.4.3. Fair round-robin (FRR)
The fair round-robin (FRR) scheduler [25] is similar to

SRR in that flows are grouped into classes using the same
exponential grouping, and has the same structure in that
it employs both an intra-class and an inter-class schedul-
ing component. The inter-class scheduler is timestamp-
based, and determines the time a packet from each class
is to be scheduled by taking into account the time-varying
weight of each class (which changes over time as flows
within a class become active or inactive). FRR assigns finish
times to flow classes, not individual flows, by keeping track
of the corresponding GPS system. This scheduler always
serves the eligible flow class with the smallest finish time;
eligibility of a flow class is defined as a generalization of
the eligibility criterion introduced by the WF2Q scheduler.
Since the inter-class scheduler operates on the basis of
flow classes, emulating GPS (i.e., computing the virtual
time function) takes time proportional to the number m
of classes, which, for a given system is a small constant

2396 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

Author's personal copy

(determined by the exponential grouping employed) that
is independent of the number n of flows.

The intra-class scheduler has two functions. First, it
needs to compute the class weight to pass to the inter-class
scheduler; the latter uses these weights to determine the
order in which each class is served, as we explained above.
Second, it must decide the order in which packets from the
various flows within the class will be transmitted when-
ever the inter-class scheduler serves this class. The intra-
class scheduler uses a frame-based approach similar to
DRR, but with a modification to account for the weight dif-
ferences among the flows within the same class.

The FRR scheduler has low algorithmic complexity, is
worst-case fair, and provides a constant delay bound, sim-
ilar to SRR.

3. Tiered-service fair queuing (TSFQ)

In this section we introduce a new scheduler that is de-
signed to achieve the delay and fairness properties of
WF2Q+ at low algorithmic complexity. As we discussed in
Section 2.3.1, WF2Q+ closely emulates the ideal GPS
fluid-flow scheduler, and thus it combines tight delay
bounds with a constant worst-case fair index. However,
its complexity is O(logn), where n is the number of flows
served. Although other scheduler variants have lower com-
plexity, they provide looser delay and fairness guarantees
than WF2Q+. As a result, the service received by individual
flows under these simpler schedulers may be significantly
different than the service they would receive under
GPS.

We now note that the schedulers we reviewed in the
previous section were designed under the assumption that
both flow weights and packet sizes may take arbitrary val-
ues. In other words, they are designed to allocate the link
bandwidth in the finest possible granularity; taken to the
limit, such schedulers could potentially allocate bandwidth
at increments of 1 bit per second. Clearly, the ability to
support arbitrary rates offers maximum flexibility in utiliz-
ing the available network capacity.

On the other hand, supporting rate allocation at such
extremely fine granularity may seriously complicate the
operation and management of the network. For instance,
the task of differentiating between two rates that differ
by, say, even a few Kbps, may be difficult or even impos-
sible to accomplish for traffic of finite duration, under-
mining the network’s ability to support important
functions such as robust traffic policing or accurate cus-
tomer billing. Furthermore, given the unpredictability of
future bandwidth demands in terms of their size, arrival
time, and duration, link capacity across a continuous-rate
network may become fragmented. Such fragmentation
poses significant challenges in terms of traffic engineer-
ing, and may compromise the ability to achieve an
acceptable level of utilization or meet users’ QoS require-
ments. With respect to packet schedulers, the assumption
of arbitrary flow weights is a fundamental one in that it
underlies the high complexity of the virtual time compu-
tation and packet sorting operations. As a result, the
implementation of such schedulers suffers from severe

scalability challenges that have impeded their adoption
in the Internet.

Our work is motivated by two important observations
regarding Internet traffic characteristics which suggest
that the implementation of packet schedulers may be sim-
plified significantly without compromising their delay and
fairness properties.

� Flow weights. First, traffic flows are unlikely to have
arbitrary weights. For instance, flows of guaranteed-ser-
vice applications may be grouped into a small set of
classes depending on the nature of the application
(e.g., ‘‘voice’’, ‘‘video,’’ ‘‘game,’’, etc.) with the flows in
each class having similar bandwidth and delay require-
ments. Similarly, whereas best-effort applications have
elastic requirements that adjust to the available rate,
their rate is typically limited by the access bandwidth
available to the user. Since most Internet service pro-
viders offer some type of tiered service [17], users
may select only from a small set of bandwidth tiers.
The practical implication of this fact is that the rates
requested by flows (equivalently, the flow weights in
the fair queuing system) are not arbitrary, but are lim-
ited to a small set of values that are typically known
in advance. As we explain shortly, it is possible to speed
up considerably the computation of the virtual time
function if the scheduler is designed so as to handle
only a small set of discrete flow weights.
� Packet sizes. The second observation is that in the Inter-

net, the vast majority (i.e., up to 90%) of packets have a
fixed length that takes one of a small number of values
[23,20]. Therefore, the scheduler may employ appropri-
ate queuing structures that simplify, or even completely
eliminate the need for, packet sorting operations.

The main contribution of our work is a new scheduler
that exploits the above observations by employing quanti-
zation in two dimensions: along the domain of flow
weights and along the domain of packet sizes. We refer
to this scheduler as tiered-service fair queuing (TSFQ). As
we will show later, TSFQ performs the two main schedul-
ing operations, namely, computing the virtual time func-
tion and selecting the next packet to be transmitted, in
time that is independent of the number n of flows, yet it
achieves the excellent delay and fairness properties of
the WF2Q+ scheduler.

We consider a link scheduler which serves n flows and
employs per-flow queuing, i.e., it allocates a FIFO buffer to
each flow, as shown in Fig. 1. The scheduler supports p dis-
tinct tiers of service, where p� n is a small constant (e.g.,
p � 10 � 15). The lth tier is characterized by a positive real
weight /l, l = 1, . . . ,p. Each flow i is mapped to one of the p
service levels, i.e., it is assigned one of the p weights /l; we
assume that this assignment remains fixed throughout the
duration of the flow. The mapping of flows to service tiers
is performed at the time the flow enters the network by
taking into account the QoS requirements of the applica-
tion or the bandwidth tier to which the user subscribes.
We make the assumption that the link is configured with
the number p of service tiers and the associated weights
/l. These parameters may be determined in advance by

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2397

Author's personal copy

the network provider as part of the network planning pro-
cess, by using empirical information regarding the user de-
mands [13,18].

Before proceeding, we emphasize that the quantization
of flow weights in TSFQ is different from the approach ta-
ken by the SRR [16] and FRR [25] schedulers we discussed
above. Specifically, SRR and FRR allow flows to have arbi-
trary weights, but ‘‘stratify’’ them into a small number of
classes using exponential grouping. In contrast, TSFQ as-
signs the same weight to all flows within a service tier. To
make the distinction clear, we use the term flow tier to re-
fer to a set of flows with the same weight, instead of the
term flow class that was used in [16,25] to refer to a group
of flows with similar weights as determined by the specific
exponential grouping method employed.

3.1. Logical operation: flow weight quantization

The TSFQ scheduler operates in a manner similar to
WF2Q+ in that:

� it uses the same virtual time function shown in expres-
sion (6);
� it maintains a single pair of values, Si and Fi for each

flow i, corresponding to the virtual start and finish
times, respectively, of the packet at the head of the FIFO
queue of flow i; these values are updated according to
expressions (7) and (8); and
� it employs the SEFF policy to serve packets.

The TSFQ scheduler logically consists of two compo-
nents, as illustrated in Fig. 2, that together effect the quan-
tization in the domain of flow weights. The first
component comprises of p identical intra-tier schedulers,
while the second component is a single inter-tier scheduler.
The main function of each component is as follows:

� Intra-tier scheduler. The lth intra-tier scheduler uses the
SEFF policy to select, among the flows of the lth service
tier, l = 1, . . . , p, only, the flow i with the minimum virtual
finish time Fi. The structure and operation of the intra-
tier scheduler are described in detail in the following
sections.
� Inter-tier scheduler. The inter-tier scheduler simply

serves the packet at the head of the queue with the
smallest virtual finish time among the p flows selected
by the corresponding intra-tier schedulers. Since p is a
small constant for the given link, the packet to be trans-
mitted next can be determined in time that is indepen-
dent of the number of flows, and in fact, this operation
can be performed in constant time in hardware. Hence,
the implementation of the inter-tier scheduler is
straightforward and does not require any priority queue
data structure to be maintained.

We note that the logical structure of the TSFQ scheduler
is similar to the structure of the SRR and FRR schedulers
which both consist of intra-class and inter-class scheduling
components. However, there are significant differences in
the functionality and operation of these schedulers. Specif-
ically, the inter-class scheduler of SRR assigns scheduling
intervals to each flow class, while the inter-class scheduler
of FRR assigns weights to flow classes, not individual flows,
and serves the class with the smallest timestamp. The TSFQ
inter-tier scheduler, on the other hand, simply serves the
flow with the smallest finish time among the p such flows
across the p tiers, hence its operation is much simpler. The
intra-class scheduler of SRR serves flows within its as-
signed scheduling interval using a variant of DRR, while
the intra-class scheduler of FRR also uses a (different) var-
iant of DRR. In contrast, the intra-tier scheduler of TSFQ
(described shortly) uses simple queuing structures to
maintain the flows within its tier sorted in decreasing or-
der of finish time.

3.2. Virtual time computation

Let S(l)(t), l = 1, . . . ,p, denote the virtual start time of the
flow with the smallest finish time among the flows of the
lth service tier at time t. Then, we may rewrite the expres-
sion (6) of the virtual time function as:

VTSFQ ðt þ sÞ ¼max VTSFQ ðtÞ þ s; min
l¼1;...;p

SðlÞðtÞ
n o� �

: ð12Þ

Assuming that at any time t each intra-tier scheduler keeps
track of the flow within its tier with the smallest finish
time, the minimum operation in the right-hand side of
expression (12) can be implemented in O(1) time. Hence,
the virtual time computation takes time that is indepen-
dent of the number n of flows.

So far, we have shown that, due to the quantization of
flow weights, both the virtual time computation and the
inter-tier scheduling operations take time that depends
only on the number p of tiers, which is a small constant
for a given scheduler. Therefore, the critical component
of TSFQ is the intra-tier scheduler which is responsible
for identifying (selecting) the flow with the minimum

Tier p

...
...

...
Intra−tier scheduler

scheduler
Inter−tier

...

Tier 1

Tier 2

Fig. 2. Logical diagram of the TSFQ scheduler with p service tiers.

2398 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

Author's personal copy

virtual finish among the flows in its tier. In the next two
sections we show that by employing simple queuing struc-
tures this selection operation can be implemented
efficiently.

4. Intra-tier scheduler: the fixed-size packet case

The lth TSFQ intra-tier scheduler, l = 1, . . . ,p, serves
flows belonging to the lth service tier and have been as-
signed the same weight /l. The p intra-tier schedulers are
identical and operate independently of each other. There-
fore, in this and the next section we consider the operation
of a single intra-tier scheduler in which all flows have iden-
tical weights. For simplicity, we let / denote the weight as-
signed to all the flows served by the scheduler.

In this section we make the additional assumption
that all packets of all flows have constant size L (i.e.,
Lk

i ¼ L8i; k). We will remove this assumption in the next
section; however, we note that the implementation we
present in this section is of practical importance to ATM
networks. We also note that this case of limited flow rates
(weights) and fixed packet sizes has been considered in
[21]. Nevertheless, the queue structure and operation we
present here is different as it applies specifically to the
SEFF policy.

The following operation is based on the fact that in a
system with fixed-size packets and flows of identical
weight, sorting flows according to their virtual start times
produces an identical order to sorting them according to
their virtual finish times [21]. This property is formally ex-
pressed in the following lemma.

Lemma 4.1. Consider flows i and j with /i = /j = / and
packets of fixed size L. Let Si be the virtual start time of flow i,
and Sj be the virtual start time of flow j. Then:

Si 6 Sj () Fi 6 Fj ð13Þ

4.1. Queue structure and operation

The intra-tier scheduler for fixed-length packets con-
sists of a simple FIFO queue, as illustrated in Fig. 3. The
scheduler maintains a single token ji for each flow i that
it serves. Initially (i.e., at time t = 0, before any packet arriv-
als to the system), the FIFO queue is empty. Tokens are in-
serted at the tail of the FIFO queue representing the order

in which flows will be served, and a token is removed from
the head of the FIFO queue whenever it is selected for ser-
vice by the inter-tier scheduler.

The operation of the scheduler is fully described by the
actions taken whenever a relevant event takes place. The
relevant events occur when (1) a packet arrives, (2) a flow
becomes eligible for service, or (3) a packet departs (is
served).

� Packet arrival. A packet of flow i arriving at time t is
inserted at the tail of this flow’s queue. If flow i was
active just prior to the arrival t (i.e., its queue was
non-empty, hence Qi(t�) – 0, using the notation of Sec-
tion 2.3.1), then no other action is taken. If, on the other
hand, flow i was inactive prior to the arrival (i.e.,
Qi(t�) = 0), then this arriving packet reaches the head
of this flow’s queue at time t, and the start time Si and
finish time Fi of flow i are updated according to expres-
sions (7) and (8), respectively. If this previously inactive
flow i becomes eligible at time t (i.e., Si 6 VTSFQ(t) after
the update), then the next event is triggered, otherwise
no other action is taken.
� A flow becomes eligible for service. When a flow i

becomes eligible at time t (i.e., Si = VTSFQ(t)), then the
token ji corresponding to this flow is inserted at the tail
of the scheduler’s FIFO queue.
� Packet departure. Let ji be the token at the head of the

scheduler’s FIFO queue at the time the inter-tier sched-
uler selects this tier to serve. Then, the packet at the
head of the queue of flow i is served and token ji is
removed from the scheduler’s FIFO queue. If flow i
becomes inactive, then no other action is taken. Other-
wise, a new packet reaches the head of this flow’s
queue, and the start time Si and finish time Fi are
updated according to expressions (7) and (8), respec-
tively. If the flow becomes eligible, then the corre-
sponding event above is triggered, otherwise no action
is taken.

Based on these actions, it is easy to see that token ji is
in the scheduler’s FIFO queue if and only if flow i is eligible
for service. Therefore, we have the following results.

Lemma 4.2. Considering only the flows of a given tier, the
intra-tier scheduler of Fig. 3 is identical to the WF2Q+
scheduler [1].

Proof. Since tokens are inserted into the FIFO queue at the
moment the corresponding flows become eligible for ser-
vice (i.e., at the moment their virtual start time becomes
equal to the current time), tokens in the FIFO queue are
sorted in increasing order of the corresponding flows’ vir-
tual start times. Because of Lemma 4.1, the queue is sorted
in increasing order of the virtual finish times, which is the
order in which flows are served under WF2Q+. Since (1)
token arrivals to the FIFO queue take place at exactly the
same instants that the corresponding head-of-line packets
are considered for service under WF2Q+, and (2) the order
of service is identical, the two schedulers are identical
under the assumption of flows with fixed-size packets
and identical weights. h

scheduler

...

Flow queues

1

2

m

FIFO queue
Intra−tier scheduler

To inter−tier

Fig. 3. Queue structure of the intra-tier scheduler for fixed-size packets.

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2399

Author's personal copy

Lemma 4.3. The TSFQ scheduler consisting of p intra-tier
schedulers and one inter-tier scheduler is identical to WF2Q+.

Proof. Each of the p intra-tier schedulers maintains a
FIFO queue that sorts the flows in its tier in increasing
order of their start (equivalently, finish) times, identical
to the order in which they are considered under
WF2Q+. The inter-tier scheduler serves the p flows with
tokens at the head of the p intra-tier FIFO queues in
increasing order of their virtual start (finish) times.
Consequently, the TSFQ scheduler overall is identical
to WF2Q+. h

Based on these results and the discussion in Section 3.2,
we conclude that the TSFQ (intra- and inter-tier) scheduler
achieves the worst-case fairness and delay properties of
WF2Q+ with an algorithmic complexity of O(1). Note that
this conclusion does not contradict the findings of [24]
which suggest that the O(logn) time complexity is funda-
mental to achieving good delay bounds. The analysis in
[24] assumes that flow weights and packet sizes can take
arbitrary values, whereas the result of Lemma 4.3 only
holds under the specific assumptions of fixed flow weights
and packet lengths.

5. Intra-tier scheduler: the variable-size packet case

We now remove the assumption we made in the previ-
ous section that all packets have a fixed size. As in the pre-
vious section, we consider the problem of scheduling flows
within a given service tier, therefore we assume that all
flows are assigned the same weight /. In a network with
variable-size packets, the statement of Lemma 4.1 is no
longer true, since the second term in the right-hand side
of (8) is not constant. Hence, in such a network, fair queu-
ing schedulers in general require some form of packet
sorting.

In the Internet, however, it is well known that certain
packet sizes dominate [23,20]. Specifically, the study in
[23] found that packets of one of three common sizes make
up more than 90% of all Internet traffic; the three common
packet sizes identified in the study were 40, 576, and
1500 bytes, corresponding to TCP acknowledgments, the
default IP datagram size, and maximum-size Ethernet
frames, respectively. A more recent study [20] shows that
(1) Internet traffic is mostly bimodal at 40 and 1500 bytes,
(2) there is a shift away from 576 bytes due to the prolifer-
ation of Ethernet, and (3) a new mode is forming around
1300 bytes which the authors theorize is due to wide-
spread use of VPNs. Similar studies, which can be found
on CAIDA’s web site (http://www.caida.org), confirm that
the length of the vast majority of Internet packets takes
one of a small number of constant values.

In the remainder of this section we show how these
facts regarding the Internet packet length distribution nat-
urally lead to simple queuing structures that exploit quan-
tization along the domain of packet lengths. This modified
version of the intra-tier TSFQ scheduler we presented in
the previous section may handle Internet traffic efficiently
in terms of packet sorting operations.

5.1. Queue structure and operation: packet size quantization

Instead of maintaining a single FIFO queue, as is the
case for fixed-size packets shown in Fig. 3, the intra-tier
scheduler for variable packet size networks maintains a
small number k of queues. The queue structure of this
scheduler is illustrated in Fig. 4 for the trimodal packet
length distribution reported in [23]; the queue structure
can be modified in a straightforward manner to reflect
any similar distribution. In this case, the scheduler main-
tains k = 7 queues. Three of the queues are dedicated to
packets of a common size, i.e., 40, 576, and 1500 bytes,
respectively, which define the three modes of the distribu-
tion in [23]. The other four queues are for packets of size
other the common values; as seen in Fig. 4, there is one
queue for packets of size less than 40 bytes, one for packets
of size 41–575 bytes, one for packets of size 577–1499 by-
tes, and one for packets of size greater than 1500 bytes.

The operation of the intra-tier scheduler is very similar
to the one we described in Section 4.1, with only one dif-
ference. In particular, the actions taken at packet arrival
and departure events are identical to those in the fixed-
packet case listed in Section 4.1. The only difference is in
the actions taken at instants when a flow becomes eligible
for service:

� A flow becomes eligible for service. When a flow i
becomes eligible at time t, then the token ji associated
with this flow is inserted into the queue corresponding
to the size of the packet at the head of the queue of flow
i.

Similar to the fixed-packet case, token ji is in one of the
intra-tier scheduler’s queues if and only if flow i is eligible
for service.

41−575 bytes

. . .

1

2

3

4

5

m

576 bytes

40 bytes

<40 bytes

1500 bytes

577−1499 bytes

>1500 bytes

Flow queues Intra−tier scheduler
queues

To inter−tier
scheduler

Fig. 4. Queue structure of the intra-tier scheduler for Internet packet
traffic.

2400 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

Author's personal copy

Since each of the p inter-tier schedulers maintains k dis-
tinct queues, the inter-tier scheduler selects the flow to
serve next as the one with the smallest virtual finish time
among the pk candidate flows whose tokens are at the
head of the pk queues. Since both p and k are small integers
and their values are constant for a given system, this oper-
ation of the inter-tier scheduler takes constant time, as in
the fixed-size packet case.

5.2. Packet sorting operations

Note that Lemma 4.1 holds true for packets of a com-
mon size. Hence, the queues dedicated to these packets
operate in a FIFO manner, and packets are simply inserted
at the tail of these queues. Since packets of a common size
make up more than 90% of Internet traffic [23], no sorting
operations are necessary for the large majority of packets.
On the other hand, queues dedicated to packets of size be-
tween the common values must be sorted appropriately at
the time of a packet insertion. These sorting operations
take place infrequently (e.g., about 10% of the time), and
involve relatively short queues (since about 10% of the
packets are spread over several such queues at p different
service levels). Moreover, the time complexity of the sort-
ing operations is independent of the number m of flows in
the given service tier, and is a function only of the network
load and the ratio of packets with a non-common size.

We have the following results.

Lemma 5.1. The TSFQ scheduler for variable packet sizes,
consisting of p intra-tier schedulers as in Fig. 4 and one inter-
tier scheduler, is identical to WF2Q+.

Proof. The proof of Lemmas 4.2 and 4.3 also holds in this
case, hence the scheduler is equivalent to WF2Q+. h

Finally, we note that, although consecutive packets of
the same flow i may be inserted into different queues in
Fig. 4, they will always be transmitted in order: not only
does the second packet have a larger virtual finish time
than the first one, but since there is exactly one token for
each flow, the second packet cannot be considered for ser-
vice until the first one has departed from the scheduler.

5.3. Elimination of packet sorting operations

The operation of the intra-tier scheduler may be further
simplified by eliminating packet sorting even for queues
holding packets of size between the common values. Doing
so may cause some packets to be served in incorrect order
of virtual finish time, hence introducing a small degree of
unfairness. However, the overall impact is likely to be
small. Indeed, observe that packets of a non-common size
represent only a small fraction of the overall traffic seen by
the server, and are distributed over a number of different
queues across p service tiers. Consequently, the arrival rate
to each of these queues is likely to be low, especially under
typical operating conditions when the load offered to the
server is not too high. Now note that, since all flows within
a service tier have the same weight / in expression (8), the
order of packets in such a queue will depend on the rela-

tive values of their virtual start time and length. Therefore,
even when a small packet arrives to find larger packets in
the queue (i.e., packets with a larger value for the second
term in the right-hand side of (8)), the elapsed time since
the previous arrival (which affects the first term of (8))
may be sufficiently large so that the queue remain sorted.

This intuition is further supported by the coarse manner
in which the leap forward virtual clock [22] algorithm
computes timestamps, and the mechanism employed by
the bin sort fair queuing (BSFQ) discipline [5] to sort pack-
ets. The results in [22,5] indicate that approximate sorting
can be as good as exact sorting; moreover, in the case of
our TSFQ scheduler, approximate sorting is limited to a
small fraction of all packets. This intuition is confirmed
by the following lemma that bounds the delay of any pack-
et in a queue corresponding to packets of sizes between
two common sizes; note that the lemma suggests that
the delay is relatively small, and can be further improved
by reducing the range of packet sizes that are accommo-
dated by any given queue.

Lemma 5.2. Consider an intra-tier scheduler for a tier with
rate rl and a queue that is dedicated to packets of length
between Llo and Lhi bits, Llo < Lhi. The maximum delay that a
packet may experience due to the elimination of packet
sorting operations in this queue is bounded by r(Lhi � Llo)/rl,
where r is the rate of the scheduler (over all tiers).

Proof. Consider a scheduler operating at rate r with p ser-
vice tiers and rate rl assigned to tier l, l = 1, . . . ,p. Consider
the lth tier, and let A denote the head-of-line packet of
some flow that at time t is released to the queue of its
intra-tier scheduler that corresponds to packets with sizes
between Llo and Lhi bits, Llo < Lhi. Further assume that pack-
ets Bi, i = 1, . . . ,m, are already in that queue and no sorting
operations are performed (i.e., the queue operates in a FIFO
manner). In the worst case: (1) all packets Bi have finish
times greater than that of packet A; and (2) packet A has
length Llo (so as to receive the minimum possible finish
time).

Since packet A was released, i.e., it became eligible for
service, at time t, we have that its start time SA = V(t).
Packets Bi were also released before time t. Letting Smax

denote the maximum start time of any of these packets, we
have that:

Smax < VðtÞ: ð14Þ

By assumption, the finish times of all packets Bi are greater
than the finish time FA = SA + Llo/rl = V(t) + Llo/rl of packet A.
Letting Fmin denote the minimum finish time of the Bi pack-
ets, we have: Fmin > V(t) + Llo/rl. Since the packets Bi have
length no larger than Lhi, we also have that

Smin P Fmin �
Lhi

rl
> VðtÞ þ Llo

rl
� Lhi

rl
: ð15Þ

From (14) and (15) we can bound the difference between
the minimum and maximum start times of packets Bi:

Smax � Smin ¼
Lhi

rl
� Llo

rl
: ð16Þ

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2401

Author's personal copy

Since the minimum and maximum start times correspond
to the virtual times V(tmin) and V(tmax), respectively, that
the corresponding packets Bi were released to the queue,
we also have that:

VðtmaxÞ � VðtminÞ ¼
Lhi

rl
� Llo

rl
) tmax � tmin 6

Lhi

rl
� Llo

rl
; ð17Þ

where the inequality in the second line of (17) is due to the
fact that V(t2) � V(t1) P t2 � t1 for any t2 > t1.

Assuming that the server is not oversubscribed, i.e., the
sum of the rates assigned to all flows is no larger than r, we
can now write for the m packets Bi:X
Bi ;i¼1;���;m

Li

rl
6 rðtmax � tminÞ ¼

rðLhi � LloÞ
rl

: ð18Þ

In other words, the total size of the packets Bi that were
incorrectly inserted before packet A in the queue does
not exceed r(Lhi � Llo) bits, hence the maximum delay that
the elimination of sorting operations will cause for packet
A is bounded by r(Lhi � Llo)/rl. h

Finally, we emphasize that the queue structure shown
in Fig. 4 is for illustration purposes only and is simply
meant to convey the idea underlying the structure of the
scheduler for Internet packet traffic; we do not imply that
routers have to be configured in exactly this manner. Net-
work operators may configure this queue structure to re-
flect the specific packet distribution observed in their
networks, and update it over time as traffic conditions
evolve. Similarly, they may optimize the number of service
tiers and the flow weights associated with them by taking
into account the prevailing user demands [18,13]. There-
fore, this framework of fair queuing schedulers for tiered-
service networks is quite flexible. Network providers may
adapt the specific elements of the framework to differenti-
ate their offerings, and to provide users with a menu of
customized services.

6. Experimental evaluation of TSFQ

We have developed implementations of the TSFQ
scheduler for the ns-2 network simulator and in the Linux
kernel. The details of the ns-2 implementation are reported
in [4], along with a comprehensive set of simulation exper-
iments that validate the operation of TSFQ. In this section
we present network experiments with the Linux kernel
implementation which is fully described in [12].

The TSFQ scheduler was implemented as a Linux kernel
loadable module. The Linux kernel version 2.6.26.2 [14]
was used, the latest kernel available at the time of the
implementation. The WF2Q+ discipline [1] was also imple-
mented as a separate loadable module for comparison pur-
poses, since a Linux kernel implementation of the WF2Q+
scheduler did not exist at the time.

6.1. Testbed and experimental setup

The experiments were carried out using a testbed con-
sisting of three Linux machines connected as shown in
Fig. 5. The leftmost machine acts as the ‘‘sender’’ of UDP
traffic that is destined to the rightmost machine, the ‘‘re-

ceiver.’’ The middle machine is configured as a ‘‘router’’
that receives packet traffic from the sender and forwards
it to the receiver. The Ethernet link from the sender to
the router is configured to run at 1 Gbps, while the link
from the router to the receiver is configured to run at
10 Mbps. Consequently, the latter link becomes the bottle-
neck, causing the queues at the router to build up.

UDP traffic at the sender is generated by multiple
simultaneous flows, each transmitting to a different desti-
nation port on the receiver. The router implements the
TSFQ and WF2Q+ disciplines to schedule packets received
from the sender for transmission on the outgoing 10 Mbps
link. It also employs per-flow queuing, assigning a separate
FIFO queue to each UDP flow. The router uses the port
information carried by the packets to determine the flow
to which they belong and insert them into the appropriate
queue. The TSFQ and WF2Q+ schedulers use pre-configured
weights to serve the queues of the various flows.

The UDP flows at the sender continuously transmit
packets to the receiver without any form of flow control.
Packet sizes L are randomly generated from the following
discrete distribution:

Pr½L¼x�¼

0:3; x¼40;
0:3; x¼1200;
0:3; x¼1500;
0:1; 16x639; 416x61199; 12016x61499:

8>>><
>>>:

ð19Þ

This distribution generates traffic dominated by a small
number (in this case, three) of packet sizes, and is similar
to the packet size distributions observed in [23,20]. Conse-
quently, the intra-tier schedulers of TSFQ are configured
with six queues, similar to the structure shown in Fig. 4
(the seventh queue of Fig. 4 for packets of size greater than
1500 bytes is not used here, as no such packets are
generated).

A number of experiments were carried out to investi-
gate the behavior of the schedulers under three scenarios:

� Scenario I. Several flows of different weights are started
at the same time. After the system reaches steady state,
the flows are terminated one by one. This scenario
explores how the schedulers allocate excess bandwidth
to the remaining flows.
� Scenario II. A small number of flows are started at the

same time. After the system reaches steady state, new
flows of different weights are started. Once the system
reaches steady state again, the newly introduced flows
are terminated. The start and termination instants of

Router

spbM01spbG1
eth020

0.
1.

1.
2

20
0.

1.
1.

1

20
0.

1.
1.

6

20
0.

1.
1.

5

WF Q+
eth0

eth0 eth1

2

TSFQ

Sender Receiver

Scheduler

Fig. 5. Testbed setup.

2402 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

Author's personal copy

the new flows are spread over time. These experiments
are used to investigate the impact of new flows on the
bandwidth share of existing ones, as well as the alloca-
tion of excess bandwidth.
� Scenario III. Many flows spanning a small number of ser-

vice levels are run for a long time. This scenario is used
to evaluate the fairness of each scheduling discipline.
Specifically, we use Jain’s fairness index [10] to compare
the WF2Q+ and TSFQ schedulers. In a system with n
competing flows and flow i having throughput share fi,
i = 1, . . . ,n, Jain’s fairness index (FI) is defined as:

FI ¼
Pn

i¼1fi
� �2

n
Pn

i¼1f 2
i

; ð20Þ

such that a value of 1 represents perfect fairness with
all flows receiving an equal share (=1/n) of the available
bandwidth.

6.2. Performance results

In this section we present a set of illustrative experi-
ments for the three different scenarios described above; a
comprehensive suite of experimental results are available
in [12].

6.2.1. Scenario I: Allocation of Excess Bandwidth
Figs. 6 and 7 present the results of an experiment to

investigate the relative behavior of the WF2Q+ and TSFQ
schedulers in allocating excess bandwidth. This experi-
ment involves four flows: flows 1 and 2 each have weight
0.15, while flows 3 and 4 each are assigned weight 0.35.
For this experiment, the TSFQ scheduler was configured
with p = 2 tiers, one with weight 0.15 and the other with
weight 0.35; hence, flows 1 and 2 were assigned to the first
tier, and flows 3 and 4 were assigned to the second tier. All
four flows start transmission simultaneously at time t = 0,
and are terminated one-by-one, in reverse order of their
index, at 10 s intervals.

Figs. 6 and 7 plot the throughput of each flow (in Mbps)
as a function of time for the WF2Q+ and TSFQ schedulers,
respectively. Recall that the bottleneck link in the experi-
mental setup was set to 10 Mbps, and this latter value rep-

resents the bandwidth that is shared among the four flows.
We observe that during the first 10 s of the experiment
when all four flows are active, both schedulers allocate
the available bandwidth in proportion to the flow weights,
such that flows 1 and 2 (respectively, flows 3 and 4) cap-
ture approximately 15% (respectively, 35%) of the total
bandwidth each. When flow 4 terminates, the bandwidth
share of each of the three flows that remain active in-
creases proportionally to its weight. In particular, flow 3
with the highest weight (0.35) captures most of the band-
width that becomes available, while flows 1 and 2 of the
same but lower weight (0.15) capture an equal share of
the excess bandwidth. The same behavior is observed at
the time the other flows are terminated. Importantly, the
throughput curves of a given flow are comparable across
the two figures, implying that the TSFQ and WF2Q+ sched-
ulers perform similarly in terms of allocating bandwidth to
flows in proportion to their weights.

6.2.2. Scenario II: impact of new flows
In order to demonstrate the performance of the two

schedulers when flows both arrive and depart, we run an
experiment with the same flows as in Scenario I, i.e., two
flows of weight 0.35 and two of weight 0.15. In this case,
the flows of lower weight (flows 1 and 2) both become ac-
tive at time t = 0. At time t = 10 s (respectively, t = 20 s)
flow 3 (respectively, flow 4) of higher weight becomes ac-
tive. All four flows remain active until time t = 30 s, at
which time flow 3 departs, followed by flow 4 at time
t = 40 s.

The results of this experiment are shown in Figs. 8 and
9, which again plot the time-varying throughput of each
flow under the WF2Q+ and TSFQ scheduler, respectively.
During the first ten seconds of the experiment, the two ac-
tive flows receive an equal share of the available band-
width despite their low weights, as expected. As the
other two flows are introduced, the bandwidth share of
existing flows is reduced accordingly; on the other hand,
the bandwidth share of active flows increases as flows de-
part (i.e., are terminated). Overall, we make three impor-
tant observations: (1) at any point in time the available
bandwidth is shared among active flows in proportion to

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 35%
Flow 4 weight 35%

Fig. 6. Scenario I, four flows, WF2Q+ scheduler.

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

Flow 1 weight 15% (Tier 1)
Flow 2 weight 15% (Tier 1)
Flow 3 weight 35% (Tier 2)
Flow 4 weight 35% (Tier 2)

Fig. 7. Scenario I, four flows, TSFQ scheduler.

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2403

Author's personal copy

their weights; (2) as flows arrive or depart, the bandwidth
share of all the flows in the system quickly reaches a new

equilibrium; and (3) there is good agreement in the behav-
ior of the two schedulers.

6.2.3. Scenario III: long-term fairness
The first experiment of this section investigates qualita-

tively (i.e., graphically) the long-term fairness of the
WF2Q+ and TSFQ schedulers, and involves 32 flows that
all start at time t = 0 and remain active throughout the
duration of the experiment. Two of the flows have weight
of 0.35, ten flows have weight equal to 0.05, and the
remaining twenty flows have weight of 0.01. Hence, for
this experiment, the TSFQ scheduler was configured with
p = 3 tiers with weights of 0.35, 0.05, and 0.01, respectively,
and the thirty-two flows were assigned to the appropriate
tier according to their individual weights.

Figs. 10 and 11 plot the throughput of the thirty-two
flows as a function of time for the WF2Q+ and TSFQ sched-
ulers, respectively. In both figures, the flows are clearly
separated in three groups, each corresponding to three
TSFQ tiers, with flows within each group receiving a share

 0

 2

 4

 6

 8

 10

 12

 14

Th
ro

ug
hp

ut
 (M

bp
s)

Flow 1 weight 15%
Flow 2 weight 15%
Flow 3 weight 35%
Flow 4 weight 35%

 0 5 10 15 20 25 30 35 40 45 50
Time (sec)

Fig. 8. Scenario II, four flows, WF2Q+ scheduler.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

Flow 1 weight 15% (Tier 1)
Flow 2 weight 15% (Tier 1)
Flow 3 weight 35% (Tier 2)
Flow 4 weight 35% (Tier 2)

Fig. 9. Scenario II, four flows, TSFQ scheduler.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

 Flow 1 weight 15%
 Flow 2 weight 15%

Flow 3 weight 5%
Flow 4 weight 5%
Flow 5 weight 5%
Flow 6 weight 5%
Flow 7 weight 5%
Flow 8 weight 5%
Flow 9 weight 5%

 Flow 10 weight 5%
 Flow 11 weight 5%
 Flow 12 weight 5%
 Flow 13 weight 1%
 Flow 14 weight 1%
 Flow 15 weight 1%
 Flow 16 weight 1%

 Flow 17 weight 1%
 Flow 18 weight 1%
 Flow 19 weight 1%
 Flow 20 weight 1%
 Flow 21 weight 1%
 Flow 22 weight 1%
 Flow 23 weight 1%
 Flow 24 weight 1%
 Flow 25 weight 1%
 Flow 26 weight 1%
 Flow 27 weight 1%
 Flow 28 weight 1%
 Flow 29 weight 1%
 Flow 30 weight 1%
 Flow 31 weight 1%
 Flow 32 weight 1%

Fig. 10. Scenario III, thirty-two flows, WF2Q+ scheduler.

0

0.5

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9 10

Th
ro

ug
hp

ut
 (M

bp
s)

Time (sec)

Flow 1 weight 15%
Flow 2 weight 5%
Flow 3 weight 5%
Flow 4 weight 5%
Flow 5 weight 5%
Flow 6 weight 5%
Flow 7 weight 5%
Flow 8 weight 5%
Flow 9 weight 5%

Flow 10 weight 5%
Flow 11 weight 5%
Flow 12 weight 5%
Flow 13 weight 1%
Flow 14 weight 1%
Flow 15 weight 1%
Flow 16 weight 1%

Flow 17 weight 1%
Flow 18 weight 1%
Flow 19 weight 1%
Flow 20 weight 1%
Flow 21 weight 1%
Flow 22 weight 1%
Flow 23 weight 2%
Flow 24 weight 1%
Flow 25 weight 1%
Flow 26 weight 1%
Flow 27 weight 1%
Flow 28 weight 1%
Flow 29 weight 1%
Flow 30 weight 1%
Flow 31 weight 1%
Flow 32 weight 1%

Fig. 11. Scenario III, thirty-two flows, TSFQ scheduler.

 0 1 2 3 4 5 6
Time (sec)

0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fa

irn
es

s
In

de
x

WF2Q+
TSFQ

Fig. 12. Scenario III, thirty-two flows, fairness index.

2404 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

Author's personal copy

of bandwidth in line with their weight. Although the
throughput of the various flows shows more short-term
variations under the TSFQ scheduler, the overall behavior
is similar in the two figures. In order to quantify the
long-term fairness of the two schedulers, we computed
Jain’s fairness index from expression (20), using the
long-term throughput of the thirty-two flows, and normal-
izing these values by the corresponding flow weight. The
fairness index values are plotted in Fig. 12 as a function
of time. The fairness index is about 10% higher under the
WF2Q+ scheduler, reflecting the lower throughput varia-
tions in Fig. 10. Nevertheless, the curves of both schedulers
are relatively stable across the duration of the experiment,
indicating that the two schedulers have similar fairness
characteristics.

7. Concluding remarks

We have presented tiered-service fair queuing (TSFQ), a
new scheduler motivated by two key observations: that
applications typically require one of a small number of ser-
vice levels, and that the Internet packet length distribution
exhibits a small number of prominent modes. Within each
tier, the schedulers employ a fixed number of queues to
handle packets with few or no sorting operations. The in-
tra-tier scheduler simply serves the packet with the small-
est timestamp among a constant number of packets at the
front of the intra-tier queues. The simple structure and
operation of the schedulers are practically realizable and
especially attractive for hardware implementation. The
TSFQ scheduler is equivalent to WF2Q+ with the additional
property that the virtual time function can be computed in
constant time. Therefore, we believe that employing TSFQ
scheduling within high-speed routers will enable network
operators to enhance significantly their ability to offer and
guarantee a wide range of services.

Acknowledgments

The authors thank Ajay Babu Amudala Bhasker and
Shrikrishna Khare for implementing the ns-2 and Linux
kernel modules, respectively, of TSFQ and WF2Q+ as part
of their MS theses.

References

[1] J.C.R. Bennett, H. Zhang, Hierarchical packet fair queueing
algorithms, in: Proceedings of ACM SIGCOMM ’96, 1996, pp. 143–
156.

[2] J.C.R. Bennett, H. Zhang, WF2Q: worst-case fair weighted fair
queueing, in: Proceedings of IEEE INFOCOM ’96, 1996, pp. 120–128.

[3] D. Bertsekas, R. Gallager, Data Networks, Prentice Hall, Inc,
Englewood Cliffs, NJ, 1992.

[4] Ajay Babu, Amudala Bhasker, Tiered-service fair queueing (TSFQ): a
practical and efficient fair queueuing algorithm. Master’s thesis,
North Carolina State University, Raleigh, NC 2006.

[5] S. Cheung, C. Pencea, BSFQ: bin sort fair queueing, in: Proceedings of
IEEE INFOCOM ’02, 2002.

[6] A. Demers, S. Keshav, S. Shenker, Analysis and simulation of a fair
queueing algorithm, in: Proceedings of ACM SIGCOMM ’89,
September 1989, pp. 1–12.

[7] S. Golestani, A self-clocked fair queueing scheme for broadband
applications, in: Proceedings of IEEE INFOCOM ’94, 1994, pp. 636–
646.

[8] P. Goyal, H.M. Vin, Generalized guaranteed rate scheduling
algorithms: a framework, IEEE/ACM Transactions on Networking 5
(4) (1997) 561–571.

[9] P. Goyal, H.M. Vin, H. Cheng, Start-time fair queueing: a scheduling
algorithm for integrated services packet switching networks, in:
Proceedings of ACM SIGCOMM ’96, August 1996, pp. 157–168.

[10] R. Jain, W. Hawe, D.M. Chiu, A quantitative measure of fairness and
discrimination for resource allocation in shared systems, Technical
Report TR-301, DEC Research Report, 1984.

[11] S. Keshav, An Engineering Approach to Computer Networking,
Addison-Wesley, Reading, MA, 1997.

[12] Shrikrishna Khare, Testbed implementation and performance
evaluation of the tiered service fair queueing (TSFQ) packet
scheduling discipline, Master’s thesis, North Carolina State
University, Raleigh, NC, August 2008.

[13] Q. Lv, G.N. Rouskas, An economic model for pricing tiered-service
networks, Annals of Telecommunications 65 (3–4) (2010) 147–161.

[14] Linux Kernel Organization. The Linux kernel archives. <http://
www.kernel.org/>.

[15] A.K. Parekh, R.G. Gallager, A generalized processor sharing approach
to flow control in integrated services networks: the single-node case,
IEEE/ACM Transactions on Networking 1 (3) (1993) 344–357.

[16] S. Ramabhadran, J. Pasquale, Stratified round robin: a low
complexity packet scheduler with bandwidth fairness and
bounded delay, in: Proceedings of ACM SIGCOMM ’03, August
2003, pp. 239–249.

[17] G.N. Rouskas, Internet Tiered Services: Theory, Economics, and
Quality of Service, Springer, New York, 2009.

[18] G.N. Rouskas, N. Baradwaj, On bandwidth tiered service, IEEE/ACM
Transactions on Networking 17 (6) (2009).

[19] M. Shreedhar, G. Varghese, Efficient fair queueing using deficit round
robin, in: Proceedings of ACM SIGCOMM ’95, 1995.

[20] R. Sinha, C. Papadopoulos, J. Heidemann, Internet packet size
distributions: Some observations. <http://netweb.usc.edu/�rsinha/
pkt-sizes/>, October 2005.

[21] D.C. Stephens, J.C.R. Bennett, H. Zhang, Implementing scheduling
algorithms in high-speed networks, IEEE Journal on Selected Areas in
Communications 17 (6) (1999) 1145–1157.

[22] S. Suri, G. Varghese, G. Chandranmenon, Leap forward virtual clock:
an O(loglogN) queueing scheme with guaranteed delays and
throughput fairness, in: Proceedings of IEEE INFOCOM ’97, 1997.

[23] K. Thompson, G.J. Miller, R. Wilder, Wide-area internet traffic
patterns and characteristics, IEEE Network 11 (6) (1997) 10–23.

[24] J. Xu, R. Lipton, On fundamental tradeoffs between delay bounds and
computational complexity in packet scheduling algorithms, in:
Proceedings of ACM SIGCOMM ’02, 2002.

[25] X. Yuan, Z. Duan, FRR: a proportional and worst-case fair round-
robin scheduler, in: Proceedings of IEEE INFOCOM ’05, March 2005.

Zyad Dwekat received B.S. in Electrical Engi-
neering from Mutah University, Karak, Jordan
in 1992, and M.S. in Computer Networking
and Ph.D. degree in Electrical Engineering
from the department of Electrical Engineering
in North Carolina State University, Raleigh, NC
in 2002 and 2009, respectively.
He has been working as a Network Engineer
with Sprint/Nextel since 2002. Before that, he
worked as Electrical Engineer with RJAF,
Jordan from 1992 until 1999. He also interned
at Alcatel Research Center Dallas, TX in 2001.
He received Alcatel 2001 inventor award and

filed five patents during his career with Sprint. He also works part time as
Adjunct Professor at North Carolina Wesleyan College and Wake Tech,
Raleigh, NC since 2009.

Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406 2405

Author's personal copy

George Rouskas is a Professor of Computer
Science at North Carolina State University. He
received the Ph.D and MS degrees in Com-
puter Science from the College of Computing,
Georgia Institute of Technology, and an
undergraduate degree in Computer Engineer-
ing from the National Technical University of
Athens (NTUA), Athens, Greece. His research
interests are in network design and optimi-
zation, network architecture, and perfor-
mance evaluation. He is the author of a book
on ‘‘Internet Tiered Services’’ (Springer, 2009),
co-editor of the book ‘‘Traffic Grooming for

Optical Networks’’ (Springer, 2008), and co-editor of the upcoming book
‘‘Next-Generation Internet Architectures and Protocols’’ (Cambridge
University Press, 2010). He is a recipient of a 1997 NSF AREER Award, the
2004 ALCOA Foundation Engineering Research Achievement Award and
the 2003 NCSU Alumni Outstanding Research Award, and he was induc-
ted in the NCSU Academy of Outstanding Teachers in 2004. He is the
founding editor-in-chief of the Optical Switching and Networking journal,
and is serving as the co-chair of the Optical Networks and Systems
Symposium for IEEE Globecom 2010 and as co-chair of the IEEE ICCCN
2011 conference. He has served as associate editor for IEEE/ACM Trans-
actions on Networking and the Computer Networks journal, and he has
organized several networking conferences.

2406 Z. Dwekat, G.N. Rouskas / Computer Networks 55 (2011) 2392–2406

