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Abstract

We present MTCP, a congestion control scheme for large-scale reliable multicast. Congestion control for reliable

multicast is important, because of its wide applications in multimedia and collaborative computing, yet non-trivial,

because of the potentially large number of receivers involved. Many schemes have been proposed to handle the recovery

of lost packets in a scalable manner, but there is little work on the design and implementation of congestion control

schemes for reliable multicast. We propose new techniques that can effectively handle instances of congestion occurring

simultaneously at various parts of a multicast tree.

Our protocol incorporates several novel features: (1) hierarchical congestion status reports that distribute the load of

processing feedback from all receivers across the multicast group, (2) the relative time delay concept which overcomes

the difficulty of estimating round-trip times in tree-based multicast environments, (3) window-based control that pre-

vents the sender from transmitting faster than packets leave the bottleneck link on the multicast path through which the

sender’s traffic flows, (4) a retransmission window that regulates the flow of repair packets to prevent local recovery from

causing congestion, and (5) a selective acknowledgment scheme that prevents independent (i.e., non-congestion-related)

packet loss from reducing the sender’s transmission rate. We have implemented MTCP both on UDP in SunOS 5.6 and

on the simulator ns, and we have conducted extensive Internet experiments and simulation to test the scalability and

inter-fairness properties of the protocol. The encouraging results we have obtained support our confidence that TCP-like

congestion control for large-scale reliable multicast is within our grasp. � 2001 Elsevier Science B.V. All rights re-

served.
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1. Introduction

As the Internet becomes more diversified in its
capabilities, it becomes feasible to develop and
offer services and applications that were not pos-
sible under earlier generations of Internet tech-
nologies. The Multicast Backbone (MBONE) and
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IP-multicast are two Internet technologies that
have enabled a wide range of new applications.
Using multicast, large-scale conferencing involving
hundreds to thousands of participants is possible
over the Internet. As multicast technologies be-
come more widely deployed, we expect to see new
multicast-based applications that demand more
bandwidth and higher speed. Many of these ap-
plications will require reliable data transfer.

Multicast traffic generated by these applications
can be of two types: quality-of-service guaranteed
and best effort. QoS guaranteed traffic requires the
underlying network to provide per-flow resource
reservation and admission control services. Unless
these services become widely deployed over the
Internet and made sufficiently inexpensive for
general use, they will likely be available only to a
small fraction of future Internet traffic, and mul-
ticast traffic will be primarily best effort. This work
is concerned with the flow and congestion control
of best-effort multicast traffic.

Congestion control is an integral part of any
best-effort Internet data transport protocol. It is
widely accepted that the end-to-end congestion
control mechanisms employed in TCP [1] have
been one of the key contributors to the success of
the Internet. A conforming TCP flow is expected
to respond to congestion indication (e.g., packet
loss) by drastically reducing its transmission rate
and by slowly increasing its rate during steady
state. This congestion control mechanism encour-
ages the fair sharing of a congested link among
multiple competing TCP flows. A flow is said to be
TCP-compatible or TCP-like if it behaves similar
to a flow produced by TCP under congestion [2].
At steady state, a TCP-compatible flow uses no
more bandwidth than a conforming TCP con-
nection running under comparable conditions.

Unfortunately, most of the multicast schemes
proposed so far do not employ end-to-end con-
gestion control. Since TCP strongly relies on other
network flows to use congestion control schemes
similar to its own, TCP-incompatible multicast
traffic can completely lock out competing TCP
flows and monopolize the available bandwidth.
Furthermore, multicast flows insensitive to exist-
ing congestion (especially congestion caused by
their own traffic) are likely to cause simultaneous

congestion collapses in many parts of the Internet
[3]. Because of the potential far-reaching damage
of TCP-incompatible multicast traffic, it is highly
unlikely that transport protocols for large-scale
reliable multicast will become widely accepted
without TCP-like congestion control mechanisms.

The main challenge of congestion control for
reliable multicast is scalability. To respond to
congestion occurring at many parts of a multicast
tree within a TCP time-scale, the sender needs to
receive immediate feedback regarding the receiving
status of all receivers. However, because of the
potentially large number of receivers involved, the
transmission of frequent updates from the receiv-
ers directly to the sender becomes prohibitively
expensive and non-scalable.

Another challenge is the isolation of the effects
of persistent congestion. As a single multicast tree
may span many different parts of the Internet,
TCP-like congestion control will reduce the sen-
der’s transmission rate upon indication of con-
gestion in any part of the tree. While such a feature
fosters fairness among different flows (inter-fair-
ness), it does not address the issue of fairness
among the receivers in the same multicast group
(intra-fairness) [4]. Specifically, it would be unfair
for non-congested receivers to be subject to a low
transmission rate just because of some isolated
instances of congestion.

In this paper, we introduce multicast TCP
(MTCP), a new congestion control protocol for
reliable multicast that addresses the inter-fairness
and scalability issues. The issue of intra-fairness is
outside the scope of this paper, and it will be ad-
dressed in future work. Our protocol is based on a
multilevel logical tree where the root is the sender,
and the other nodes in the tree are receivers. The
sender multicasts data to all receivers, and the
latter send acknowledgments to their parents in
the tree. Internal tree nodes, hereafter referred to
as sender’s agents (SAs), are responsible for han-
dling feedback generated by their children and for
retransmitting lost packets. MTCP incorporates
several novel features, including:

1. hierarchical congestion status reports that dis-
tribute the load of processing feedback from
all receivers across the multicast group,
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2. the relative time delay (RTD) concept which
overcomes the difficulty of estimating round-
trip times (RTTs) in tree-based multicast envi-
ronments,

3. window-based control that prevents the sender
from transmitting faster than packets leave the
bottleneck link on the multicast path through
which the sender’s traffic flows,

4. a retransmission window that regulates the flow
of repair packets to prevent local recovery from
causing congestion, and

5. a selective acknowledgement scheme employed
at SAs to prevent independent (i.e., non-conges-
tion-related) packet loss from reducing the sen-
der’s transmission rate.

We have implemented MTCP both on UDP in
SunOS 5.6 and on the simulator ns, and we have
conducted extensive Internet experiments and sim-
ulation to test the scalability and inter-fairness
properties of the protocol. The encouraging results
from these experiments indicate that MTCP is an
effective flow and congestion control protocol for
reliable multicast.

Tree-based protocols are not new and have
been studied by many researchers [5–9]. However,
little work has been done on congestion control for
these protocols. Instead, most previous work has
focused on the issues of error recovery and feed-
back implosion. In Refs. [5,10] it has been ana-
lytically shown that tree-based protocols can
achieve higher throughput than any other class
of protocols, and that their hierarchical struc-
ture is the key to reducing the processing load at
each member of the multicast group. Tree-based
protocols such as RMTP [6] and TMTP [8] do
not incorporate end-to-end congestion control
schemes and do not guarantee inter-fairness. In
Refs. [9,11] it was proposed to use a tree structure
for feedback control, and a detailed description of
how to construct such a tree was provided, but no
details on congestion control were given. A more
detailed discussion on related work can be found
in Section 5.

This paper is organized as follows. In Section 2
we provide an overview of MTCP, and in Section 3
we present a detailed description of the protocol
and its operation. In Section 4 we present results

from Internet experiments and simulation. In
Section 5 we discuss related work, and we con-
clude in Section 6.

2. Overview of MTCP

MTCP was designed with two goals in mind:
TCP-compatibility and scalability. Compatibility
with TCP traffic is needed because TCP is the most
commonly used protocol in the Internet, and also
because the utility of TCP depends on all other
network flows being no more aggressive than
TCP congestion control (i.e., multiplicative de-
crease on congestion occurrence, and linear in-
crease at steady state). Non-TCP-compatible flows
may lock out TCP traffic and monopolize the
available bandwidth. Scalability is necessary be-
cause the target applications of reliable multicast
may involve a very large number of receivers. Be-
low we give an overview of MTCP, and in the next
section, we provide a detailed description of the
protocol.
Packet loss detection and recovery via selective

acknowledgments: A sender multicasts data pack-
ets using IP-Multicast [12] to all receivers. SAs in
the logical tree store packets received from the
sender in their buffers, and set a timer, called re-
transmission timer, for each packet they buffer. The
sender also sets a retransmission timer for each of
the packets it transmits. Each receiver may send a
positive acknowledgment (ACK) or a negative
acknowledgment (NACK) to its parent in the tree.
Received packets are reported in ACKs and
missing packets are reported in NACKs. An SA
(or the sender) discards a buffered packet when it
receives an ACK from all of its children. On the
other hand, an SA (or the sender) retransmits a
packet via unicast (a) upon receiving a NACK
reporting that the packet is missing, or (b) if it does
not receive a ACK for the packet from all its
children in the logical tree before the timer asso-
ciated with the packet expires.
Hierarchical congestion reports: Each SA inde-

pendently monitors the congestion level of its
children using feedback received from them. When
an SA sends an ACK to its parent, it includes in
the ACK a summary of the congestion level of its
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children (called congestion summary). The parent
then summarizes the congestion level of its own
children, sends the summary to its parent, and so
on. The sender regulates its rate based on its own
summary. The congestion summary carries an es-
timate of the minimum bandwidth available along
the multicast paths to the receivers contained in
the subtree rooted at the SA that sends the sum-
mary. An SA computes its summary using the
summaries it has received from its children and a
TCP-like congestion window (cwnd) maintained
using feedback from its children. As a result, the
summary computed at the sender represents the
current available bandwidth in the bottleneck link
on the paths to all receivers in the multicast group.
By sending only as much data as the bottleneck
link can accommodate, the sender will not aggra-
vate congestion anywhere in the network.
TCP-like congestion window: Each SA (includ-

ing the sender) estimates the minimum bandwidth
available in the multicast routes from the sender to
its children by maintaining a TCP-like cwnd. An
SA maintains its cwnd using TCP-Vegas [13] con-
gestion control mechanisms such as slow start and
congestion avoidance. The only differences with
TCP-Vegas are that (1) the cwnd is incremented
when an SA receives ACKs for a packet from all of
its children, and (2) receivers send NACKs for
missing packets, and an SA immediately retrans-
mits the packets reported missing. For instance,
slow start is implemented as follows. When an SA
receives a new packet from the sender, it buffers the
packet and sets the retransmission timer (RTO) of
the packet to an estimated time before which the
packet should be acknowledged. At the beginning
of transmission or after a RTO expiration, an SA
sets its cwnd to one. The SA increments its cwnd by
one when a packet is acknowledged by all of its
children. Once the cwnd reaches a threshold called
ssthresh, congestion avoidance is invoked and the
cwnd is incremented by 1/cwnd each time a new
packet is acknowledged by all of its children.
Congestion summary: The congestion summary

sent by an SA whose children are leaf nodes, con-
sists of two pieces of information: the size of its
cwnd, and the estimated number of bytes in transit
from the sender to the SA’s children (transit win-
dow, twnd). twnd is initially set to zero, it is in-

cremented when a new packet is received from the
sender, and it is decremented when a packet is ac-
knowledged by all of the SA’s children. The con-
gestion summary of the other SAs consists of (1)
the minimum of their cwnds and the cwnds re-
ported by their children (minCwnd), and (2) the
maximum of their twnds and the twnds reported by
their children (maxTwnd). maxTwnd estimates the
number of unacknowledged bytes in transit to the
receivers in the tree and minCwnd estimates
the congestion level of the bottleneck link on the
multicast routes to the receivers in the tree. The
sender always transmits data in an amount less
than the difference between the values of maxTwnd
and minCwnd that it computes. This window
mechanism prevents the sender from transmitting
faster than packets leave the bottleneck link.
Relative time delay: Unlike TCP where the sen-

der maintains the cwnd based on feedback received
from one receiver, MTCP does not provide closed-
loop feedback. This is because SAs have to adjust
their windows based on the ACKs for packets that
another node (the sender) transmitted. The main
problem with this open-loop system is that an SA
cannot accurately estimate the RTT of a packet.
This problem arises due to the unpredictable delay
variance in the network and the fact that the sen-
der’s and SA’s clocks are not synchronized. In
MTCP, we measure the difference between the
clock value taken at the sender when a packet is
sent, and the clock value taken at the SA when the
corresponding ACK is received from a child node.
We call this time difference the RTD. The RTD to a
child receiver can be easily measured by having
each ACK carry the transmission time of the
packet being acknowledged. Thus, RTD measure-
ments can be taken every time the SA receives an
acknowledgment. A weighted average of RTDs is
used to estimate the retransmission timeout value
(RTO) of packets. An SA sets the RTO of a packet
to expire only after the sum of the send time of the
packet and the RTO of the SA becomes less than
the current clock value of the SA. The use of RTD
for this purpose is appropriate because the proto-
col uses only the relative differences in RTDs.
Retransmission window for fast retransmission:

Retransmission may cause congestion if many
packets are lost in a loss burst and an SA re-
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transmits them without knowing the available
bandwidth between itself and its children. Recall
that the cwnd at the SA only estimates the amount
of data that can be sent from the sender to the
SA’s children. Because new and repair packets
may travel over different routes, the cwnd cannot
be used to regulate repair traffic. In MTCP, each
SA maintains another window, called the re-
transmission window, used only for repair packets.
The retransmission window is updated in the
same way as cwnd (i.e., slow start, congestion
avoidance, etc.). Since SAs receive ACKs for the
packets they retransmit, maintaining the retrans-
mission window does not incur significant over-
head.
Handling of independent loss: MTCP decreases

the sender’s transmission rate if any link of the
multicast routing tree is congested. This may raise
a concern that the protocol is too sensitive to in-
dependent packet loss: since for large multicast
groups, almost every transmitted packet may ex-
perience independent loss, it might be argued that
the overall throughput will be reduced to zero.
However, in MTCP, most occurrences of inde-
pendent loss trigger NACKs to SAs which imme-
diately retransmit the lost packets. Only packet
loss accompanied by indication of congestion,
such as retransmission timeouts or several con-
secutive duplicate NACKs, reduces the cwnd.
Simulation results to be presented later confirm
that independent packet loss is immediately re-
covered by SAs and does not have a negative effect
on the overall throughput.

3. Detailed description of MTCP

3.1. Selective acknowledgment scheme

In MTCP we use a selective acknowledgment
(SACK) scheme in which each feedback contains
information about all received packets. We also
adopt a delayed acknowledgment scheme in which
each ACK is delayed for a few tens of milliseconds
before its transmission. Since an SA can quickly
detect the packets lost by a receiver and retransmit
them, these schemes reduce the number of ac-
knowledgments and retransmissions. Also, our

SACK scheme provides a good means to recover
from independent, uncorrelated losses.

When an SA (or the sender) receives an indi-
cation that a packet is lost, it immediately unicasts
the missing packet to the receiver that sent the
NACK, unless the same packet was (re)transmit-
ted to this receiver within a time period equal to
the current estimated RTT between the SA and the
receiver. Since the SACK scheme indicates exactly
which packets have been received, the SA can de-
termine the packets that were lost by its children
and retransmit only them, avoiding unnecessary
retransmissions. Each ACK also contains the send
time of the last packet received, the congestion
summaries, and the number of buffers available at
the receiver. This information is used for flow and
congestion control as described below.

3.2. Relative time delay measurement

In MTCP, an SA sets a retransmission timer for
each packet it receives. The timer for a packet
must be set to the mean time period between the
time, the packet was transmitted by the sender and
the time, that the SA expects to receive an ACK
from all its children. This time period is hard to
measure because of the clock differences between
the SA and the sender. To overcome this difficulty,
we introduce the RTD, defined as the difference
between the clock value, taken at the SA, when the
ACK for a packet is received from a child, and the
clock value, taken at the sender, when the same
packet was transmitted. MTCP requires that each
data packet carry its transmission time at the
sender, and that each ACK carry the transmission
time of the last packet received, making it easy for
SAs to compute the corresponding RTDs.

The RTD is used in the same way that the RTT
is used in TCP-Vegas. For instance, the difference
between the minimum measured RTD and the
currently measured RTD to a child is used to es-
timate the number of packets in transit from the
sender to the child. Also, a weighted average of
RTDs and their deviations is used to set the re-
transmission timeout value RTORTD. Given a va-
lue for RTORTD, MTCP sets the retransmission
timer of a packet to expire only after the sum of
the send time of the packet (according to the

I. Rhee et al. / Computer Networks 38 (2002) 553–575 557



sender’s clock) plus the RTORTD of the SA be-
comes less than the current clock value of the SA.

Fig. 1 illustrates how the RTD is measured. In
this example, the clocks of the sender and the SA
are not synchronized, but the SA’s clock is ahead
of the sender’s by one time unit. The sender
transmits a packet at time 4 which is received by
both the SA and its child, which then send an
acknowledgment to their respective parents in the
logical tree. Recall that the data packet includes its
send time, and that the receivers copy this send
time in their acknowledgments. Then, the RTD
measured at the SA is 3 in this example, since the
packet was transmitted by the sender at time 4,
and it was received by the SA at time 7.

3.3. Round-trip time measurement

An SA will retransmit a packet whose timer has
expired, at which time it needs to reset the re-
transmission timer. Recall, however, that retrans-
missions are unicast from an SA to its children
and may follow a different path than the original
multicast transmission from the sender. As a re-
sult, while the retransmission timeout RTORTD for

the first retransmission of a packet should be based
on the RTD, for subsequent retransmissions an
SA must adjust its timer to the RTT between itself
and its children.

In order to estimate the RTT, an SA periodi-
cally polls its children by sending a probe packet.
In the current implementation of MTCP, the
polling period is set to 2 s. Upon receiving this
probe, a child immediately sends an acknowledg-
ment to its parent. The SA can then measure the
difference between the time when it sent a probe
and the time it received the corresponding ac-
knowledgment. These RTT measurements are
used to set the retransmission timeout RTORTT for
packets retransmitted at least once.

3.4. Estimation of RTD- and RTT-based retrans-
mission timeouts and timer backoff

The timeout and retransmission mechanisms
employed in MTCP require the estimation of re-
transmission timeout values RTORTD and RTORTT.
As these values can change over time because of
routing and network traffic changes, MTCP needs
to track these changes and modify its timeout val-

Fig. 1. Example of RTD measurement.
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ues accordingly. We use the techniques employed
by TCP [1] to set the RTORTD and RTORTT based
on the average measured length of RTDs and
RTTs, respectively, and their deviations in time. In
MTCP, each SA (including the sender) sets its
RTORTD (respectively, RTORTT) to the maximum
of the estimated RTORTDs (respectively, RTORTTs)
for all of its children.

When a packet is initially transmitted by the
sender, or when it is received for the first time by
an SA, it is buffered by the sender or SA and the
retransmission timeout of the packet is set to
RTORTD, which represents the estimated amount
of time for the packet to travel through the mul-
ticast tree to the children of the SA and for the
corresponding ACKs to arrive at the SA. As we
explained in Section 3.2, the retransmission timer
for the packet is set to expire when the sum of the
send time of the packet plus the RTORTD becomes
less than the current time. When a packet is re-
transmitted because of a NACK or the expiration
of its retransmission timer, the latter is set to
RTORTT, since retransmissions are performed by

an SA via unicast. Following this retransmission,
whenever the timer expires, the timeout value is
multiplied by two (exponential backoff) until an
acknowledgment from all children is received.

Figs. 2 and 3 illustrate how the timeouts are
used in a part of a multicast tree involving three
nodes: the sender, an SA who is a child of the
sender in the logical tree, and a child of the SA.
Fig. 2 shows how the RTD-based timeouts are
computed at the SA. In this scenario, the sender’s
clock is assumed to be ahead of the SA’s clock by
three time units. The sender transmits packet 25 at
time 5; the send time is included in the packet
header. The SA and its child transmit their ACKs,
which also include the send time of the packet, to
their respective parents. The SA receives the ACK
at time 4, and calculates the RTD as �1 (¼ 4� 5).
Assume that the estimated RTORTD is also �1.
The sender then transmits packet 26 at time 7.2.
The SA receives the packet and buffers it for
possible retransmission. It also sets its retrans-
mission timer to the send time of the packet plus
the RTORTD, i.e., to 7:2þ ð�1Þ ¼ 6:2. The packet

Fig. 2. Example of timeouts based on RTD.
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is lost on the route to the SA’s child. Since the SA
has not received an ACK for the packet when the
timer expires at time 6.2, it retransmits packet 26
to its child. At that time, the SA also sets its re-
transmission timer to RTORTT (not shown in the
figure).

In Fig. 3, the RTORTD and RTORTT values are
assumed to be 7 and 1, respectively, and the SA’s
clock is five units of time ahead of the sender’s
clock. The sender sends a packet at time 0, which
reaches the SA at time 5.5. When the SA buffers
the packet, it sets the retransmission timer of the
packet to expire at time 7, based on the sum of the
send time and the RTORTD. Since the SA does not
get an acknowledgment within that time period, it
retransmits the packet at time 7. At that time, the
SA also sets the retransmission timer of the packet
to expire at time 8, based on the RTORTT value of
1. Since it does not receive an ACK within the

timeout period, it retransmits the packet again at
time 8 and doubles the timeout value to 2. This
doubling of the timeout value continues until an
ACK for the packet is received.

3.5. Slow start and congestion avoidance

Slow start is used by TCP [1] to find the
available bandwidth on the path of a connection.
Slow start is invoked at the beginning of trans-
mission or after the retransmission timer of a
packet expires. As in TCP, MTCP also employs a
slightly modified version of slow start to estimate
the available bandwidth in the multicast paths.
Since during slow start cwnd increases exponen-
tially, this process itself can cause congestion.
MTCP uses the slow start mechanisms of TCP-
Vegas [13] to detect congestion during slow start.
MTCP also adopts the congestion avoidance
mechanisms of TCP-Vegas [13]. During conges-
tion avoidance, cwnd increases or decreases lin-
early to avoid congestion.

3.6. Retransmission window

The packets retransmitted by an SA to one or
more of its children may take a different route than
the multicast path these packets followed when
originally transmitted by the sender. Consider the
situation arising when an SA receives an ACK
reporting a list of lost packets. If the SA is allowed
to retransmit a large number of packets regardless
of the available bandwidth between itself and its
children (recall that cwnd estimates only the
bandwidth between the sender and the SA’s chil-
dren), it may cause another instance of congestion.
To overcome this problem, each SA maintains
another window, called the retransmission window
for each child, which is used only for retransmitted
packets. Maintaining the retransmission window is
possible because SAs receive ACKs for the packets
they send (i.e., a closed-loop system). In the cur-
rent implementation, the initial window size of the
retransmission window is set to one. The size of
the window changes in the same way that TCP-
Vegas modifies cwnd. However, the size of the
retransmission window is not reset to 1 even if
retransmission is quiescent. Intermittent retrans-

Fig. 3. Example of timeouts and exponential retransmission

timer backoff.
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mission can be accommodated immediately with
the window set for the previous retransmission
session (or burst). Unless the previous retrans-
mission session undergoes slow start, the window
will be larger than 1.

3.7. Window-based flow control

Flow control ensures that the sender does not
send more data than the current capacity of a re-
ceiver, which is indicated by the number of buffers
available. In MTCP, each receiver advertises the
number of buffers available to its parent. We de-
fine the advertised window of a node to be the
minimum of the buffers reported by the children of
the node. The sender always sends no more than
its own advertised window.

Another issue which affects the congestion
control mechanism is how fast the sender trans-
mits packets. In MTCP, the sender uses ACKs as a
‘‘clock’’ to strobe new packets in the network.
Each SA maintains a variable called transit win-
dow, twnd. twnd is initially set to zero, it is incre-
mented when a new packet is received from the
sender, and it is decremented when a packet is
acknowledged by all of the SA’s children. When-
ever a retransmission timeout occurs, twnd is set to
zero. The information about twnd is propagated
up the tree to the sender and it is used to regulate
the transmission rate of the sender, as explained
below.

The congestion summary an SA sends to its
parent consists of two parameters: (1) parameter
minCwnd, which is the minimum of the SA’s cwnd
and the cwnds reported by its children, and which
estimates the congestion level of the bottleneck
link on the multicast routes to the receivers in the
tree, and (2) parameter maxTwnd, which is the
maximum of the SA’s twnd and the twnds re-
ported by its children, and which estimates the
number of unacknowledged bytes in transit to
the receivers in the tree. The difference between
maxTwnd and minCwnd is called the current
window. The sender always transmits data in an
amount no more than the current window. This
window mechanism prevents the sender from
transmitting faster than packets leave the bottle-
neck link.

3.8. Hierarchical status reports

If the sender is allowed to determine the
amount of data to be transmitted based only on its
own cwnd and twnd, which it maintains using
feedback from its immediate children alone, it is
highly likely that the sender will cause congestion
somewhere in the multicast routes. This possibility
arises from the fact that the sender’s cwnd and
twnd provide information only about the multicast
paths to the sender’s immediate children in the
logical tree; the sender receives no first-hand in-
formation about the congestion status of the
multicast paths to other nodes. To ensure that an
MTCP session will not cause congestion anywhere
in the multicast routes, we require that the sender
regulate its rate based on the congestion status of
all receivers in the tree. This is accomplished by
using a hierarchical reporting scheme, in which
information about the status of each receiver
propagates along the paths of the logical tree from
the leaves to the root (the sender) in the form of
the congestion summaries discussed in the previ-
ous subsection.

Fig. 4 illustrates how congestion summaries
propagate from leaf receivers to the sender along
the edges of the logical tree. In the figure, cwnd
and twnd are expressed in units of number of
segments (they are normally defined in bytes). SAs
whose children are leaf nodes, send their cwnds
and twnds to their parents. Referring to Fig. 4,
node 7 sends its cwnd(30) and twnd(8) to its parent
(node 3), node 9 sends its cwnd(15) and twnd(10)
to its parent (node 3), and node 1 sends its
cwnd(25) and twnd(5) to its parent (node 0). Upon
receiving this information, the parent SAs send
to their own parents the minimum of the re-
ceived cwnds and their own cwnd, and the max-
imum of the received twnds and their own twnd.
In Fig. 4, for instance, node 3 sends to node 0
the minimum of the cwnds(15) and the maxi-
mum of the twnds(10). The sender at node 0
computes the minimum of all cwnds in the tree to
be 15 and the maximum of all twnds to be 10.
Therefore, the current window is 15� 10 ¼ 5
segments. The sender sends no more than the
minimum of the current window and the adver-
tised window.
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Note that the minimum bandwidth within the
subtree rooted at a given SA is computed based
only on information reported in the congestion
summaries sent to this SA by its children. Since the
maximum number of the children of a node is
limited to a small constant, this scheme achieves
good load balancing.

We also note that the delay between the time
when an SA detects congestion and the time when
the sender reduces its transmission rate in response
to this congestion, may be longer than the TCP
time-scale. Since the congestion status report (in
the form of a summary) has to travel all the way to
the root of the tree, this delay can be larger than a
round-trip delay. However, unless congestion is
reported directly to the sender (an approach that
inevitably leads to ACK implosion), this extra
delay is unavoidable. Furthermore, as it has been
pointed out [14], extra delays up to a few seconds
can be tolerated because network links where a
single flow can create severe transient congestion
are likely to employ an appropriate queue man-
agement mechanism such as random early detec-
tion (RED) [2,15]. We have observed through
Internet experiments and simulation that the delay
in MTCP is well within this range; more details are
given in Section 4.

3.9. Window update acknowledgments

In MTCP, congestion summaries are normally
piggybacked on every ACK and NACK. Thus,

congestion summaries are reported by an SA
whenever a new packet is received (recall also that
ACKs/NACKs are delayed for a few tens of mil-
liseconds for an SA to receive ACKs from its
children). However, if congestion summaries are
reported only upon reception of data packets,
deadlocks are possible since the window size at an
SA may change even if the sender does not
transmit any packets. Consider the following sce-
nario. The sender transmits a number of packets
and receives ACKs for the packets from all of its
children. One of the SAs, say, SA A, on the other
hand, does not receive ACKs for these packets
from its children. Thus, SA A will report a high
value for the twnd in the congestion summary it
sends to its parent, and which will propagate to the
sender. It is possible that this high twnd value will
reduce the size of the current window of the sender
to zero, in which case the sender will not transmit
any more packets. Since the SA will not receive
any packets from the sender, it will not send any
ACKs either. When the SA finally receives ACKs
from its children, its twnd decreases from the
previously high value. Since no ACKs on which to
piggyback this window update are generated, the
sender will never learn of this updated window,
and in turn, it will not send any packets at all,
resulting in a deadlock.

To overcome this problem, we require each re-
ceiver to periodically send a congestion summary
to its parent. This information is called a window
update acknowledgment, and it is sent only if a

Fig. 4. Example of hierarchical status reports.
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congestion summary has not been sent within the
last period. In the current implementation, the
period within which a window update acknowl-
edgment is sent is initially set to 500 ms, and it is
incremented by 1 s each time the receiver sends the
acknowledgment. The period is reset to 500 ms
when a new packet is received from the sender.
This periodic window update information effec-
tively resolves the deadlock problem.

4. Internet experiments and simulation

We have implemented MTCP on top of UDP in
Posix Threads and C, in SunOS 5.6. For the
routing of MTCP packets, we have implemented a
special process called mcaster, whose function is
similar to that of mroutd in the MBONE. An
mcaster simply ‘‘tunnels’’ incoming packets by first
multicasting them to its own subnet via IP-multi-
cast, and then forwarding them to the mcasters of
its child sites in the tree via UDP. The members of
the multicast group in the Internet experiments
were distributed in five different sites: North Car-
olina State University, Raleigh, NC (NCSU),
University of North Carolina, Chapel Hill, NC
(UNC), Georgia Institute of Technology, Atlanta,
GA (GaTech), Emory University, Atlanta, GA
(Emory), and University of Texas, Austin, TX
(UTexas). We have used an assortment of SPARC
Ultras, SPARC 20s and SPARC 5s at each site,
organized into the logical tree shown in Fig. 5.

We have also implemented MTCP on the net-
work simulator ns to test the protocol on a larger
scale. The experiments presented in this section
were designed to evaluate the potential of MTCP
for large-scale reliable multicast by addressing
three key features of the protocol: scalability, in-
ter-fairness, and sensitivity to independent loss.

4.1. Scalability

Scalability is an important issue in reliable
multicast, since the target applications may involve
hundreds or even thousands of receivers. In the
case of MTCP, the maximum fanout and the
height of the logical tree are two important pa-
rameters in determining its ability to scale to large

numbers of receivers. In this section, we study the
effect of these parameters on the performance of
MTCP.

Let us first discuss the significance of the height
of the tree. It is well known that the scalability of
reliable multicast protocols is directly related to
the degree of throughput degradation as the
number of receivers increases. Since MTCP emu-
lates TCP on a logical tree, the throughput be-
havior of MTCP is similar to that of TCP and can
be approximated as [3]: T ¼ cs=RTT

ffiffiffi
p

p
, where s is

the packet size, RTT is the round-trip time, p is the
packet loss rate, and c is some constant. When the
maximum fanout is limited to a small constant,
the only factor in the expression for T affected by
the number of receivers is the RTT. In MTCP, the
RTT grows linearly with the height of the tree,
since the sender recognizes congestion through
feedback that propagates from a congested node
to the sender via the ancestors of the node. In the
best case, the throughput of MTCP will degrade in
proportion to logf n, where f is the maximum
fanout of the tree and n is the number of receivers.
The worst case occurs when the height of the tree
grows linearly with n. Consequently, we expect
MTCP to achieve a high throughput, even for
large numbers of receivers, when a well-balanced
tree with a relatively small number of levels is
employed.

The second parameter of interest is the number
of children that an SA can accommodate, which
determines the maximum fanout of the logical tree.
In light of the limitations on the tree height, it is
desirable to construct trees with a large fanout in
order to support a large number of receivers. On
the other hand, the larger the number of children
of an SA, the higher the load imposed on the SA
who has to receive and process feedback (ACKs,
NACKs and congestion summaries) from its chil-
dren. Thus, unless the maximum fanout of the tree
is bounded, SAs may become overloaded and the
throughput of MTCP will suffer.

4.1.1. Internet experiments
Our first experiment investigates the maximum

fanout of a logical tree that can be supported by
MTCP without inducing an excessive load on each
SA. The experiment involved a sender transmitting
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a 70 MB file to multiple destinations on the same
LAN. The nodes were organized in a one-level tree
rooted at the sender, with all receivers on the same
level. We measured the throughput and CPU load
at the sender as we increased the number of re-
ceivers. We limited the number of receivers to 16,
since if each SA can accommodate 16 children,
MTCP can support 69,904 receivers organized in a
four-level tree. All the machines used in the ex-
periment were Ultra-Sparc Model 250 attached to
a 100 Mbps LAN.

Fig. 6 plots the throughput, the total transfer
time, and the CPU time of the sender, against the
number of receivers. The CPU time represents
the amount of time that the CPU is used during
the transfer of the file, while the total transfer time
is the time it takes to transfer the file and includes
the time spent by the sender waiting for ACKs. We
observe that as the number of receivers increases,
the throughput does decrease, but not signifi-

cantly. We also see that the CPU load (i.e., the
CPU time as a fraction of total time) also de-
creases with the number of receivers. This behavior
can be explained by observing that, as the number
of receivers increases, the sender spends a greater
amount of time waiting for ACKs, and thus total
transfer time also increases. Our results indicate
that even if the sender and the SAs have as many
as 16 children, the processing of ACKs does not
pose a problem. In view of the fact that the ex-
periment was performed in a high-speed LAN
(where the sender can transmit at a fast rate, and
also receives ACKs at a fast rate), the number 16
appears to be a reasonable upper bound on the
number of children each SA can have in the logical
tree, suggesting that MTCP is suitable for large-
scale implementation.

The purpose of our second experiment was to
test whether the protocol can respond to conges-
tion within a TCP time-scale, as well as to measure

Fig. 5. Tree used for Internet experiments.
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the time delay involved in responding to conges-
tion. To this end, we set up a four-level tree and
examined how long it takes for the cwnd of the
sender to be adjusted in response to changes in
the cwnd of SAs in the path to the congested re-
ceiver. The tree involves one machine from each of
the following sites: NCSU (the sender), Emory
(the first SA, SA1), GaTech (the second SA,
SA2), and UTexas (the leaf receiver). The experi-
ment involved a source transmitting a 70 MB file
to the three destinations. During the experiment
we recorded the cwnd sizes at the sender and the
SAs.

Fig. 7 shows a five second segment of the ex-
periment. In this experiment we found UTexas to
be the bottleneck, which caused SA2 (at GaTech)
to have the smallest window size. The sender’s
window size is the largest. Recall that inMTCP, the
sender regulates its transmission rate based on the
minimum of all the reported congestion summaries
and its own window. Let us call this minimum the
transmission window. As we can see, the trans-

mission window closely follows the window of
SA2. Furthermore, we observe that whenever any
site runs into a slow start, the sender reduces the
size of its transmission window drastically within
about 200–250 ms. For example, in Fig. 7 we see
that SA2 initiated a slow start at around 43 s, and

Fig. 7. Multilevel response time test—Internet experiment.

Fig. 6. One-level scalability test—LAN experiment.
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that about 250 ms later the transmission window
also dropped to match the window of SA2.

4.1.2. Simulation
We used simulation to investigate the through-

put behavior of MTCP on a larger scale. We
simulated the network topology shown in Fig. 8,
consisting of 101 nodes (one sender and 100 re-
ceivers) with each node having at most five chil-
dren. The links connecting the nodes have a
bandwidth of 1.5 Mbps and a delay of 10 ms. The
queue size at the nodes was set to 8, and the
DropTail queuing discipline was used.

We conducted two experiments to study the
effect of the logical tree structure on the through-
put of MTCP. In the first experiment, the nodes
were organized in a one-level tree with the sender
at the root and all receivers as children of the
sender. With this arrangement, the sender has to
process feedback from all receivers. In the second
experiment, the nodes were organized in a perfect
multilevel logical tree in which all non-leaf nodes
have exactly five children (except, perhaps, the
rightmost non-leaf node at the lowest level which
may have fewer than five children). As a result, the
load of processing feedback was evenly distributed
among the SAs in the tree. During each experi-
ment we recorded the throughput of MTCP as we
increased the number of receivers from 1 to 100.
The total simulation time for each run was 250 s.

Fig. 9 plots the data throughput (not including
header and other control overhead) against the
number of receivers. As we can see, when the nodes
are arranged as a one-level tree, the throughput

decreases drastically when the number of receivers
increases beyond 25. This result is due to the sig-
nificant increase in the load of the sender who has to
process feedback from all receivers. On the other
hand, when a multilevel tree is employed, the
throughput does decrease when the number of re-
ceivers becomes greater than two, but not signifi-
cantly. More importantly, the throughput remains
at around 125 KBps (1 Mbps) as the number of
receivers increases from 3 to 100, despite the cor-
responding increase in the height of the tree from
one to three levels. These results indicate that the
tree structure is the key to reducing the processing
load at the sender, and that MTCP provides a high
degree of scalability when a well-balanced tree is
employed.We also note thatMTCP achieves a data
throughput of approximately 1 Mbps on 1.5 Mbps
links, which demonstrates that MTCP is successful
in capturing the available network bandwidth.

4.2. Inter-fairness

A protocol is said to be inter-fair if it uses no
more bandwidth than a conforming TCP traffic
would use on the same link. We have run both
Internet experiments and simulation to investigate
the inter-fairness properties of MTCP. The Inter-
net experiments test whether MTCP can success-
fully co-exist with competing TCP traffic, while the
simulations test the behavior of competing MTCP
flows.Fig. 8. Network topology for scalability tests—simulation.

Fig. 9. One-level and multilevel scalability tests—simulation.
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4.2.1. Internet experiments
We have conducted a large number of experi-

ments over the part of the Internet shown in Fig. 5
in order to study the interaction between MTCP
and TCP traffic under real-world scenarios. In
Figs. 10–13 we show results from three different
experiments. Each experiment involves indepen-
dent TCP connections running over the WAN
routes in the tree of Fig. 5. Recall that MTCP
packets are routed over the WAN via UDP, thus,
the TCP and MTCP traffic between the same sites
in our experiments take the same WAN routes.
Since WAN links are the ones most likely to be a
bottleneck, this setup is appropriate for studying

how the bandwidth of a link is shared between
MTCP and TCP connections.

The first experiment involves areas A1 and A4
(refer to Fig. 5), the second experiment involves
areas A1, A2, A3, and A4, and the third involves
the entire tree. In these experiments, the MTCP
sender and TCP senders transmit data as fast as
it is allowed by their congestion control proto-
cols. Each TCP sender starts transmitting at ap-
proximately the same time as the MTCP sender.
We expect MTCP to match its sending rate to
the minimum bandwidth available in the tree,
therefore every MTCP receiver should receive at

Fig. 10. Receiving rates averaged over 5-s intervals (first In-

ternet experiment, areas A1 and A4).

Fig. 11. Receiving rates recorded every second (first Internet

experiment, areas A1 and A4).

Fig. 12. Receiving rates averaged over 5-s intervals (second

Internet experiment, areas A1, A2, A3 and A4).

Fig. 13. Receiving rates averaged over 5-s intervals (third In-

ternet experiment, areas A1, A2, A3, A4 and A5).
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approximately the same rate as the TCP receiver
on the bottleneck connection in the tree.

The results of the first experiment are shown in
Figs. 10 and 11. We run MTCP and TCP con-
nections for 300 s and recorded the receiving rates
of MTCP and TCP receivers. Fig. 10 shows the
receiving rates of the MTCP and TCP and re-
ceivers averaged over 5-s intervals, while Fig. 11
shows the receiving rates recorded every second
for the first 50 s of the experiment. It is evident
from both graphs that MTCP and TCP share ap-
proximately the same bandwidth of about 280
KBps.

The receiving rates recorded during the second
experiment are shown in Fig. 12; only the average
rates over 5-s intervals are plotted in this case.
From the figure, it is clear that the route from
Emory to NCSU is the bottleneck because the
TCP connection between these two sites gives the
minimum receiving rates. MTCP matches the TCP
receiving rate over this bottleneck route at around
70 KBps.

The results of the third experiment are shown in
Fig. 13, where again we plot the receiving rates
averaged over 5-s intervals. As we can see, the TCP
connection between GaTech and Utexas has the
minimum receiving rate of about 60 KBps, indi-
cating that the route between these two sites is the
bottleneck link in the whole tree. Again, we ob-
serve that MTCP is successful in matching its rate
to the receiving rate of the TCP connection on the
bottleneck link.

These three experiments indicate that MTCP
uses no more bandwidth than a TCP connection
uses on the bottleneck route of a given tree con-
figuration. Although a bottleneck link may be lo-
cated several levels away from the root, MTCP
is capable of adjusting its rate according to the
available bandwidth on that link. In all experi-
ments, the fluctuation of MTCP’s receiving rate is
not perfectly synchronized with that of TCP’s.
This is because MTCP and TCP are not the same
protocol, and the way that they detect congestion
is different. In addition, MTCP reacts to every
instance of congestion within a tree while TCP
reacts to congestion only between two end points.

To study the performance of MTCP when
sharing a link with multiple TCP connections, we

run a fourth experiment involving areas A1 and
A4. In this experiment, while MTCP was trans-
mitting, we run three TCP connections, all along
the WAN route between Emory and GaTech, each
of which is started at a different time. Specifically,
the three connections TCP1, TCP2, and TCP3
were started at around 150, 300, and 410 s, re-
spectively, after MTCP was started. All TCP
connections were made between different host
machines to eliminate the effect of computational
overhead. We expect to see MTCP adjust its rate
to match the current level of bandwidth available
over the link between Emory and GaTech.

Fig. 14 shows the results of this experiment.
When MTCP runs alone, its receiving rate reaches
around 400 KBps. When TCP1 is added, MTCP
reduces its rate from 400 to 300 KBps while TCP1
traffic slowly increases its rate to around 300
KBps. As soon as TCP2 is added, both TCP1 and
MTCP reduce their rates. TCP1 goes down to 180
KBps while MTCP matches its rate with TCP2
around 240 KBps. When TCP3 is added, both
MTCP and TCP2 reduce their rates slightly.
MTCP still does not use more bandwidth than
TCP2. As soon as TCP1 finishes its transmission,
MTCP’s rate bounces up to match that of TCP2.
TCP3 also increases its rate. It appears that TCP3
always uses less bandwidth than TCP2. The dif-
ference is about 50 KBps. There could be a couple
of reasons for this difference. First, although the
two TCP connections use the same route, their end

Fig. 14. Receiving rates averaged over 5-s intervals (fourth

Internet experiment, areas A1 and A4).
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points are different. So there could be other
background job activities at the end points of
TCP3 affecting its overall receiving rate. Second,
TCP itself sometimes can be too conservative in its
estimate of the available bandwidth. When TCP2
ends, both TCP3 and MTCP increase their rates
quite a bit. MTCP settles at around 330 KBps
while TCP3 goes up to 260 KBps. The difference is
close to that between the receiving rates of TCP2
and TCP3. As soon as TCP3 ends, MTCP restores
its rate quickly to 400 KBps. From this experi-
ment, we observe that MTCP seems to adjust its
rate as quickly as TCP, according to the current
available bandwidth on the bottleneck link in a
given tree.

4.2.2. Simulation
To gain insight into the inter-fairness properties

of multiple competing instances of MTCP, we
have used ns to simulate a large number of net-
work topologies. In this section we present results
for the topology shown in Fig. 15, which is very
similar to the one used in Ref. [16, Fig. 2]; results
obtained from other topologies are very similar to
the ones presented here. There are four senders
and nine receivers in the network, and each MTCP
instance involves one of the senders and all nine
receivers. We run three different experiments. In
experiment i, i ¼ 1; 2; 3, each sender node was in-
volved in exactly i MTCP sessions, so that a total
of 4i distinct MTCP connections were simulta-

neously active in the network. The same logical
multilevel tree was used for all instances of MTCP,
with the sender at the root and each node in the
tree having at most three children. The total sim-
ulation time for each experiment was 250 s.

In each experiment, we calculated the fairness
index defined by Jain [17]. The fairness index is a
quantitative measure of fairness for a resource
allocation system, which is independent of the
amount of resource being shared. The fairness in-
dex, based on throughput, for the bottleneck link
is defined as

FI ¼
PN�1

x¼0 T ðxÞ
h i2

N
PN�1

x¼0 T ðxÞ2
ð1Þ

where T ðxÞ is the throughput of the xth protocol
instance, and N is number of protocol instances
sharing the resource. The fairness index always lies
between 1 (indicating that all instances get an
equal share of the link bandwidth) and 1=N (when
one of them gets all the bandwidth and all others
starve).

Our results are presented in Table 1, where we
show, for each experiment, the throughput of each
MTCP session and the corresponding fairness in-
dex. The bottleneck link is the one between nodes
5 and 8 in Fig. 15, since it has a capacity of only 1

Fig. 15. Network topology for inter-fairness experiment—

simulation.

Table 1

Inter-fairness results—simulation

Experiment

1

Experiment

2

Experiment

3

4 MTCP

sessions

8 MTCP

sessions

12 MTCP

sessions

MTCP through-

put (bps)

122976.32 71762.67 65616.889

120163.84 111270.22 64457.778

121892.08 119783.11 96119.111

118946.12 137866.67 85045.333

130666.67 92062.222

130311.11 97333.333

145478.22 68444.444

126960.00 71111.111

83555.556

65777.778

97777.778

41452.764

FI 0.999836 0.970422 0.955753
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Mbps. As we can see, the fairness index was always
very close to 1 indicating that MTCP sessions
fairly share the available bandwidth.

4.3. Sensitivity to independent loss

To study the impact of independent packet loss
and random background TCP traffic on the
throughput of MTCP, we have conducted simula-
tion involving anMTCP session with 100 receivers.
For the results presented in this section, we have
used the network topology shown in Fig. 16, which
is an extension of the topology used in Ref. [18].
This networkwas generated usingGeorgia Institute
of Technology’s Internetwork Topology Models
(GT-ITM) tool [19], which has been shown to

generate topologies that closely resemble the
structure of the Internet. The links connecting the
nodes were one of three types, as shown in the fig-
ure, the queuing discipline at the routers was
DropTail, and the queue size was 20. Several TCP
connections were running in the background be-
tween the various end-points indicated in Fig. 16.
TCP connections were started at random times, and
each lasted for only a short time period. TheMTCP
receivers were arranged in a logical tree as shown in
Fig. 17, with each SA having at most five children.

We run two experiments, each involving a single
MTCP connection and random TCP-Reno traffic
in the background. In the first experiment, there
were no losses at MTCP receivers. In the second
experiment, with probability p ¼ 0:01, a packet was

Fig. 16. Network topology for experiments with random TCP background traffic—simulation.

570 I. Rhee et al. / Computer Networks 38 (2002) 553–575



lost at a MTCP receiver, independently of other
receivers and packets. During each experiment,
which lasted 1500 s, we recorded the throughput at
MTCP receivers and TCP sinks. These simulations
help us evaluate the throughput of MTCP on a
realistic topology under loss patterns that have
been observed in real multicast environments.

Figs. 18 and 19 plot the throughput of MTCP
and of the TCP background connections over time
for the no-loss and 1%-loss experiments, respec-
tively. In both cases, MTCP shows about 12 KBps
throughput which was a little less than the band-
width of the bottleneck links in the simulated
network topology. When MTCP ran with 1% in-
dependent loss, the throughput of MTCP was
slightly reduced, but not significantly. The impact
of the background TCP traffic also seems very

marginal. The graphs show that MTCP does not
reduce its rate because of independent uncorre-
lated losses or due to random TCP traffic. Com-
paring Figs. 18 and 19 we find that the receivers
subject to 1% loss have throughput comparable to
that of receivers not subject to loss.

5. Related work

Many reliable multicast protocols have been
proposed in the literature [6–8,20–29]. For the
purposes of our discussion, we classify these pro-
tocols into three broad categories: unstructured,
structured and hybrid. We examine the protocols in
each category with an emphasis on their conges-
tion control techniques.

Fig. 17. Logical multicast tree for the topology of Fig. 16—simulation.

Fig. 18. Throughput of MTCP and of background TCP traf-

fic—no loss.

Fig. 19. Throughput of MTCP and of background TCP traf-

fic—1% loss rate at MTCP receivers.
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Unstructured protocols do not impose any
structure among receivers, and Pingali et al. [30]
further classify them into sender-based [20,22,26–
29] and receiver-based protocols [24,25]. In sender-
based protocols, every receiver sends ACKs or
NACKs directly to the sender, and the sender re-
transmits lost packets reported in NACKs. The
main problem with sender-based protocols is the
feedback implosion problem: if many receivers send
ACKs or NACKs to the sender at the same time,
the sender may quickly become overloaded. This
problem is especially severe when losses occur near
the sender, in which case a large number of re-
ceivers will experience packet loss. In a system
involving more than a few receivers, the load im-
posed by the storm of acknowledgments limits the
function of the sender.

In a receiver-based protocol, each receiver
multicasts NACKs to all members of the group,
and any receiver that has received the requested
packets multicasts them to the group. Typically,
the protocols incorporate randomized NACK and
retransmission suppression timers to reduce the
number of duplicate NACKs and retransmissions.
We find three main shortcomings with receiver-
based protocols.

First, Yajnik et al. [31] report that most packet
loss in the Internet MBONE occurs not at the
backbone, but near end receivers, and that even
excluding packet loss occurring near the sender, a
small, but still significant, amount of loss (about
1–30%) involves more than two receivers. This
study suggests that it is highly likely for two re-
ceivers not sharing common multicast routes to
lose the same packets. A randomized NACK
suppression technique may cause some uncorre-
lated NACKs to suppress correlated NACKs
which actually report about a congested link. Since
NACKs are multicast, the sender would get
NACKs, but possibly from a different receiver
each time: it may appear to the sender that
NACKs are completely uncorrelated. Thus, the
sender may not distinguish correlated packet
losses from uncorrelated ones. It is unclear whe-
ther the sender should respond to all the NACKs
by controlling its rate or ignore ‘‘seemingly’’
uncorrelated NACKs. Either approach seems
unreasonable.

Second, in most receiver-based protocols that
primarily use NACKs to detect congestion, the
absence of NACKs is considered as no congestion
or congestion clearance. Some Internet studies
[31,32], however, reveal that almost every experi-
ment trace includes one or more extremely long
bursts of packet loss lasting from a few seconds up
to a few minutes. During these bursts, no packets
are received. As a result, receivers do not detect
any packet loss, and do not send any NACKs. A
similar scenario arises when the the return path
from receivers to the sender is congested, so that
all feedback is lost. In either case, the sender would
incorrectly translate the lack of feedback as no
congestion.

Third, the randomized NACK suppression
techniques employed by the receiver-based proto-
cols require each receiver to estimate the RTT to
every receiver in the group. This approach requires
Oðn2Þ RTT estimations by every receiver, thus
imposing limits on scalability. Grossglauser [33]
proposed a distributed deterministic timeout esti-
mation protocol that does not require global in-
formation. However the protocol assumes that the
end-to-end delay variation is bounded and a priori
known to all receivers.

Structured protocols impose a logical structure
among group members. Two commonly studied
structures are rings and trees. In ring protocols
[23], a logical ring of group members is formed.
Typically, a token is passed around the ring and
only the process with the token may send feedback
to the sender. RMP [23] supports TCP-like con-
gestion control based on both ACKs and NACKs.
However, since only the token holder can send an
ACK, it is unclear how the ACKs are used for
purposes of congestion control when there is a
large number of nodes in the ring. In RMP, since
NACKs are also multicast to suppress other
NACKs, the protocol suffers from problems sim-
ilar to those arising in receiver-based protocols.

In a tree protocol [5–9], a logical tree structure
is imposed on the multicast group, with internal
nodes acting as representative receivers for the
group. While the sender multicasts data to the
entire group, a receiver sends feedback only to its
parent. The representatives buffer packets received
from the sender, and retransmit any packets re-
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ported lost by their children. Since the maximum
degree of each node is fixed to a small constant,
each node, including the sender, receives only a
small amount of feedback within a RTT. In the
following, we discuss the congestion control
schemes of RMTP [6] and TMTP [8], since the
LBRM [7], LGC [9] and LORAX [5] tree protocols
do not incorporate (or do not give much detail
about) a congestion control scheme.

The main problem with RMTP is that it does
not provide end-to-end feedback. The sender only
gets feedback from its own children (called desig-
nated receivers (DR)) about their receiving status.
Hence, the sender has little information about the
congestion status of leaf receivers. When conges-
tion occurs at leaf receivers, it may not be possible
for the sender to detect the congestion, especially if
the DRs and the leaf receivers do not share the
same network path. In this case, the sender will
continue to transmit at the same rate, aggravating
the existing congestion. As a result, RMTP traffic
can be completely unresponsive to congestion and
may cause congestion collapse.

TMTP also does not provide end-to-end feed-
back. This protocol relies on a back pressure effect
caused by lack of buffers at representative nodes
(called domain managers (DM) in TMTP termi-
nology). In TMTP, DMs store the packets re-
ceived from the sender until they receive ACKs for
the packets from their children. When the buffers
at a DM fill up because of congestion, the DM
drops the next incoming packet. Its parent will
continue to retransmit the packets not acknowl-
edged by the DM until the parent’s buffers also fill
up. The sender detects congestion only when the
buffers of all DMs between the sender and the
congested nodes are completely full. So the con-
gestion is completely neglected until the sender
feels the pressure. Since each DM typically main-
tains a large number of buffers to reduce the
number of ACKs returned to it, it could take a
long time before the sender feels the pressure and
reduces its rate. The fact that TMTP continues to
transmit at a fixed rate despite the congestion is
unfair to TCP-compatible flows which reduce their
rates at the first indication of congestion.

Hybrid protocols [18,34] combine the packet
recovery techniques used in structured and un-

structured protocols. As in receiver-based proto-
cols, a receiver can multicast NACKs suppressing
other NACKs, while other receivers may respond
to the NACKs by retransmitting lost packets. In
addition, a small number of representative receiv-
ers multicast their feedback immediately without
any delay or suppression. The sender uses this
feedback to control its transmission rate.

Delucia and Obraczka [18] proposed a hybrid
congestion control technique in which the size of
the representative set is fixed, but the actual nodes
in the set change over time based on the congestion
status of receivers. Assuming that a small set of
bottleneck links always causes the majority of the
congestion problem, the protocol solves the feed-
back implosion problem, as well as other problems
associated with SRM [24] (such as the RTT esti-
mation problem). The scalability and utility of the
protocol highly depend on this basic assumption,
namely, that the representative set is always small.
This assumption may not be realistic, however,
since several group members can be independently
and simultaneously congested although they do
not share the same congested links. No safeguard
against this situation is provided.

Handley [34] also recently proposed a hybrid
congestion control architecture. His technique
works as follows. A small set of representative
receivers is selected based on their loss character-
istics, and each representative forms a subgroup
along with receivers that share similar loss char-
acteristics. For each subgroup, one relay receiver is
chosen to receive data from the sender and play
them out at a slower rate suitable for the receivers
in the subgroup. The idea of representatives is
similar to that in Ref. [18], but the subgroup idea
is new and promising. However, the overhead,
complexity, and efficacy of dynamic subgroup
formations are not yet explored, justified or pro-
ven. In addition, since the group structure is es-
sentially two level, it is not clear whether the
protocol is scalable to very large numbers of re-
ceivers.

Other types of protocols that do not fall within
the above categories include receiver-driven lay-
ered multicast protocols [16,35,36]. These proto-
cols implement congestion control by encoding
the transmitted data into multiple layers and
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transmitting each layer to a different multicast
group. By joining and leaving different multicast
groups, each receiver can control its own receiving
rate. Initially, the layering technique was proposed
for continuous multimedia data streams which can
tolerate some loss. Recently the technique was
applied to a reliable bulk data multicast by Vici-
sano et al. [16]. However, the technique is appli-
cable only when a large portion of the data is
available for encoding prior to transmission, but
not when data is generated in real-time such as
during synchronous collaborative conferences.

6. Concluding remarks

We have presented MTCP, a set of congestion
control mechanisms for tree-based reliable multi-
cast protocols. MTCP was designed to effectively
handle multiple instances of congestion occur-
ring simultaneously at various parts of a multicast
tree. We have implemented MTCP, and we have
obtained encouraging results through Internet ex-
periments and simulation. In particular, our re-
sults indicate that (1) MTCP can quickly respond
to congestion anywhere in the tree, (2) MTCP is
TCP-compatible, in the sense that MTCP flows
fairly share the bandwidth among themselves and
various TCP flows, (3) MTCP is not affected by
independent loss, and (4) MTCP flow control
scales well when an appropriate logical tree is
employed. Thus, we believe that MTCP provides a
viable solution to TCP-like congestion control for
large-scale reliable multicast. We are currently
working on designing and implementing a set of
mechanisms for addressing the intra-fairness
problem of reliable multicast protocols, i.e., to
prevent a slow receiver from slowing down the
whole group.
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