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a b s t r a c t 

Virtual request partitioning is an essential subproblem of two common problems in virtual networks, 

namely, virtual network embedding (VNE) and virtual machine placement (VMP). In this study, we con- 

sider a network-aware variant of the problem where the objective is to partition a virtual request so as to 

minimize the total amount of inter-cluster traffic. This problem is equivalent to the ( k, v )-balanced parti- 

tioning problem, an NP-complete problem. To handle the inherent complexity of this problem, we develop 

a spectral clustering-based partitioning scheme that produces good solutions in a reasonable amount of 

time. Our solution consists of several components: (a) spectral clustering, (b) a Constrained k-means par- 

titioning algorithm that ensures that capacity limits for clusters are met, and for which we present a 

polynomial-time greedy algorithm, and (c) a greedy refinement algorithm using simulated annealing to 

further improve the clustering solution. Simulation results indicate that our algorithm outperforms exist- 

ing partitioning schemes in terms of inter-cluster traffic minimization. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Network virtualization is seen as crucial way in reshaping the

Internet architecture and introducing diversity into the current

network [1] . With network virtualization, conventional providers

are decoupled into infrastructure providers (InP), who mainly fo-

cus on the management of the infrastructure, and service providers

(SP), who are responsible for the creation of the network and pro-

vide end-to-end service to end users. Such an environment allows

the deployment of network architectures regardless of the underly-

ing infrastructure, and thus facilitates the evolution of network ar-

chitecture [2] . The cloud computing paradigm also employs virtu-

alization techniques. Data centers aggregate all the computing re-

sources (including CPU, memory, and storage), and provide services

to the end users in the form of virtual machines (VM). Server vir-

tualization allows multiple VMs to co-locate on the same physical

server to increase utilization and lower the operational cost [3] . 

A key challenge for network virtualization and cloud computing

is resource allocation. In network virtualization, resource allocation

arises in the context of the virtual network embedding (VNE) prob-

lem, where the objective is to embed the virtual network to the

substrate network so as to maximize the benefit from the exist-
� This work was supported in part by the National Science Foundation under 
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ng hardware [4] . In the area of cloud computing architecture, the

elated virtual machine placement (VMP) problem arises, whereby

he objective is to optimally assign the VMs to physical hosts so as

o utilize the available resources without performance degradation

5] . 

In either area, mapping virtual request to physical resources

ay involve partitioning of the virtual request. For the VNE prob-

em, mapping virtual requests to multiple domains may be re-

uired for various reasons, including load balancing [6] and man-

ging the embedding cost [7] ; for the VMP problem, VMs must

e mapped onto underlying physical resources that may span

cross physical hosts, racks, even data centers [8] . Therefore, for

ommunication-intensive applications, mapping virtual requests to

hysical resources must be accomplished in a manner that satis-

es capacity constraints and takes into account the communication

ost and quality of service (QoS) requirements [8,9] . 

In this work, we consider the problem of virtual request parti-

ioning and present an algorithm inspired by spectral clustering to

artition the set of virtual nodes under capacity constraints. This

lgorithm produces high quality solutions, compares favorably to

xisting algorithms, and scales well; simulation experiments indi-

ate that it can tackle virtual networks consisting of hundreds of

odes within a few seconds. Following the introduction, we review

revious work in this topic in Section 2 . In Section 3 , we formally

efine the problem and present the various components of the vir-

ual request partitioning algorithm. In Section 4 , we present the

esults of simulation experiments we have conducted to compare

https://doi.org/10.1016/j.comnet.2018.04.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.04.005&domain=pdf
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he performance of this algorithm to existing algorithms. We con-

lude the paper in Section 5 . 

. Related work 

Several studies [6,7,9] have addressed the virtual request parti-

ioning problem using max-flow, min-cut schemes. With existing

lgorithms, it is possible to compute efficiently the maximum flow

etween a pair of nodes and obtain the minimum cut between

hem. The work in [7] recursively uses the max-flow, min-cut ap-

roach to partition the network into the desired number of clus-

ers. In [6,9] , a clustering approach based on Gomory–Hu trees is

xplored. A Gomory–Hu tree represents the n − 1 minimum s − t

uts in a graph of n nodes. By removing the k − 1 least weight

dges of this tree, a partition of the n nodes into k clusters is ob-

ained that is close to optimal. The shortcoming of this approach is

hat the resulting clusters may be highly imbalanced, as the clus-

er capacity is not taken into account. In order to enforce the ca-

acity constraints, further partitioning of an overloaded cluster and

ombination of small clusters is necessary. For instance, in an ex-

reme case, when recursively using the max-flow min-cut approach

o partition the network requests, one may keep obtaining the re-

ult of one node in one part while all the rest goes to the other;

hile for a Gomory–Hu tree, it is possible to end up with a star

opology, and by removing one edge, each time, we can only ob-

ain a cluster with a single node. However, there is no guarantee

hat the combination of those small clusters would lead to a small

mount of inter-cluster traffic. In both cases, when we group those

ingleton nodes into a cluster, there is no evidence that the traffic

mong those nodes is high. As intra-cluster traffic is not necessar-

ly low, this, in turn, implies a potentially high inter-cluster traffic. 

The virtual network embedding problem across multiple do-

ains has been considered in [10] , where it was proposed to use

terative local search (ILS) to partition the virtual request. For this

roblem, ILS starts with a random clustering, following which a se-

uence of solutions is generated by randomly remapping some of

he nodes to other clusters. Of these solutions, the one that im-

roves upon the current solution the most is kept, and the algo-

ithm iterates until a stopping criteria is met. Despite the simplic-

ty of this method, it is hard to guarantee the quality of the solu-

ion within a limited time. In a related study, a general procedure

or resource allocation in distributed clouds was presented in [8] .

he objective was to select the data centers, the racks, and proces-

ors with the minimum delay and communication costs, and then

o partition the virtual nodes by mapping them onto the selected

ata center and processors. 

In [25] , a series of spectral partitioning algorithms are reviewed

nd summarized. These spectral partitioning techniques generally

se the median of the Fiedler vector, the second smallest eigen-

alue of the Laplacian matrix for the traffic matrix, to partition the

raph into two parts. Then, by recursively applying this method,

ne can partition the graph into 2 n , n ≥ 1, parts. These algorithms

ave two limitations. First, the node weights related to load de-

ands are not taken into consideration; consequently, the load

ay not be balanced well across the various clusters. Second, the

umber of clusters is limited to powers of two. In [26] , a spectral

artitioning based method that makes use of multiple eigenvectors

f the Laplacian matrix is proposed. While this work considers the

ode weight balancing and makes use of multiple eigenvectors to

roduce a solution with a high-quality, it only partitions a graph

nto two, four or eight parts. 

In contrast to the existing works, our algorithm exploits mul-

iple eigenvectors of the Laplacian matrix to partition the net-

ork requests into arbitrary number of clusters. Such eigenvec-

ors would form a k -dimensional space known as the eigenspace,

nd the Euclidean distance would reflect the traffic intensities. One
an arrive at a high quality solution by clustering on Euclidean

istance. Unlike Gomory–Hu tree based approaches, while assign-

ng data points to the different partitions, the minimization of the

nter-cluster traffic and the cluster capacities are jointly considered.

his allows network requests to be partitioned into arbitrary clus-

ers under the capacity constraints. 

. Virtual request partitioning 

Virtual request partitioning is required in both the VNE and

MP problems, whereby the objective is to partition the virtual

etwork into a set of clusters in order to minimize the inter-cluster

raffic. Fig. 1 (a) shows a set of virtual nodes that have been par-

itioned into three clusters such that inter-cluster traffic is mini-

um. In the VNE scenario of Fig. 1 (b), mapping each of the clusters

o a different domain will minimize inter-domain traffic (which

resumably is more expensive than intra-domain traffic). In the

ontext of the VMP problem in Fig. 1 (c), assuming that each clus-

er is assigned to a different processor or even rack, optimal parti-

ioning of the virtual request minimizes the traffic that has to be

andled by the aggregate and core switches of the data center net-

ork, hence improve the scalability and stability of the network. 

In this section, we formally define the virtual request partition-

ng problem which could be applied both to the VNE and VMP

roblem, and then present an algorithm based on spectral cluster-

ng to solve this problem. 

.1. Problem statement 

We model the communication between virtual nodes as a traffic

atrix W = [ w i j ] n ×n , where element w ij represents the amount of

raffic from virtual node i to j . Each virtual node is associated with

 resource requirement r i , and each cluster h is associated with a

apacity threshold Cap h . 

With these definitions, partitioning the set of virtual nodes into

 clusters so as to minimize the inter-cluster traffic can be formu-

ated as the following Integer Linear Programming (ILP) problem: 

inimize 
∑ 

k 

∑ 

i, j 

w i j (1 − y k i j ) (1) 

ubject to 

∑ 

i 

r i x 
k 
i ≤ Cap k , ∀ k (2) 

x k i + x k j ≤ y k i j + 1 ∀ i, j, k (3) 

y k i j ≤ x k i ∀ i, j, k (4) 

∑ 

k 

x k i = 1 , ∀ i (5) 

x k i = { 0 , 1 } , y k i j = { 0 , 1 } (6) 

he binary variable x k 
i 

∈ { 0 , 1 } here indicates if virtual node i is as-

igned to cluster k while binary variable y k 
i j 

∈ { 0 , 1 } indicates if vir-

ual nodes i and j are both mapped onto cluster k . 

Constraint (2) ensures that the amount of resources assigned to

ach cluster will not exceed its capacity limit. Constraint (3) and

onstraint (4) guarantees consistency between decision variable x

nd y . Constraint (5) makes sure that virtual machine i is assigned

o exactly one cluster. This formulation is equivalent to the ( k, v )-

alanced partitioning problem, which is an NP-complete problem

16] . We also note that by replacing “virtual node” with “VM” and

luster with “processor,” the above formulation also expresses the
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Fig. 1. Virtual request partitioning for virtual network embedding and virtual machine placement. 

Fig. 2. General procedure for virtual request partitioning. 
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problem of placing VMs onto processors so as to minimize inter-

processor traffic. 

For the solving of the virtual request partitioning problem, we

apply a spectral clustering based [11] approach. A high level idea

of our approach is illustrated in the Fig. 2 . We aim to partition

the virtual request that consists of n nodes. Starting with a n -by-

n traffic matrix W , we compute the normalized Laplacian matrix

L sym 

of the given traffic matrix W . We then compute the eigenvec-

tors that associate with the first k smallest eigenvalues of matrix

L sym 

, and form a n -by- k matrix Z based on the k -smallest eigen-

vectors. Denote i th row of the matrix, a k dimensional vector, as z i .

The virtual node i will be associated with z i . We can think of the z i 
as the coordinates for the virtual node i on a k dimensional space,

and the matrix Z as the collection of coordinates for the n data

points. This k -dimensional space is referred as Eigenspace. With

given property of the Laplacian matrix, the nodes that have higher

traffic among them tend to stay closer on this Eigenspace. Thus,

we can perform clustering for those data points (z i ) i =1 ,...,n . Clus-

tering will assign the nodes to different clusters so as to minimize

the total distance between the nodes within each cluster on the

Eigenspace, which implies this assignment maximizes the intra-

cluster traffic and eventually minimize the inter-cluster traffic. In

order to satisfy the capacity constraints, we perform Constrained

k -means algorithm for clustering. Upon the completion of the clus-

tering, we obtain our initial clustering results. The result can be

further refined using the Greedy-Refinement algorithm based on

the traffic matrix W . It will iteratively assign the Virtual Node to
nother cluster if such an assignment would lower the inter-cluster

raffic. And to achieve a better partitioning result, we can combine

he Greedy Refinement algorithm with Simulated Annealing. The

hole procedure is outlined as Algorithm 1 , and is explained in

etail in subsequent sections. 

lgorithm 1 Spectral clustering based Virtual Request Partitioning

lgorithm 

nput: 

W : n × n traffic matrix of VNodes 

k : number of clusters 

R = r 1 , r 2 , ..., r n : resource requirement of VNodes 

Cap = cap 1 , cap 2 , ..., cap k : capacity of each cluster 

utput: 

The cluster to which each VNode belongs 

1: Construct diagonal matrix D with d ii = 

∑ n 
j=1 w i j 

2: Compute normalized Laplacian L sym 

= D 

−1 / 2 (D − W ) D 

−1 / 2 

3: Obtain the eigenvector associated with the k smallest eigenval-

ues of matrix L sym 

4: Let matrix U contain the above eigenvectors as columns 

5: Let z i be the vector associated with i th row of U . 

6: Cluster the points (z i ) | i =1 ...n under the capacity constraints Cap

via Constrained k -means 

7: Refine the partitioning result by Greedy-Refinement based

Simulated Annealing 
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.2. Spectral clustering 

Spectral clustering [11] is used to find a set of clusters such

hat the edges between clusters have low weights (in this case,

he weights would represent the pairwise traffic). An important

eature of spectral clustering is that, unlike the conventional min-

ax flow approach, it can avoid the creation of imbalanced parti-

ions whereby some clusters are assigned a much larger number of

odes than others. Given a n × n traffic matrix W , the normalized

aplacian matrix is defined as L sym 

= D 

−1 / 2 (D − W ) D 

−1 / 2 , where D

s a diagonal matrix with element d ii = 

∑ n 
j w i j . 

Let P 1 , . . . , P k be a partition of the set of n virtual nodes into k

ets (clusters), i.e., the sets P i are pairwise disjoint and their union

s { 1 , . . . , n } . Further, let P̄ i be the complement of set P i . We define

he N Cut metric as: 

 Cut(P 1 , P 2 , ..., P k ) = 

k ∑ 

i =1 

cut(P i , P̄ i ) 

v ol(P i ) 
(7)

here the numerator represents inter-cluster traffic (i.e., between

odes in P i and nodes not in P i ) and the denominator denotes total

raffic within cluster P i . 

Minimizing N Cut will result in a set of k clusters that have low

nter-cluster traffic, while the presence of vol ( P i ) in the denomina-

or will prevent the creation of clusters with few nodes, and hence,

luster sizes will not be highly imbalanced. The normalized Lapla-

ian has the following property that allows us to find an approxi-

ate solution to the N Cut problem efficiently: for a given n -by- k

atrix H , if we take h ij as: 

 i j = 

{
1 / 

√ 

v ol(P i ) if v i ∈ P j 
0 otherwise 

(8) 

he following equation would hold [11] : T r(H 

T LH) = 

∑ n 
i =1 

cut(P i , ̄P i ) | v ol(P i ) | 
 N Cut(P 1 , P 2 , ..., P k ) . 

Also observe that H 

T DH = I. Therefore, we can reformulate the

roblem of minimizing N Cut as follows: 

minimize T r( H 

T LH) 

ubject to H 

T DH = I (9) 

h i j = { 1 / 
√ 

v ol(P i ) , 0 } 
e can obtain an approximate solution to this problem in poly-

omial time by relaxing the last condition and taking Z = D 

−1 / 2 H.

he problem then becomes: 

minimize T r( Z T L sym 

Z) 

ubject to Z T Z = I (10) 

ccording to the Rayleigh–Ritz Theorem, the solution to prob-

em (10) would be to take Z as the k smallest eigenvectors of L sym 

,

.e., the eigenvectors corresponding to the k smallest eigenvalues. 

Let matrix Z be a n -by- k matrix that contains the above k eigen-

ectors as columns, and let z i be the vector associated with the i th

ow of Z , and we take z i as coordinates for the virtual nodes on

he Eigenspace. The data points will stay close to each other in the

igenspace if the traffic between them is high, and this will allow

s to obtain the final solution using clustering algorithm. A formal

roof of this property that established in the matrix perturbation

heory is presented in [19] . 

To obtain the final solution, clustering will be performed to

luster the points (z i ) i =1 , ... ,n while satisfying the capacity con-

traints Cap . Our approach to clustering is the topic of the follow-

ng subsections. 
.3. Constrained k -means 

Conventional spectral clustering uses the k -means algorithm

18] to cluster the data points z i . One drawback of the k -means

lgorithm is that it may converge to a solution in which some clus-

ers have very few data points while others are overloaded. There-

ore, we use the Constrained k -means algorithm proposed in [12] .

iven a set of data points, the Constrained k -means algorithm aims

o find a set of cluster centers C 1 , C 2 , . . . , C k , such that the sum of

istances between each node and the center it is assigned to is

inimal. Specifically, the problem solved in [12] is: 

minimize 

m ∑ 

i =1 

k ∑ 

h =1 

x h i ·
(

1 

2 

‖ z i − C h ‖ 

2 
2 

)

ubject to 

k ∑ 

h =1 

x h i = 1 , ∀ i ; x h i ≥ 0 , ∀ i, ∀ h. (11) 

∑ 

i 

x h i ≥ T h ∀ h 

n this formulation, x h 
i 

is a selection variable denoting whether

ata point i belongs to cluster h . The last constraint is used to con-

rol the size of each cluster, i.e., to ensure that each cluster has size

t least equal to T h . 
In the virtual request partitioning problem, the resource re-

uirement for each cluster should not exceed its capacity. To this

nd, we replace the constraint 
∑ 

i x 
h 
i 

≥ T h with 

∑ 

i r i x 
h 
i 

≤ Cap h , and

ollow the iterative method proposed in [12] . 

Given n data points z 1 , z 2 , ..., z n , k cluster center points

 

t 
1 
, C t 

2 
, ..., C t 

k 
at iteration t , and capacity limit Cap h for cluster h , the

luster center for iteration t + 1 is computed using the following

teps. 

luster Assignment. Given the fixed cluster center points C h , find

he selection variables so that the distance between the data points

nd the corresponding cluster center is minimized. 

minimize 

n ∑ 

i =1 

k ∑ 

h =1 

x h i ·
(

1 

2 

‖ z i − C h ‖ 

2 
2 

)

ubject to 

k ∑ 

h =1 

x h i = 1 , ∀ i (12) 

∑ 

i 

r i x 
h 
i ≤ Cap h , ∀ h 

x h i ≥ 0 , ∀ i, ∀ h 

luster Update. Compute the center point at iteration t + 1 as: 

 

t+1 
h 

= 

{ ∑ n 
i =1 x 

h 
i 
(t) z i ∑ n 

i =1 x 
h 
i 
(t) 

if 
∑ n 

i =1 x 
h 
i 
(t) > 0 

C t 
i 

otherwise 
(13) 

It was shown in [13] that cluster assignment is equivalent to the

inimal Cost Flow (MCF) problem. We now show that this cluster

ssignment subproblem can be solved optimally within O ( kn log n )

ime using a greedy approach. 

We first reduce cluster assignment to the MCF problem follow-

ng the steps outlined in [13] . The supply from the source node

 src ) and the demand by sink node ( dst ) is equivalent to the to-

al requirement 
∑ n 

i =1 r i . src is connected to all the data points

(z i ) | i =1 ,...,n , and each data point is connected with all the cluster

enters, while cluster centers are connected to dst . Each edge is

ssociated with a weight tuple ( Price, MaximumCapacity, Flow ). The

rice from data points to cluster centers are set to the correspond-

ng distance, while on other edges it is set to zero. The Maximum-

apacity from src to the data points is the resource requirement r i 
nd from cluster center h to dst is Cap ; on other edges, it is set to
h 
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Fig. 3. MCF view of clustering assignment subproblem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 2 Constrained k -Means 

Input: 

(z i ) i =1 ,...,n : data points formed by eigenvectors 

k : number of clusters 

R = r 1 , r 2 , ..., r n : resource requirement of VNodes 

Cap = cap 1 , cap 2 , ..., cap k : capacity of each cluster 

Output: Selection indicator x h 
i 

1: Iteration t ← 0 , randomly initialize C t 
h 

∀ h 

Remaining resource requirement Rm req ← R 

Remaining capacity Rm cap ← Cap

2: while C t+1 
 = C t do 

3: Clustering Assignment: 

4: Compute pairwise distance between data points and cluster 

centers D = { d 11 , d 12 , ..., d nk } 
5: Ascending sort D to get D asc = { d ′ 

1 
, d ′ 

2 
, ..., d ′ 

n ∗k 
} 

6: for j ← 1 to (n ∗ k ) do 

7: Choose point i and center point h associated with d ′ 
j 

8: if Rm 

i 
req < Rm 

h 
cap then 

9: x h 
i 

← Rm 

i 
req /r i ; Rm 

h 
cap ← Rm 

h 
cap − R i res ; Rm 

i 
res ← 0 

10: else 

11: x h 
i 

← Rm 

h 
cap /r i ; Rm 

i 
req ← Rm 

i 
req − Rm 

h 
cap ; Rm 

h 
cap ← 0 

12: end if 

13: end for 

14: Clustering Update: 

15: update the center points according to (13) 

16: t ← t + 1 

17: end while 

18: P ← round S without violating capacity constraint. 

s  

c  

a  

w

 

K  

b  

n  

T  

t  
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o  
infinity. An example of the representation of a cluster assignment

problem to an MCF network is shown in Fig. 3 (a). 

Now, we show how this problem can be solved with a greedy

approach. First, ascending sort the price on all the paths from src

to dst and augment flow accordingly. When we think of this prob-

lem in terms of negative cycle canceling algorithm, each time we

augment the flow by f on a path, we create a reverse path with

negative price on the residual graph. An example can be found in

Fig. 3 (b) and (c). 

A brief proof of optimality is as follows. Denote the iteration

to augment flow on path i as t i . At t i , we augment flow on path

i . For t j > t i , no negative cycle will form on the residual graph in-

volving the reversed path i , because the price of path j will be no

less than of path i . Also, for path j with t i > t j , the price of path

i is higher, hence a negative cycle will be formed only when we

take forward direction from on path j and backward on i , which is

impossible. This is from the fact on path j , the capacity on src to a

data point or from cluster center of dst is depleted. In the former

case, we cannot find a forward path from src to the data point, so

path j is blocked, and no cycle will form. The same applies to the

latter case when path i and j go through a different cluster center.

If they pass through same cluster center, then, we cannot augment

the flow on path i , because there is no available capacity from the

cluster center to dst , so no negative circle will form. In conclusion,

no negative cycle can be found and the solution will be optimal. 

At each step, denote the remaining capacity of cluster h as

Rm 

h 
cap , and the remaining resource requirement of each virtual

node i as Rm 

i 
res . Our Constrained k -means with greedy cluster as-

signment algorithm is shown as Algorithm 2 . 

Note that some of the resulting variables may be fractional. We

round the fractional selection variable by assigning the node i to

the cluster h with maximum x h 
i 

without violating the capacity con-

straints. Observe that the number of fractional elements will be

smaller than the number of clusters, because each element will

not be fragmented unless the cluster it is assigned to reaches its

maximum capacity; after that instant, the cluster will take no ad-

ditional data points. As a result, no other assignment will get frag-

mented on that cluster, and therefore, the number of fractional as-

signment will be less than that of clusters. Assuming that n � k ,

i.e., the number of data points is significantly greater than the

number of clusters, we expect that this greedy rounding scheme

will have only relatively small negative impact. 

3.4. Partitioning refinement 

In order to improve upon the partition results obtained by the

Constrained k -means algorithm, we employ a Simulated Annealing

(SA) based approach [27] . The SA algorithm aims to approximate

an optimal solution by probabilistically accepting a new lower

quality solution. It mimics the annealing process, and starting with

a high initial temperature, a worse solution can be accepted with

a higher probability, leading to an extensive search over the entire
earch space. As the temperature goes down, the probability to ac-

ept a worse solution decreases, and the algorithm gradually enters

 refining phase. In our work, we integrate the Greedy Refinement

ith the SA to generate new solutions. 

The GR algorithm is proposed in [14] , which improves the

ernighan–Lin (KL) algorithm [17] to refine the bisection of a graph

y iteratively swapping the pair of vertices that would most sig-

ificantly reduce the edge cut until a local minimum is reached.

he GR algorithm extends the KL algorithm so as to handle ver-

ex weights, refines the multi-way partitioning and improves the

unning time. 

For completeness, we present the GR algorithm as Algorithm 3 .

iven an existing partition of the virtual nodes, the nodes are

hecked in a random order. Consider node v in cluster l . Denote

D [ v ] h as the total traffic between v and its neighbors that belong

o cluster h (where we allow h = l). The algorithm moves vertex

 to the cluster with the highest value ED [ v ] h (or keeps it in the

ame cluster if it happens that h = l). 

We now integrate this GR algorithm within a new point gener-

tion phase of SA: each time we randomly move a small number

f nodes n exc from one cluster l to another h , such that (1) the
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Algorithm 3 Greedy Refinement Algorithm 

Input: 

k : Number of clusters 

Initial assignment of VNodes to clusters 

Rm cap : Remaining capacity of each cluster 

Cap: Maximum capacity for each cluster 

Res : Resource requirement vector, remaining capacity 

Output: Final assignment of VNodes to clusters 

1: for v ← random permutation from 1 to n do 

2: assume node v ∈ cluster l

3: ED [ v ] h | h =1 ,...,k ← 0 

4: for u ← 1 to n do 

5: if node u ∈ cluster h then 

6: E D [ v ] h = E D [ v ] h + w u v 
7: end if 

8: end for 

9: h = argmax { ED [ v ] h s . t . W i [ v ] + R h cap < Cap h } 
10: move v from cluster l to h 

11: update Rm 

h 
Cap 

12: end for 
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Fig. 4. Inter-cluster traffic ratio for k = 3. 
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ode that is moved from l to h should be on the “brink” (i.e., it

hould have at least one neighbor in the new cluster h ), and (2)

his movement does not violate the capacity constraints of cluster

 . The exchange aims to introduce perturbation to the current so-

ution so as to escape local minima. The procedure to generate new

oints is detailed in Algorithm 4 . After the exchange is completed,

lgorithm 4 New Point Generation 

nput: 

k : Number of clusters 

n exc : Number of nodes to exchange 

Initial assignment of VNodes to clusters 

Res = r es 1 , r es 2 , .., res n : Resource requirement vector 

Cap h = cap 1 , cap 2 , ..., cap k : Maximum capacity 

utput: P : Final assignment of VNodes to clusters 

1: for v ← random permutation from 1 to n exc do 

2: node v ∈ cluster l

3: if node v has neighbor ∈ cluster h and 

Cap h + Req [ v ] < Cap h then 

4: move node v from cluster l to h . 

5: end if 

6: end for 

7: for t ← 1 to t re f do 

8: refine the partitioning via Greedy Refinement 

9: end for 

e execute several iterations of the Greedy Refinement algorithm

o refine the result. 

The GR algorithm constructs a solution that represents a lo-

al optimum. The total outgoing weight of this solution is consid-

red as the energy function for the SA algorithm. The SA algorithm

ill decide whether to accept this point or not. Since the solution

assed to SA is already a local optimum point obtained by the GR

lgorithm, the SA moves around the local optimum points to find

he final solution. This operation is more efficient than the naive

mplementation of randomly generating new points and letting the

A algorithm decide which solution to take. 

Running time: The overall algorithm ( Algorithm 1 ) consists

f three steps, namely, computing the eigenvectors of the graph

aplacian, Constrained k -means, and graph refinement. The com-

utation of the eigenvectors can be completed in O ( n 3 ) time. For

he Constrained k -means, the clustering assignment subproblem

an be solved in O ( kn log n ) time, where k is the number of clus-
ers, and the cluster update problem can be solved in O ( kn ) time.

et t c be the number of iterations for Constrained k -means to con-

erge; then, the total running time for the Constrained k -means is

 ( kt c nlgn ). Using an adjacency table, each iteration of the refine-

ent phase can be completed in time O ( E ), where E is the total

umber of edges in a graph. If t r iterations are needed, the re-

nement phase takes time O ( t r E ). Overall, this algorithm runs in

 (n 3 + kt c n log n + t r E) time. 

. Experiments and evaluation 

We now present the results of experiments we have conducted

o evaluate the performance of spectral clustering (SC)-based al-

orithms. We use two methods to refine the partitioning: solely

ased on the GR algorithm (referred to as SC) as well as the SA-

ased refinement approach (SC-SA) we described in the previous

ection. We compare the results to those obtained using a Gomory-

u tree [9] , the METIS [15] , and the ILS method [10] . 

.1. Simulation setup 

To evaluate the performance of our approach, we generate a

raffic matrix as follows: each virtual node is connected to all other

irtual nodes, and each node and link is assigned a weight to

epresent the resource and traffic requirements, respectively, and

e also specify the maximum available capacity for each clus-

er. For each randomly generated traffic matrix, the vertex weight

s uniformly distributed in (1, 2), the edge weight is uniformly

istributed in (5, 20). Our goal is to partition the network into

 = 3 , 4 , 7 clusters. For each cluster, we set the maximal capacity

o 105% of the average weight of each cluster, i.e., the weight we

lace onto each cluster if we can have a perfect load balancing of

he nodes. For the ILS algorithm, we set the number of iterations

o be 5 × 10 4 and for each iteration, exchange 40% of nodes in each

luster. We also set n exc = 15 for the new point generation phase in

A, and we run 3 iterations of the GR-algorithm to refine the par-

itioning result. We use two performance metrics: the inter-cluster

raffic ratio (ITR), i.e., the ratio of the inter-cluster traffic to the to-

al amount of traffic, and the running time of each algorithms. We

un the simulation 50 times, and calculate the mean and 95% con-

dence intervals for the results. 

.2. Simulation results 

Figs. 4 and 5 plot the ITR and running time, respectively, against

he number of virtual nodes and for k = 3 clusters. For the SA algo-

ithm, we set the initial temperature to T = 10 4 and the maximum

umber of iterations to 600. We observe that spectral clustering
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Fig. 5. Running time for k = 3. 

Fig. 6. Inter-cluster traffic ratio for k = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Running time for k = 4. 

Fig. 8. Inter-cluster traffic ratio for k = 7. 

Fig. 9. Running time for k = 7. 
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with SC-SA method is strictly better than the other algorithms in

terms of inter-cluster traffic minimization. Compared with METIS,

it reduces the inter-cluster traffic by 6–9% percent, with an av-

erage improvement of 8.3%. Compared with Gomory-Hu tree (re-

spectively, ILS), inter-cluster traffic is reduced by as much as 11%

(respectively, 9.7%), with an average improvement of 10% (respec-

tively, 8.2%). Also, compared with the SC only, SC-SA based refine-

ment produces an improvement of 1.6% on average. In terms of

running time, with a small number of virtual machines, the SC al-

gorithm has the similar performance with METIS while the run-

ning time for SC-SA stays close to the Gomory-Hu tree method,

about one magnitude larger than the two above, while ILS takes

still one magnitude longer. When there are more virtual nodes,

we see that the GH-Tree has a similar performance with the ILS,

about an order of magnitude larger than the SC-SA, while SC takes

less running time by an order of magnitude than SC-SA, and METIS

takes yet another order of magnitude less than SC. 

The second set of simulation experiments is to partition the

virtual request into k = 4 clusters, and the results are shown in

Figs. 6 and 7 . We kept the initial temperature for SA to T = 10 4

and the maximum number of iterations as 600. The SC algorithm

produces clustering solutions that, in terms of inter-cluster traffic,

outperform those produced by the METIS, Gomory-Hu tree, and ILS

schemes by 4.5%, 6.5%, and 4.7%, respectively, on average. The SC-

SA algorithm further reduces inter-cluster traffic by 1.1% on aver-

age, compared to SC. The running time results are similar to the

experiments with k = 3 above. 

Finally, Figs. 8 and 9 plot the results of the third set of simu-

lation experiments where we set k = 7 . The initial temperature for

SA was set to T = 10 5 and the maximum number of iterations to

600. The results are similar to those of the first two experiments,
n that, on average, the SC algorithm performs 4.5% better than

ETIS, 6.1% better than Gomory-Hu tree, and 4.8% better than ILS.

lso, compared with SC, the SC-SA algorithm reduces inter-cluster

raffic by a further 0.7% on average. In terms of running time, the

elative behavior of the five algorithms is also similar to the last

wo experiments. 

From this set of simulations, we conclude that the spectral clus-

ering method with SA refinement produces the best solutions in

erms of minimizing the inter-cluster traffic. It also compares favor-

bly to existing clustering approaches based on ILS and Gomory-

u tree, in terms of running time. When we compare with METIS,

e found out its performance is at trade-off with METIS: the spec-

ral clustering based algorithm achieves a better performance in
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Fig. 10. Inter-cluster traffic ratio for modular pattern. 
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Fig. 11. Running time for modular pattern. 
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inimizing the inter-cluster traffic, while METIS achieves a lower

xecution time. 

.3. Further performance comparison with METIS 

To further evaluate the performance of our proposed algorithm,

e compare its performance with METIS on three different types

f topologies with different partitioning settings. Among the entire

et of simulations, we selectively present three groups of evalu-

tion results that illustrate the relative performance of the algo-

ithm. 

First, we evaluate the result on random modular graphs [24] .

his intends to capture the pattern that communication taking

lace within a group of VM is more intensive than that between

roups of VMs. We assume the topology contains 20 clusters of

qual size, and the probability of connecting one pair of nodes

ithin the same cluster is 80%, while connecting one pair of nodes

rom two different clusters is 20%. We generate the topology using

his model, and the traffic on each link follows a Gaussian distri-

ution, with a mean of 100 and variance of 25. We partition the

enerated graph into 3 clusters, and the capacity constraint is set

o 120% of the average. This setting for the capacity constraint tries

o capture the condition that abundant computing resources in the

nderlying network are provided for each cluster such that a more

exible partitioning of the virtual request is allowed. The results

re presented in the Fig. 10 . 

In this set of simulations, we can see that inter-cluster traffic

s minimized by SC-SA with an additional 2.7% on average when

ompares with METIS. However, when we compare the result be-

ween METIS and SC, we can see that METIS achieves a better re-

ult on smaller requests by as much as 9%, while SC achieves a

etter result on larger requests by around 3%. On average, METIS

rings about 3% of improvement than SC for traffic minimization. 

Next, we generate the topology following the Waxman model

23] . The Waxman model has been used to model the Internet,

specially the intra-domain networks [22] . In a Waxman model,

odes are randomly placed on a rectangle area, and the connectiv-

ty probability between a pair of nodes is based on their Euclidean

istance, more formally, p = α exp (−d/ (β ∗ L )) , where d is the Eu-

lidean distance between one pair of nodes, and L is the maximum

istance allowed. The α and β are two parameters that define the

onnectivity pattern. More specifically, α defines the overall con-

ectivity probability (a higher α results in a denser connectivity)

hile β restricts the probability of connection based on the dis-

ance, i.e., a larger β tends to increase the chance of connection

or a pair of nodes that are far from each other, while a lower

tends to prevent such connection. In this experiment, we use
 = 100 , α = 0 . 05 , and β = 0 . 3 to define the connectivity of the

irtual request. For the partitioning setting, we divide the virtual

equest into 4 clusters with different capacities, each cluster with

0%, 20%, 30%, 30% of the total weight of the request. Maximum vi-

lation for the capacity is defined to be 5%. This setting represents

 situation where the distribution of the computational resource

s imbalanced, such as heterogeneous resources, or the workload

s imbalanced across different domains. The simulation setting is

hown in Fig. 12 . 

As we can see from the figures, SC-SA achieves an improvement

f 5% compared with METIS for ITR minimization, while SC delivers

 2.5% improvement compared with METIS. 

Finally, we evaluate this algorithm on a virtual request whose

egree distribution exhibits power law, which characterizes the de-

ree distribution of router-level and AS-level Internet graphs [21] .

e use the Barabasi-Albert (BA) model [20] to obtain a traffic pat-

ern that follows a power-law. It starts with a small connected

omponent, and then probabilistically attaches a new vertex to the

xisting vertex following preferential attachment, i.e., the likeli-

ood of connection depends on the degree of the existing vertex.

e start with 5 connected vertices and end up with a topology

onsisting of 50 to 400 vertices. We partition the graph into four

lusters of equal capacity, while allowing a cluster to exceed its

apacity limit by 5%. The simulation results are shown in Fig. 14 . 

Compared with METIS, the simulation result suggests an aver-

ge improvement of 34% in terms of ITR minimization for SC-SA,

ith a maximum improvement of 43%, while SC brings forth an

mprovement of 14% compared with METIS on average. 

The running time for the three different types of topologies

s similar to the previous set of simulations., and it is shown in

igs. 11 , 13 and 15 . METIS requires less execution time compared

ith SC-SA, by two orders of magnitude faster in general. Com-

ared with SC, we see that their performance is similar on a re-

uest with small scale, while on a larger request, METIS will still

ork better. 

.4. Detailed comparison of SC To METIS 

First, we observe that while our algorithm can achieve a bet-

er result in minimizing the inter-cluster traffic, the performance of

ur proposed algorithm varies across different traffic patterns. In-

eed, compared with the performance on other traffic models, the

C-based algorithm reduces a higher amount of inter-cluster traffic

n the BA model. Such a difference results from the fact that the

egree distribution with the BA model follows a power-law, which

mplies a highly irregular graph. This means that some network
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Fig. 12. Inter-cluster traffic ratio for Waxman model pattern. 

Fig. 13. Running time for Waxman model pattern. 

Fig. 14. Inter-cluster traffic ratio for BA-model pattern. 

 

 

 

 

 

 

Fig. 15. Running time for BA-model pattern. 

Fig. 16. A growing partition to two nodes. 
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nodes may be richly connected, and the traffic flow in and out of

those nodes is significantly higher than the rest. 

Under this scenario, METIS, with its greedy partitioning grow-

ing scheme, may fail to obtain a high-quality solution. It will first

randomly select a node as the starting point, and add it to the

growing partition. The gain of neighboring vertices of this parti-

tion, defined as the traffic reduction in the inclusion of one partic-
lar vertex, will then be updated. The nodes with the largest gain

ill be added to the partition. This process will repeat until the

esired size of the partition is achieved. 

When it comes to the BA model, we observe that the power-

aw distribution, with its “fat-tail” property, may contain a large

mount of nodes with a small degree. Also, there will exist some

odes with a very large degree. When we randomly select a node

s the starting point, given the population of the nodes with a

mall degree, it is likely that this node will be one of these small

egree nodes. In the greedy spanning step, the nodes with a large

egree, however, will likely be deferred to be added to the cluster.

ake the example in Fig. 16 , and let us assume unit traffic for each

dge. When the growing partitioning reaches nodes A and B into

he growing partition, the gains for the two nodes are -4 and 1 re-

pectively, which leads to inclusion of B . This shows that when we

re computing the gain of a node associated with heavy traffic, if

any of its neighbors are not included within the growing parti-

ion, we shall always end up with a large negative gain. This large

egative gain will result in the deferral of adding of this node to

he growing partition. 

Since the assignment of nodes with heavy traffic may turn out

o be the key to a good partitioning result, the deferral in consid-

ring those nodes will lead to a sub-optimal performance. An il-

ustrating example to this can be found in Fig 17 . Fig. 17 (a) shows

he underlying connectivity of a network request. Suppose all the

raffic and nodes are of equal weight, and the objective is to obtain

 bisection of the requests. In this case, it is easy to verify that an

ptimal solution would be to put nodes a − g in one cluster, and

odes h − n in another. However, if we are applying the greedy

rowing partitioning approach, with the starting point being e , one
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Fig. 17. Example of the outcome on the partitioning. 

Table 1 

First 2 smallest eigenvectors. 

Node a b c d e f g 

evec 1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

evec 2 −0.32 −0.32 −0.32 −0.30 −0.22 −0.20 −0.07 

node h i j k l m n 

evec 1 0.26 0.26 0.26 0.26 0.26 0.26 0.26 

evec 2 0.07 0.20 0.22 0.30 0.32 0.32 0.32 
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ossible sequence of adding nodes to the cluster would be e, f, g, h,

, j, d , resulting in a partitioning shown as in Fig. 17 (b). The reason

or producing this suboptimal solution is that, the growing parti-

ion will defer adding vertex d or k into the cluster, and thus elim-

nate the possibility of achieving an optimal solution. 

The SC based approach, with its ability to achieve a relaxed

olution to the global optimal solution, on the other hand, can

chieve a better performance. Table 1 presents the first two small-

st eigenvectors (denoted as evec 1 and evec 2, respectively). Ob-

erve that all the elements in the first smallest eigenvector remain

o be same, in fact this will hold for all the traffic matrix. As we

ook at data points featured by the eigenvectors, we can verify

hat Euclidean distances for the connected nodes are smaller in the

igenspace, unaffected by the degree distribution, which leads to a

etter performance in this case. 

Second, we observe that it will take a longer time for the SC-

ased algorithm to reach a solution. Following from our discussion

n Section 3 , the time complexity for SC-based algorithm would be

f O (n 3 + kt c n log n + t r E) . As for the METIS, with the graph coars-

ning algorithm to reduce the problem size, the partitioning result

an be achieved in O ( E ) time. Notably, for a traffic matrix with a

oderate size (e.g. up to 100 nodes), the amount of time the SC

akes is smaller than METIS, while for a request consisting of 400

odes, the partitioning can be done by our algorithm in about 1 s.

his implies that the setup delay caused by our algorithm would

e acceptable in most cases. 

Overall, we conclude that our proposed algorithm can consis-

ently delivery a better performance in terms of traffic minimiza-

ion, and the results are more robust when the amount of traf-

c significantly varies across different network nodes. METIS can

chieve a better running time, especially when the scale of the net-

ork is large. 

. Conclusion 

Resource allocation with respect to the network traffic is es-

ential to the scalability and stability of network virtualization. To
his end, we designed a network-aware virtual request partition-

ng scheme that produces clusters with low inter-cluster traffic.

e use a Constrained k -means algorithm in the clustering phase

f spectral clustering to ensure that cluster capacity constraints

re met. Also, we have developed an algorithm based on simu-

ating annealing to efficiently refine the resulting clustering solu-

ion. Our algorithm constructs high-quality solutions within a rea-

onable amount of time and compares favorably to existing ap-

roaches. 
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