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line travel marketplaces that allow users to explore travel options and book their travel. We review the 
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sensitive. We define the problem of finding multi-criteria time-constrained paths in this context, and 

present algorithms to construct these paths and also provide support for in-advance path reservation. 
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. Introduction 

Routing algorithms are at the core of network design and oper-

tion, and their functionality has evolved over the last sixty years

rom finding single shortest paths [1] to encompassing a wide

ange of considerations, including multiple paths [2] , quality-of-

ervice (QoS) constraints [3] , and various modes of communica-

ion beyond point-to-point [4] . Nevertheless, for the most part,

hese routing algorithms have been designed for use by network

roviders/operators who have complete control over all aspects of

he network. Users of the network typically have no visibility into

he network topology or access to the routing function, and their

raffic usually follows paths assigned by the network provider –

lthough, using service level agreements (SLAs) they may request

aths that satisfy certain properties. 

Due to the evolving nature of network applications, require-

ents of routing functionality are also likely to evolve over time.

owever, at a time when network customers demand more flexi-

ility in path selection, changes in routing-level components in the

nternet require broad consensus among a diverse set of stakehold-

rs and, hence, are increasingly difficult to implement. Accordingly,

here has been some work in providing users with options over

he routing path [5–7] in a manner that separates the data plane

the paths that packets follow) from the control plane (routing de-

isions) and allows the two to evolve separately. 
∗ Corresponding author. 
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A natural next step in realizing “routing-as-a-service” (RaaS) is

he creation of open marketplaces of path services that will enable

ustomers to select from a set of path services offered by multi-

le competing network providers, and stitch them together to con-

truct customized end-to-end paths for their applications. This is

nalogous to online travel marketplaces, including Travelocity, Or-

itz, and Expedia, among others, that allow users to explore travel

ptions, make plans, and book their travel. 

At a high level, an open marketplace of path services will con-

ist of the following components [8–10] : 

1. Service advertisements: the marketplace provides mechanisms

for service providers to advertize their services and modify ex-

isting advertisements. 

2. Service repository: we assume that the repository of path ser-

vices is updated in real time, and that users and third parties

may query the repository to retrieve path services that meet

certain criteria. 

3. Path planner: the planner takes as input user preferences and

applies them to select and combine existing path services into

a set of end-to-end paths from which the user will make a final

selection. 

4. Contracts: the markeplace has mechanisms to establish and en-

force contracts between customers and providers to ensure that

economic exchanges (e.g., payments) are related to operations

within the network (e.g., access to the path services). 

The Choicenet marketplace [8,9] supports all the above features.

evertheless, the primary goal of Choicenet has been to facilitate

he offering of multiple service options and to enable the establish-

ent of economic relationships between marketplace entities (i.e.,

https://doi.org/10.1016/j.comnet.2018.04.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2018.04.006&domain=pdf
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users and physical or virtual infrastructure and service providers),

and hence early prototypes [10] only included a rudimentary plan-

ner. 

In this paper, we focus on the planning aspects of an open mar-

ketplace of path services, and in particular, on the requirements

on routing algorithms that can be used to construct end-to-end

paths by stitching together path segments advertized by multiple,

distinct providers. While our work is inspired by the Choicenet

project, we note that the service advertisement, path planning, and

contract components of a marketplace are orthogonal in terms of

functionality. Therefore, the path planning algorithms we present

in this paper is an extension of our earlier work [11] and can be

deployed within any marketplace with a clear separation between

the data and control planes. 

Following the introduction, we discuss the challenges of the

path planning process, along with related work, in Section 2 . We

present a model for the marketplace and the graph of path services

that the planner maintains in Section 3 . We define a suite of prob-

lems related to finding multi-criteria time constrained paths, and

develop algorithmic solutions for them in Section 4 . We present

numerical results in Section 5 , and we summarize and discuss fu-

ture work in Section 6 . 

2. Path planning 

The planner allows the users to explore end-to-end path op-

tions for their communication needs. For simplicity, we assume

that the path planning tool is implemented by the marketplace,

but it may also be implemented by the user or offered as a ser-

vice by a third party. Similar to online travel markeplaces, during

the planning phase, customers have the opportunity to review the

available options in terms of cost, quality, or any other criteria. No

contracts are established during this phase and no resources are

committed by the network. Note also that for planning to work,

providers must first advertize their path services in the market-

place in a way that allows the planner to determine which services

can be composed together in a meaningful manner. While service

advertisements, contract establishment, and resource provisioning

are outside the scope of this work, we note that mechanisms ex-

ist for all three functions and have been implemented in an earlier

Choicenet prototype [10] . 

The main problem involved in planning is to combine available

services into end-to-end paths that meet user requirements. From

an algorithmic point of view, path planning shares a number of

challenges with online travel planning: 

• Large network topologies with parallel edges. Just as the plan-

ner of a travel site takes into consideration flights from mul-

tiple airlines, many of which offer competing flights between

the same pairs of cities, a path planner must consider adver-

tisements from multiple providers, including virtual operators

who may lease capacity from the same physical infrastructure.

Consequently, the path planner takes as input a topology that

is a superset of the topologies representing the networks of in-

dividual providers, and that is likely to include parallel edges

between nodes for which there exist competing path services.

Such a topology is expected to be much larger than each of its

constituent individual provider topologies. 

• Support for in-advance reservations and time constraints. Planners

must allow users to reserve end-to-end paths during specific

continuous time intervals in the future; this feature is analo-

gous to booking a hotel for a set of consecutive days long be-

fore travel takes place. On the other hand, support for time

constraints allows users to explore additional options whenever

their communication plans are flexible, in the same manner
that travel planners allow users to provide a range of accept-

able start and end dates for their travel. 

• Multiple alternatives selected using multiple criteria. The planner

must present the user with several options (i.e., viable alter-

native end-to-end paths) that meet multiple criteria, including

price, bandwidth capacity, delay, the inclusion or exclusion of

sub-paths from certain providers, etc. We envision that path

planning services will differentiate from the competition by de-

ploying sophisticated and specialized algorithms for selecting

paths. 

Each of the above considerations significantly complicate the

ath finding process. For instance, introducing one additional re-

ource constraint (e.g., a delay constraint along with a cost con-

traint), makes the shortest path problem NP-Complete [12 , Prob-

em ND30]. Consequently, a wide range of heuristics and approxi-

ation algorithms have been developed for a diverse set of con-

trained shortest path problem variants [13,14] . Also, while effi-

ient algorithms exist for constructing k -shortest elementary (i.e.,

cyclic) [15] and non-elementary [16] paths, the k -constrained

hortest path problem is significantly harder and has received little

ttention [17] . 

In-advance path reservations involve reserving resources along

n end-to-end path for a continuous interval of time that has

 specific duration and starts at a specific instant, either in the

resent or in the future. Algorithms for finding and reserving paths

ith sufficient bandwidth resources well in advance of the start

f communication [18–20] have generally been designed for small,

entrally controlled connection-oriented networks in which only a

elatively small fraction of connections require such advance reser-

ations. These algorithms may be extended to account for cost and

elay constraints, but do not directly support time constraints. 

The general shortest path problem with time constraints in-

olves finding the least cost path from source to destination in a

raph whose nodes can be visited within a specified time interval

21] . Similar time-constrained path problems have been studied in

he context of vehicle routing [21,22] and travel planning [23] . The

roblem is NP-Complete regardless of whether the shortest path is

equired to be elementary or is allowed to contain cycles. 

.1. Problem classification 

The shortest path problems and network reservation algorithms

an be classified based on the objective function(s) as shown in

able 1 and Table 2 respectively. In this classification we use the

otation α/ β/ γ / π / φ, α = { G, T } where G denotes problems which

re not time sensitive and T denotes problems which are time sen-

itive, β ∈ N denotes the number of resource constrained objective

unctions, γ = { P, F } where P denotes Pareto or non-dominated

aths and F denotes all feasible paths, π = { 1 , K} which indicates

f the problem finds 1 optimal path or K paths in non-decreasing

rder of cost, φ = { O, A } where O denotes optimal paths and A de-

otes approximate or subset paths, to categorize problems and this

lassification differs from the one in [24] as we extend the clas-

ification to problems which are time driven, non-dominated and

hose which consider K non elementary shortest paths. 

Dijkstra’s algorithm [1] is designed to find a single source short-

st path and runs in polynomial time. The rest of the algorithms

hown in Table 1 either run in pseudopolynomial or exponential

ime. The concept of non-dominated or Pareto solution(s) was first

efined on multiplicative lattices. It was then extended to network

raph models [25–27] using the label setting/correction approach.

amorado Climaco and Queiros Vieira Martins [28] , and Climaco

t al. [29] use the K -shortest [30,31] paths approach to find the

areto solution(s). Joksch [32] introduced the notion of shortest

aths with constraints. The shortest path problems with resource
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Table 1 

Classification of shortest path problems. 

Notation Original algorithm Variations 

G/0/F/1/O Dijkstra [1] 

G/0/P/1/O Brown and Strauch [42] Thuente [25] , Hansen [26] , Martins [27] 

G/0/P/K/O Namorado Climaco and Queiros Vieira Martins [28] Climaco et al. [29] 

G/1/F/1/O Joksch [32] 

G/1/F/K/O Handler and Zang [33] , de Queirs Vieira Martins et al. [31] Shi [43] 

G/0/P/1/A Henig [34] , Warburton [35] 

G/1/F/1/A Hassin [36] 

T/0/F/1/O Desrochers and Soumis [37] , Desaulniers and Villeneuve [44] 

T/0/P/1/O Hamacher et al. [38] 

T/0/F/K/O Problem 4 in this work 

T/1/P/1/O Problem 1 in this work 

Table 2 

Classification of network reservation algorithms. 

Notation Original algorithm Variations 

T/1/F/1/O Guerin and Orda [45] Balman et al. [46] 

T/0/F/K/O Problem 4 in this work 

T/1/P/1/O Problem 1 in this work 
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Fig. 1. The gap between Pareto solutions in the bi-criteria case. 

Fig. 2. Uniqueness of K shortest paths in the bi-criteria case. 
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onstraints was solved using Lagrangian relaxation by Handler

nd Zang [33] and using K -shortest paths algorithm by de Queirs

ieira Martins et al. [31] . Henig [34] , Warburton [35] and Has-

in [36] introduced the concept of approximate solutions to Pareto

nd constrained shortest path problems. The concept of shortest

ath problem with time windows was introduced by Desrochers

nd Soumis [37] and later it was defined for non-dominated

hortest path problems with time windows by Hamacher et al.

38] for vehicle routing problems. The concept of time windows

as extended to network graph models and the concept of non-

ominated and constrained shortest path problems with time win-

ows is defined in Problem 1 through Problem 4 . This work con-

ects the domain of shortest path problem with advance resource

eservation in network graph models. Some of the notable network

eservation algorithms without preemption are shown in Table 2 

Aneja et al. [39] , Beasley and Christofides [40] and Dumitrescu

nd Boland [41] employ preprocessing to improve the running time

f several constrained shortest path algorithms. 

.2. Finding Pareto paths using k -shortest paths 

There are two main challenges when finding Pareto paths: the

unning time for finding the Pareto solutions, and selecting one

ptimal/sub-optimal solution among these Pareto solutions. 

There are primarily two ways of finding Pareto solutions. 

1. Label setting/correction approach [38] , and 

2. K -shortest cost paths [28] . 

Since finding Pareto solution(s) is NP-Hard [28] , both the ap-

roaches take exponential running time. For certain graph prob-

ems one of the approaches might be better suited than the other.

n Fig. 1 we have three examples where the number and the gap

etween the Pareto solutions is different. Suppose every path from

ource to destination has a unique pair of (cost, time) solution and

ach corresponds to one of the of the K -shortest cost paths. In that

ase, for all the three examples we can quickly find all the Pareto

olutions relatively quickly compared with the labeling approach. 

The gap between the Pareto solutions and the number of Pareto

olutions which can be found using the K -shortest paths plays

n important role in determining which approach is the best.

n Fig. 2 we have an example which is not suitable for the K -

hortest cost/time paths as we have multiple paths which have the

ame cost or time and we are not guaranteed to find the short-
st cost/time path which minimizes both cost and time for a small

alue of K when we are searching for K -shortest cost paths or the

 -shortest time paths. So, we have to find K -shortest cost/time

aths for a large value of K before we find Pareto solutions. This

pplies for the bi-criteria and multi-criteria Pareto solutions. 

Once we find the Pareto solutions, we still have the problem of

hoosing one or more among these. A utility function is defined as

 mapping from the set of Pareto solutions to a combined solution.

he utility function [47] can be designed in several ways and it is

lso possible that there might be several utility functions which

an be applied to these Pareto solutions. 

Finally regarding the tradeoff between running time and num-

er of Pareto solutions, we state the following conjecture and pro-

ide counter examples to disprove it. 

onjecture 1. Small number of Pareto paths ⇔ Lower running time. 

We provide two counter examples to disprove the conjecture

rom both directions of the equality. In Fig. 3 we have shown a
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Fig. 3. Counter Example 1. 

Fig. 4. Counter Example 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. The concept of time steps. 
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‘Source’ node and a ‘Destination’ node along with two intermedi-

ary nodes ‘A’ and ‘B’ and two sub-graphs connecting them. Sup-

pose we have two Pareto paths from ‘Source’ to ‘B’ and hundred

Pareto paths from ‘Source’ to ‘A’. If the large connected sub-graph

is dense we end up spending a lot of time traversing the edges and

finding the Pareto paths. Suppose the Pareto paths from ‘Source’ to

‘Destination’ via ‘B’ dominates all the Pareto paths from ‘Source’

to ‘Destination’ via ‘A’, we end up having just two Pareto paths

from ‘Source’ to ‘Destination’. So a small number of Pareto paths

does not imply a lower running time. In Fig. 4 we have shown a

Directed Acyclic Graph with (cost, delay) attributes mentioned cor-

responding to every edge. Each path from ‘Source’ to ‘Destination’

forms a Pareto path, so we end up with four Pareto paths on a

very small graph with a lower running time. So a small running

time does not imply a lower number of Pareto paths. The number

of Pareto paths and the running time depends not only on N , the

size of the graph but also on the graph structure. 

3. Markeplace and graph model 

3.1. The marketplace 

We consider a marketplace that includes a repository of path

services as advertized by network services providers. Each path ser-

vice is represented by the tuple: 

( L s , L d , LID, L attr , T start , T end ), T start < T end 

where L s and L d are the source and destination nodes, respectively,

of a (physical or virtual) link with unique ID LID and attributes

L attr , and [ T start , T end ] is the time interval during which this path

service is valid. For this work, we assume that the attributes in-
lude the available bandwidth, delay, cost of the link, energy spent

or traversing the link, whereby the cost and energy attributes are

xpressed as price and joules per unit bandwidth; in other words, 

L at t r = (L bw 

, L delay , L cost , L energy ) . 

This representation allows multiple distinct providers, including

irtual providers who do not own any physical infrastructure, to

dvertize path services between the same ( L s , L d ) pairs, that can

e distinguished using the unique link ID field. 

Users submit to the path planner requests of the form 

( R s , R d , R req , τ e , τ l ), τ e ≤ τ l 

where R s and R d are the source and destination node, respec-

ively, of the requested communication service and R req are user

equirements that the service must meet, and [ τ e , τ l ] is a time

nterval that specifies the earliest and latest start times for the

ervice; if τe = τl , then the service must start at exactly time τ e .

e assume that user requirements include a minimum bandwidth

long the path, an acceptable end-to-end delay, the time duration

length) of the communication, and a maximum cost that the user

s willing to pay, i.e., 

R req = (R bw 

, R delay , R len , R cost ) . 

.2. Graph of path services 

The planner uses the path service descriptions stored in the

arketplace repository to construct a graph G = (V, E) , where V is

he set of nodes that is part of at least one service description, and

 is the set of unique links defined by the service descriptions. In

eneral G will include parallel edges representing competing ser-

ices or virtual links. Each edge includes all information associated

ith the corresponding link, i.e., LID , link attributes (bandwidth,

elay, and cost), and the interval of time [ T start , T end ] during which

he edge is valid. 

We assume that the planner updates the graph of path services

n real time whenever each of these four events takes place: (a)

hen a new path service is advertized, a new edge is added to

he graph or when a provider withdraws an existing path service

dvertisement the edge is removed; (b) when a provider modifies

n existing path service advertisement, the attributes of the corre-

ponding edge are updated to reflect the new value(s); (c) when a

ew reservation is established, the attributes (e.g., available band-

idth) of the path services in the end-to-end path are updated to

eflect the resources which have been assigned to the new reser-

ation; (d) when an existing reservation terminates the attributes

f the path service are updated to reflect the resources which have

een reclaimed and are now available in the Marketplace for new

eservation. 

We define a time step [18] as a continuous period of time

uring which the state of the network does not change; in other

ords, the graph of path services and their attributes remain the

ame throughout a time step. The planner updates the sequence

f time steps whenever an advertisement creates a new path ser-

ice or modifies an existing one, and when reservations are estab-

ished, terminated or expire. Consider Fig. 5 (a), where three time
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teps are shown, representing the changes in network state before

he arrival of the new path service. As seen in the figure, the time

uration of the new path service overlaps with two of the time

teps. Therefore the addition of this path service causes changes in

he state of the network within each of the two time steps, result-

ng in the five time steps shown in Fig. 5 (b). Time steps must be

imilarly updated for new and departing reservations. 

We have the following two results. 

emma 1. For any set of path services that have m unique sets of

 T start , T end ] time intervals, there can be at most 2 m − 1 time steps,

here m > 0 . 

roof. In geometry, it is known that the number of non-

verlapping segments formed by k distinct collinear points is k − 1 .

ince m unique sets of [ T start , T end ] time intervals include at most

 m distinct time instants at which a path service starts or ends,

he number of non-overlapping time segments created by these in-

tants is at most 2 m − 1 . Since a path service starts or ends at the

oundary between two time segments, the state of the network

graph) does not change during any of the time segment. There-

ore, there are at most 2 m − 1 time steps. �

emma 2. Consider a user request for a communication service that

ay start anywhere in the interval [ τ e , τ l ] . If the time interval [ τ e ,

l ] overlaps with n time steps, then, in order to satisfy this request,

t is sufficient to run a path finding algorithm at most n times, each

ime with a start time equal to the beginning of one of the time steps.

roof. Consider time step x = [ t 1 , t 2 ] that overlaps with the inter-

al [ τ e , τ l ] of the user request. Let P be the set of paths that a

pecific path finding algorithm returns under the assumption that

he communication service requested by the user starts at time t 1 .

ince the state of the network does not change for the duration

f time step x , the same algorithm will not be able to find bet-

er paths than the ones in P for any start time t of the request

uch that t 1 < t ≤ t 2 . On the other hand, the algorithm may find

orse paths when t 1 < t ≤ t 2 ; this may occur if the later starting

ime causes the service to end within a later time step in which

he network state may not be able to accommodate the quality of

eatures of the paths in P . �

The above two results impose strict bounds on the search space

hat the planner has to explore to satisfy a user request. These

ounds make path computations more efficient than the method

sed in [18] to divide the search space; the latter method becomes

nefficient even for networks of moderate size with a relatively

mall number of path services. 

. Multi-criteria time constrained paths 

Our objective is to present each user requesting service with a

et of time constrained paths that satisfy multiple user-specified

onstraints. More formally, the problems we address are variations

f the time constrained shortest path (TCSP) problem defined as

ollows. 

roblem 1 (Non-dominated k -TCSP with resource constraints (ND-

-TCSPRC)). Let G = (V, E) be a graph with path services as edges

uch that each edge e is valid only during the time interval

 T e start , T 
e 

end 
] . Let U be a utility function defined by the user which

aps the set of Pareto solutions to the set R . Consider the user

equest 

(R s , R d , R req , τe , τl ) , R req = (R bw 

, R delay , R len , R cost ) and an integer

 . Find the top k Pareto-optimal paths from R s to R d which provide

he maximum utility, such that each path: 

1. is a concatenation of one or more path services (edges), 

2. has bandwidth at least R , 
bw 
3. has end-to-end delay at most R delay , and 

4. is valid throughout the interval [ t, t + R len ] , for any t ∈ [ τ e , τ l ], 

here a path is considered valid in a given time interval if and

nly if all path services comprising the path are valid in the same

nterval. 

roblem 2 (Non-dominated k -TCSP (ND-k-TCSP)). Let G = (V, E) be

 graph with path services as edges such that each edge e is valid

nly during the time interval [ T e start , T 
e 

end 
] . Let U be a utility function

efined by the user which maps the set of Pareto solutions to the

et R . Consider the user request 

(R s , R d , R req , τe , τl ) , R req = (R bw 

, R delay , R len , R cost ) and an integer

 . Find the top k Pareto-optimal paths from R s to R d which provide

he maximum utility, such that each path: 

1. is a concatenation of one or more path services (edges), 

2. has bandwidth at least R bw 

, 

3. is valid throughout the interval [ t, t + R len ] , for any t ∈ [ τ e , τ l ], 

here a path is considered valid in a given time interval if and

nly if all path services comprising the path are valid in the same

nterval. 

We note that both NDTCSP and NDTCSPRC are in the class NPC

48] even for one time instance. To keep the notations uniform for

olving the problem we set R delay to ∞ for Problem 2 . 

roblem 3 ( k -TCSP with resource constraints (k-TCSPRC)). Let G =
(V, E) be a graph with path services as edges such that each edge e

s valid only during the time interval [ T e start , T 
e 

end 
] . Consider the user

equest 

(R s , R d , R req , τe , τl ) , R req = (R bw 

, R delay , R len , R cost ) and an integer

 . Find k least cost paths from R s to R d , such that each path: 

1. is a concatenation of one or more path services (edges), 

2. has bandwidth at least R bw 

, 

3. has end-to-end delay at most R delay , and 

4. is valid throughout the interval [ t, t + R len ] , for any t ∈ [ τ e , τ l ], 

here a path is considered valid in a given time interval if and

nly if all path services comprising the path are valid in the same

nterval. 

This reduces to the k -CSP problem [17] which is known to be

n NPC even for one time instance. 

roblem 4 ( k -TCSP). Let G = (V, E) be a graph with path services

s edges such that each edge e is valid only during the time inter-

al [ T e start , T 
e 

end 
] . Consider the user request 

(R s , R d , R req , τe , τl ) , R req = (R bw 

, R delay , R len , R cost ) and an integer

 . Find k least cost paths from R s to R d , such that each path: 

1. is a concatenation of one or more path services (edges), 

2. has bandwidth at least R bw 

, 

3. is valid throughout the interval [ t, t + R len ] , for any t ∈ [ τ e , τ l ], 

here a path is considered valid in a given time interval if and

nly if all path services comprising the path are valid in the same

nterval. 

We note that this is pseudo-polynomial algorithm [49] even for

ne time instance. To keep the notations uniform for solving the

roblem we set R delay to ∞ for Problem 4 . 

.1. Dynamic programming algorithm for Problems 1 and 2 

Let G = (V, E) be the graph of path services at the time the user

equest 

(R s , R d , R req , τe , τl ) , R req = (R bw 

, R delay , R len , R cost ) arrives. We set

he utility function 

U ∝ (1/ � L cost ) 
L ∈ Pareto Path 
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We now present a dynamic programming algorithm that can be

used to find Pareto-optimal paths from node R s to node R d that are

valid in the interval [ τe , τl + R len ] . 

Define F ( i, t, R delay ) as the minimum cost of any path from

source R s to the node i, i ∈ V , that starts at time t , has available

bandwidth at least equal to R bw 

, and its cumulative delay (i.e., the

total delay along the path services from R s to i ) is at most R delay . If

no such path exists at time t , then F (i, t, R delay ) = ∞ . 

F ( i, t, R delay ) can be calculated using the following recursion: 

F (i, t, D ) = 

{
0 , i = R s and D ≥ 0 

∞ , D < 0 

(1)

F ( j, t, D ) = min 

(i, j) ∈ E 

{
F 
(
i, t, D − L (i, j) 

delay 

)
+ L (i, j) 

cost 

}
, 

∀ (i, j) ∈ E , D ≤ R delay , R bw 

≤ L (i, j) 
bw 

(2)

The base case (1) simply states that (i) the cost of getting from

the source node R s to itself is zero, and (ii) the cost of going from

R s to any node i with a negative delay is infinity since no such path

exists. The recursive expression (2) can be explained by noting that

the minimum cost of getting from R s to node j with a total delay

of at most D , is equal to the minimum cost, over all path services

( i, j ), i 
 = j , of getting from R s to node i with a total delay of at most

D − L 
(i, j) 
delay 

, plus the cost L 
(i, j) 
cost of going from i to j . Note also that the

minimum is taken only over edges (path services) ( i, j ) that have

sufficient bandwidth for the user request. 

The optimal solution at time t , i.e., the minimum cost of a path

that starts at time t and can accommodate the user request, can be

computed as: 

F (R d , t, R delay ) . (3)

We note that computing expression (3) may require the evalua-

tion of an exponential number of paths. Furthermore, the recursion

returns the cost of a minimum-cost, feasible path, if one exists, but

it does not directly provide the path services (edges) comprising

this path. 

Recall now that, according to Lemma 2 , it is sufficient to run

the path finding algorithm once for each time step that overlaps

with the interval [ τ e , τ l ] that represents the allowable start times

for the user request. Let n be the number of such time steps and

 1 , . . . , t n be the time instants when the path finding algorithm

must be run; according to Lemma 2 , t 1 = τe , while t 2 , . . . , t n coin-

cide with the start of the following n − 1 time steps. Therefore, the

overall optimal solution, i.e., the cost of the minimum-cost path for

the user request starting anywhere in [ τ e , τ l ], can be obtained as:

min 

 1 , ... ,t n 
F (R d , t i , R delay ) . (4)

In the following subsection, we show that it is possible to main-

tain labels at the nodes of graph G during the execution of recur-

sion (2) , so as to (i) construct Pareto-optimal paths, and (ii) speed

up the algorithm by discarding labels that will not lead to Pareto-

optimal solutions. 

4.1.1. Tracking Pareto-optimal paths 

Consider an execution of the recursive algorithm (3) for a given

start time t . At each node i visited by the recursion, we maintain

labels to keep track of Pareto-optimal paths passing through that

node. Specifically, for each path through node i , we maintain the

tuple ( C, D ), where C (respectively, D ) is the cost (respectively, de-

lay) of the path from the source node R s to node i . 1 
1 The label includes two additional parameters: the previous node j towards the 

source R s and the unique link ID, LID, of the path service that leads from j to i . 

These parameters make it possible to reconstruct the path starting at the destina- 

tion node, R d , but are not essential for determining Pareto-optimal paths. 

b  

t  

o  

i  

m  
Consider two paths through node i with labels ( C 1 , D 1 ) and

 C 2 , D 2 ), respectively. We say that the first path dominates the sec-

nd, denoted by ( C 1 , D 1 ) ≺( C 2 , D 2 ), if C 1 ≤ C 2 and D 1 ≤ D 2 . In other

ords, the dominating path is better than the dominated one in

erms of both cost and delay. When we add a third criteria, en-

rgy, the dominating path is better than the dominated one for all

hree attributes i.e., cost, delay, and energy. Note that, all paths en-

ering node i have the exact same options as path services to con-

inue towards the destination R d . Therefore, it is certain that the

ominated path will result in an end-to-end solution that cannot

e superior to that resulting from the dominating path in terms of

ither cost and delay. Consequently, we eliminate the dominated

ath at node i by terminating the recursion at that point, which

lso speeds up the overall running time. 

At the end of the recursion (3) , we obtain Pareto-optimal paths

hat start at time t . We execute the recursion n times, once for

ach time step, as indicated in (4) , and obtain Pareto-optimal paths

hat start in [ τ e , τ l ]. We then extract (up to) k least-cost Pareto-

ptimal paths from this list, and return them to the user, allowing

he latter to make an informed selection. 

.2. K -shortest cost paths algorithm for Problems 3 and 4 

In Problem 4 , which is a variation of the TCSP problem, the

ser does not request non dominant paths but instead requests k

east cost paths without resource constraints. Problem 4 may be

olved in pseudopolynomial time [21] if the number of time in-

tants is finite using the following steps at each of the n time in-

tants t i discussed in Section 4.1 above: (1) remove from the graph

ll edges which, at time t i , have available bandwidth less than R bw 

;

2) run Yen’s algorithm [15] to construct the k shortest paths be-

ween R s and R d at time t i . These steps will determine up to nk

hortest paths, of which we present the k shortest to the user.

ince Yen’s algorithm is polynomial, assuming k and the number of

ime instants are bounded, this algorithm will produce the k short-

st paths starting anywhere in [ τ e , τ l ] in polynomial time. 

In Problem 3 , which is a variation of the TCSP problem, the user

oes not request non dominant paths but instead requests k least

ost paths with resource constraints. This is identical to the prob-

em defined in [43] but now in the context of time windows. The

lgorithmic approach to solving Problem 3 is similar to the one

bove but with an additional checking of the resource constraint

one at every step when we relax the edge i.e. add a node to the

ist of explored nodes. 

. Numerical results 

We now present simulation results to evaluate the algorithms

or Problems 1 –4 . 

We used BRITE [50] to generate graphs for running the simu-

ation because it is a universal topology generator and offers more

han just network connectivity at the AS level. We obtained undi-

ected graphs by configuring BRITE to generate AS (Autonomous

ystem)-Level Barabasi models. The way BRITE works is by first

lacing the nodes in a plane whose dimension is specified in the

onfiguration file or through the Graphical User Interface (GUI).

he nodes of the generated topology are distributed in a plane di-

ided into HS x HS squares, where HS denotes the size of one side

f the outer plane. Each one of these high-level squares is further

ubdivided into smaller LS x LS low-level squares, where LS denotes

he size of one side of the inner planes. Each low-level square can

e assigned at most one node. Next, the nodes are interconnected

o represent the connections of the various AS’s. The placement

f the nodes and the connections between the nodes can be done

n several ways as mentioned in the BRITE user manual and the

odels generated are in sync with the Internet Power laws. This
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Table 3 

Mapping of problems to graph models. 

Graph model Link cost Link delay R delay Link energy Problem 

1 Fixed ∝ Euclidean distance Finite NA 1 and 3 

2 Fixed ∝ Euclidean distance ∞ NA 2 and 4 

3 ∝ (1/Link Delay) ∝ Euclidean distance ∞ NA 2 and 4 

4 ∝ (1/Link Delay) ∝ Euclidean distance Finite NA 3 

5 ∝ (1/Link Delay) ∝ Euclidean distance ∞ Uniformly distributed 2 
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Fig. 6. Running time of the dynamic programming algorithm for Problem 1 . 
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s followed by assigning link attributes which is user configurable

nd finally the Network graph is output using a user specified for-

at. We set the size of the outer and inner planes to 10 0 0 and 10 0

espectively, for placement of the nodes in a heavy tailed distribu-

ion. We set the growth type of the graph to be incremental in na-

ure, we disabled the preferential connection property, and we set

he average nodal degree to between 2 and 4. We used a uniform

andwidth distribution with a maximum and minimum bandwidth

alues of 2500 Mbps and 100 Mbps, respectively, with the addi-

ional restriction that bandwidth values be multiples of 100 Mbps.

 delay , the link delay was set proportional to the Euclidean distance

etween the two points in the plane representing the endpoints of

he edge. L energy , the energy consumption of an edge was set in-

ependent of both the link delay and link cost. L energy is uniformly

istributed between [1–10 0 0]. 

We used two cost models. In the first model, the cost of using

 link is a function of the product of bandwidth times the duration

f the connection. Specifically, we let the cost, L cost , per unit band-

idth (i.e., 1 Mbps) to $0.06, a value that is approximately one-

enth of the current market cost [51] . Hence, the price that a user

as to pay for a connection can be expressed as $0.06 × R bw 

× R len .

n the second model. the link cost is negatively correlated to the

elay. Finally, we let the start and end times of an edge (path ser-

ice) to be in the range [0, 15 days]. 

We generate user requests using the following model: 

• The bandwidth R bw 

requested is uniformly distributed in the

range [10, 100 Mbps] with probability 0.6, and in the range

(100 Mbps, 500 Mbps] with probability 0.4. 

• The duration R len of the request is uniformly distributed in the

ranges: [1, 30 min] (probability 0.1), [31 min, 60 min] (probabil-

ity 0.1), (1 h, 3 h] (probability 0.6), and (3 h, 12 h] (probability

0.2). 

• The earliest start time τ e is between [0, 1 day] with probability

0.8, and between (1, 15 days] with probability 0.2. 

• The latest start time τ l is set to either equal to τ e (with prob-

ability 0.5) or is uniformly distributed in the range ( τ e , τe +
60 min] (with probability 0.5). 

• The end-to-end delay R delay is set to 
√ 

2 times the delay along

the Euclidean distance of the diameter in the outer plane of

the topology graph for Problems 1 and 3 and is set to ∞ for

Problems 2 and 4 . 

We further assume that user requests arrive as a Poisson pro-

ess with mean equal to 1 min. We use five different graph models

o evaluate the algorithms used for solving the problems defined

arlier and the mapping of the graph models to the corresponding

roblems is captured in Table 3 . 

We have implemented the routing algorithms in Problem 3 , and

e run the simulation experiments on a Linux cluster, each node

n the cluster consisting of two Xeon processors (representing a

ix of 1, 2, 4, 6, or 8 cores) and 2-4GB of memory per core. In

he figures we present in this section, each data point corresponds

o the average of 30 randomly generated sequence of 100 user re-

uests. We maintain the same network topology for running our

xperiments. We have observed that varying the network topol-

gy (graph) instance for the same N for running the sequence of
ser requests produces results which are hard to discern from each

ther. The figures also plot confidence intervals (95%) around the

ean, estimated using the method of batch means. 

.1. Model 1: Fixed cost and finite threshold Delay 

Fig. 6 plots the running time of the dynamic programming al-

orithm as a function of the number N of nodes in the graph; for

hese experiments, the average nodal degree was set to 2. For each

roblem instance, we generated 100 user requests and, hence, run

he algorithm 100 times to find paths for each request. The run-

ing time shown in the figure is an average over these 100 exe-

utions. As we can see, the running time increases faster than lin-

arly with the size of the network, but remains reasonable even

or large topologies; for N = 400 nodes, it takes about 7 and 8 s,

n amount of time comparable to what users experience in online

ravel sites. We also plot the running time of a O ( N 

3 ) function to

ompare the running time of the dynamic programming algorithm

ith 2-criteria. We use the reference time for N = 100 to plot the

xtrapolated running times for N = 200 to N = 500. We expect a

unning time which is between O ( N 

3 ) and an exponential running

ime since we use a variation of Label Correction Algorithm and

lso use an adjacency matrix. Since the running time of the algo-

ithm is very close to the cubic function we can claim that the al-

orithm has been efficiently implemented in the context of Model

. 

.2. Model 2: Fixed cost and no threshold delay 

The second model compares the impact of having no resource

onstraints on Problems 2 and 4 

Fig. 7 presents the average running time of the algorithm for

olving Problem 4 , as a function of the number k of shortest paths;

or these experiments, we generated 10 0 0 user requests and the

verage was taken over the 10 0 0 executions of the algorithm. We

an see that the running time increases linearly with k , and also

ith the network size, as expected. Overall, this algorithm runs

ore than one order of magnitude faster than the dynamic pro-

ramming algorithm for the same network size, implying that re-
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Fig. 7. Running time of the k -shortest cost paths algorithm for Problem 4 with no 

delay constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Average number of Pareto paths found. 

Fig. 9. Average running time for the dynamic programming algorithm. 
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laxing the delay and dominance constraints makes it possible to

scale to very large networks. 

5.3. Model 3: No Threshold delay and cost negatively correlated to 

delay 

The third model is useful in two ways. From an experimental

point of view, this is one of the ways of increasing the number

of Pareto paths using the underlying graph with the same delay

and average nodal degree. From an applications point of view, tak-

ing the analogy of ISPs, a link with the maximum delay would

likely represent an edge which spans across continents/countries

and the low cost would be amortized by the amount of traffic

going through it; taking the analogy of airlines, a link with the

maximum delay would likely represent a long distance flight and

the low cost would be amortized by the full utilization, while the

small delays would likely represent a short connecting flight and

the high cost would likely compensate for any under utilization. In

the network domain, the base cost represents per Mbps and per

unit time. For the airline domain, the equivalent could be per per-

son and per unit time spent in the flight. 

5.4. Model 4: Threshold delay and cost negatively correlated to delay 

In this model, the link costs in the graph are negatively corre-

lated to link delay and the user requests are modeled with finite

and fixed threshold delay. We evaluate Problem 3 and present the

results in Section 5.7 . 

5.5. Model 5: Three-criteria Pareto paths 

We extend the third model by adding another edge attribute

“energy” consumption and evaluate Problem 2 . In Figs. 8 and 9 we

plot the average number of Pareto paths found and the average

time it takes to find them and compare it with the two-criteria

case presented in Model 3. In Fig. 9 we also plot the running time

of a O ( N 

3 ) function and a O ( N 

4 ) function to compare the running

time of the dynamic programming algorithm with 2-criteria and

3-criteria. We use the reference time for N = 100 to plot the ex-

trapolated running times for N = 200 to N = 600. We expect a

running time which is between O ( N 

3 ) and an exponential running

time since we use a variation of Label Correction Algorithm and

also use an adjacency matrix. Since the running time of the al-

gorithm is slightly higher than a cubic function but well below a

Quartic function we can claim that the algorithm has been effi-

ciently implemented for both 2 and 3 criteria. 
.6. Evaluation of Models 1, 2 and 3 for the non-dominated K path 

roblem variations 

We observe that the running time of the algorithm is signifi-

antly higher for the third model compared to the first and sec-

nd models. This is mainly due to more non dominant paths being

tored at the intermediate nodes in the graph. We observe that the

umber of Pareto paths has some influence on the running time of

he algorithm, but the major factor influencing the running time of

he dynamic programming algorithm which doesn’t assume posi-

ive link attributes is N, the size of the graph. We also observe that

he running time and the number of Pareto paths do not increase

onotonically with N, this can be explained by going back to the

onjecture 1 . The way AS-level topologies are represented in BRITE

y taking into account the Internet Power laws, influences the Net-

ork (graph) structure and the simulation results ( Figs. 10 and 11 ).

.7. Evaluation of Models 1, 2, 3 and 4 for the K path problem 

ariations 

The average running time, the actual paths found when search-

ng for K paths and the Pareto paths found among them, per user

equest with 95% confidence interval for 30 simulation runs with

ach simulation run consisting of 100 user requests are shown in

igs. 12 , 13 , and 14 respectively. The figures highlight the difference

etween Models 1 and 2. 

Figs. 15–17 highlight the difference between Models 3 and 4. 

The average number of Pareto paths among the K shortest paths

or K = 5, and K = 10, is small for both types of problems, but

arginally higher for the problem instance without delay con-

traints as seen in Figs. 12 and 15 . The difference between the two

odels is small to draw any definite conclusions, but we can infer
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Fig. 10. Running time as a function of N. 

Fig. 11. Avg number of Pareto paths as a function of N. 

Fig. 12. Pareto paths among K paths for Models 1 and 2. 

Fig. 13. Total paths for Models 1 and 2. 

Fig. 14. Running time for Models 1 and 2. 

Fig. 15. Pareto paths among K paths for Models 3 and 4. 

Fig. 16. Total paths for Models 3 and 4. 

Fig. 17. Running time for Models 3 and 4. 
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that the finite threshold delay might lead to paths which are clus-

tered around this threshold leading to paths which are very similar

and also lesser in number giving a smaller number of Pareto paths.

The average number of total paths is also smaller for Model 1

compared to Model 2 as seen in Fig. 13 because of discarding some

paths which exceed the threshold delay. This observation is consis-

tent for Models 3 and 4 as seen in Fig. 16 . 

The average running time for Model 2 is higher compared to

Model 1 as seen in Fig. 14 , which is the result of relatively lesser

paths being found which are below the threshold delay. The affect

of a resource constraint i.e., threshold delay on the K shortest cost

path problem doesn’t lead to an increase in time compared to the

K shortest cost problem without resource constraints for the graph

instances considered in our experiments. This observation is also

consistent with Models 3 and 4 as seen in Fig. 17 

The observation made while comparing the results for both the

problems is influenced by the graph/user model. These observa-

tions will change for a different graph/user model. 

6. Summary and future work 

We have introduced a new problem of finding time-constrained

paths that presents the user with multiple flavors of composed ser-

vices: 

• Non dominated and resource constrained composed services 

• Non dominated composed services 

• Resource constrained k composed services 

• k composed services 

The composed services returned by the Planner is used to per-

form in-advance path reservation. The work presented in this pa-

per is state of the art in the domain of Network path reservation

where the reservation request can be specified using various crite-

ria as mentioned above. This is also the most efficient and optimal

way of finding a network path for a continuous interval of time

when the start time is flexible. 

Our current work focuses on providing the “Choice” of optimal

vs. approximate solutions to the user. The trade-off is the run-

ning time to find the optimal solution vs. the optimality gap be-

tween the approximate and the optimal solution. For the resource

constrained single source shortest path problem, Lagrangian Re-

laxation methods and preprocessing can lead to improvements in

both time and space. Similarly, for the Pareto optimal paths prob-

lem the trade-off is the complete set of Pareto paths vs. the sub-

set of the Pareto paths. There are broadly two ways for obtaining

the subset of Pareto paths quickly. First, by defining one attribute

which is a weighted average of all the attributes and second, by

using ratio restricted lengths for the attributes. 
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