Multicast Routing Under Optical Layer Constraints

George N. Rouskas, Yufeng Xin

Department of Computer Science North Carolina State University rouskas@csc.ncsu.edu www.csc.ncsu.edu/faculty/GRouskas/

Outline

- 1. Concept and Applications of Light-Trees
- 2. Problem Statement
- 3. Balanced Light-Tree Algorithms
- 4. Results and Discussion

Light-Trees

- Generalization of lightpath
- Implemented using power splitters

Applications

- Optical multicast
- Traffic grooming
- Enhanced virtual connectivity
- 1+1 optical layer protection
- Improved performance

MC-OXC

5

Multicast Routing Under Optical Layer Constraints

Splitter-and-Delivery (SaD) Switch

Multicast Routing Under Optical Layer Constraints

Power Losses

- Power loss due to:
 - 1. signal attenuation along the fiber links
 - **2.** light splitting at MC-OXCs
- Relative significance depends on network/destination set size
- Effects may be partially mitigated through optical amplification

- Introduce two QoS parameters:
 - **1.** source-destination loss tolerance \rightarrow power budget
 - **2.** inter-destination loss variation tolerance \rightarrow fairness
- Power-constrained light-tree (PCLT) problem:
 - losses along all paths do not exceed the two tolerances
 - any feasible tree will do

- Neglect loss due to light splitting
 - \rightarrow large geographical span, small destination set
- Equivalent to delay- and delay variation-bounded multicast trees
 - NP-complete (Baldine/Rouskas, JSAC '97)
 - reduction from PARTITION
 - heuristics can be applied to new context

Loss Due to Light Splitting Only

- Neglect signal attenuation
 - \rightarrow small geographical span, large destination set
- New multicast tree problem
 - NP-complete
 - reduction from Exact Cover by Three Sets
 - requires light-trees to be balanced

Why Balanced Trees?

Multicast Routing Under Optical Layer Constraints

IEEE Computer Communications Workshop

October 16, 2002

Balanced Light-Tree Algorithm

- 1. Start with initial tree spanning all destination nodes
- **2.** $U \leftarrow$ leaf node incurring maximum signal splits
- **3.** $V \leftarrow$ leaf node incurring minimum signal splits
- **4.** Delete U from the tree
- 5. Add U to the path from the root to V
- 6. Repeat until no further improvement

Results: Maximum Number of Splits

Results: Max-to-Min Number of Splits

Results: Number of Tree Edges

The General PCLT Problem

- Obviously NP-complete
- Tradeoff: number of signal splits \leftrightarrow distance signal travels
- Nodes physically distant from source must be logically close to it in the light-tree
- Light-trees must be distance-weighted balanced
- Use previous algorithm with small modification:
 - consider leaf node with highest total loss
 - move closer to source to reduce its splitting loss

Results: Maximum Loss

Multicast Routing Under Optical Layer Constraints

Summary

- Introduced constraints for quality of optical multicast signal
- Defined new constrained light-tree problem
- Developed algorithms to construct balanced trees