Tiered Service in Packet-Switched Networks

George N. Rouskas

Laura Jackson (PhD, 2003), Nikhil Baradwaj (MS, 2005), Ajay Amudalabhasker (MS, 2006), Zyad Dwekat, Srikrishna Khare

> Department of Computer Science North Carolina State University

Outline

- Motivation
- ullet Service tier selection as a directional p-median problem:
 - deterministic demands
 - stochastic demands
 - multiple QoS parameters
 - TDM emulation
- Application: efficient WFQ implementations

Challenges at Data and Control Planes

Objective: support per-flow QoS

Challenges at Data and Control Planes

- Objective: support per-flow QoS
- Control plane: amount of state information increases with
 - # of users (flows)
 - QoS requirements

Challenges at Data and Control Planes

- Objective: support per-flow QoS
- Control plane: amount of state information increases with
 - # of users (flows)
 - QoS requirements
- Data plane:
 - mismatch between optical capacity and electronic capabilities
 - complexity of QoS functions increases with # of users/constraints

Challenges at Data and Control Planes

- Objective: support per-flow QoS
- Control plane: amount of state information increases with
 - # of users (flows)
 - QoS requirements
- Data plane:
 - mismatch between optical capacity and electronic capabilities
 - complexity of QoS functions increases with # of users/constraints
- → Maintaining per-flow information poses severe scalability challenges

Bandwidth-Continuous Networks

Bandwidth-Continuous Networks

- In theory, provider may offer rates of
 - 1.001 Mbps
 - 0.999 Mbps
 - → network functions designed to accommodate arbitrary rates

Bandwidth-Continuous Networks

- In theory, provider may offer rates of
 - 1.001 Mbps
 - 0.999 Mbps
 - → network functions designed to accommodate arbitrary rates
- In practice:
 - How to distinguish between two rates?
 - How to enforce the two rates?
 - What amount of state info is needed?

Bandwidth-Continuous Networks

- In theory, provider may offer rates of
 - 1.001 Mbps
 - 0.999 Mbps
 - → network functions designed to accommodate arbitrary rates
- In practice:
 - How to distinguish between two rates?
 - How to enforce the two rates?
 - What amount of state info is needed?

As network capacity ↑, overhead also ↑

Example: Cable TV

- Cable systems support k > 100 TV channels
 - $\rightarrow O(2^k)$ combinations

Example: Cable TV

- Cable systems support k > 100 TV channels $\rightarrow O(2^k)$ combinations
- But: only a few subscription levels offered
 - "basic"
 - "standard"
 - "premium"
 - plus a few "a la carte" channels

Bandwidth-Discrete Networks

Offer a small number of discrete bandwidth tiers

Bandwidth-Discrete Networks

- Offer a small number of discrete bandwidth tiers
- \blacksquare Demands mapped to next higher tier \rightarrow performance penalty

Bandwidth-Discrete Networks

- Offer a small number of discrete bandwidth tiers
- Demands mapped to next higher tier → performance penalty
- Benefits: control and data plane operation simplified
 - traffic engineering
 - traffic grooming
 - billing, policing, etc.
 - TDM emulation
 - scheduling and QoS support

Outline

- Motivation
- **Service** tier selection as a directional p-median problem:
 - deterministic demands
 - stochastic demands
 - multiple QoS parameters
 - TDM emulation
- Application: efficient WFQ implementations

Tier Selection: Deterministic Demands

- Input: n bandwidth demands, $x_1 \leq x_2 \leq \cdots \leq x_n$
- Output: $p \ll n$ service tiers, $z_1 < z_2 < \cdots < z_p$
- Objective:
 - $x_i \to z_j \text{ iff } z_{j-1} < x_i \le z_j$
 - to minimize the total bandwidth penalty $\sum_{i=1}^{n} (z_j x_i)$

Mapping of Bandwidth Demands to Service Tiers

Mapping of Bandwidth Demands to Service Tiers

- \blacksquare Similar to p-median problem on the real line
- But: demands mapped to next higher tier
- ullet Dynamic programming algorithm with complexity O(pn)

Results: Bandwidth Penalty

Outline

- Motivation
- **Service** tier selection as a directional p-median problem:
 - deterministic demands
 - stochastic demands
 - multiple QoS parameters
 - TDM emulation
- Application: efficient WFQ implementations

Tier Selection: Stochastic Demands

- Input: PDF f(x) of bandwidth demands
- Output: p service levels, $z_1 < z_2 < \cdots < z_p$
- Objective:
 - $x \to z_j \text{ iff } z_{j-1} < x \le z_j$
 - to minimize the expected bandwidth penalty

$$\sum_{i=1}^{L} \int_{z_{i-1}}^{z_i} (z_i - x) f(x) dx$$

Mapping of Bandwidth Demands to Service Tiers

Mapping of Bandwidth Demands to Service Tiers

- 1. Optimal solution through nonlinear programming
- 2. Discretize the PDF → reuse previous algorithm

Discretizing the PDF

Results: Bandwidth Penalty

Outline

- Motivation
- **Service** tier selection as a directional p-median problem:
 - deterministic demands
 - stochastic demands
 - multiple QoS parameters
 - TDM emulation
- Application: efficient WFQ implementations

Tier Selection with Multiple Parameters

- Traffic demands may have multiple attributes or QoS requirements:
 - bandwidth
 - maximum burst size
 - delay bound
 - etc...

Tier Selection with Multiple Parameters

- Traffic demands may have multiple attributes or QoS requirements:
 - bandwidth
 - maximum burst size
 - delay bound
 - etc...
- Service tiers in multiple dimensions
 - jointly optimal for a vector of parameters

Tier Selection with Multiple Parameters

- Traffic demands may have multiple attributes or QoS requirements:
 - bandwidth
 - maximum burst size
 - delay bound
 - etc...
- Service tiers in multiple dimensions
 - jointly optimal for a vector of parameters
- ightharpoonup Problem is NP-Complete for ≥ 2 dimensions
 - reduction from planar 3-SAT, non-polar version

The Directional p-Median Problem in the Plane

Decomposition Heuristic

- Our heuristic:
 - run 1-dimensional algorithm twice
 - once on x-values $\rightarrow p$ best x's
 - once on y-values $\rightarrow p$ best y's
 - cross two sets $\rightarrow p^2$ candidate points
 - run the Teitz & Bart (TB) exchange heuristic
 - popular, well-studied, extremely robust

Decomposition Heuristic

- Our heuristic:
 - run 1-dimensional algorithm twice
 - once on x-values $\rightarrow p$ best x's
 - once on y-values $\rightarrow p$ best y's
 - cross two sets $\rightarrow p^2$ candidate points
 - run the Teitz & Bart (TB) exchange heuristic
 - popular, well-studied, extremely robust
- Complexity: $O(p^3n)$

Results: Normalized Penalty

Outline

- Motivation
- **Service** tier selection as a directional p-median problem:
 - deterministic demands
 - stochastic demands
 - multiple QoS parameters
 - TDM emulation
- Application: efficient WFQ implementations

Tier Selection: TDM Emulation

- Input: n bandwidth demands, $x_1 \leq x_2 \leq \cdots \leq x_n$
- Output:
 - $p \ll n$ service tiers, $z_1 < z_2 < \cdots < z_p$
 - $\mathbf{z}_i = k_i r$

additional constraint

- Objective:
 - $x_i \to z_j \text{ iff } z_{j-1} < x_i \le z_j$
 - to minimize the total bandwidth penalty $\sum_{i=1}^{n} (z_j x_i)$

Mapping of Bandwidth Demands to Service Tiers

Why TDM Emulation?

- Reuse robust control/management functions
- Configurable bandwidth unit (slot) → may be optimized
- Data plane operation not affected
 - no "wasted" slots
 - reuse of excess bandwidth

Behavior of the Objective Function

Behavior of the Objective Function

We have developed efficient heuristics

Results: Bandwidth Penalty

Outline

- Motivation
- Service tier selection as a directional p-median problem:
 - deterministic demands
 - stochastic demands
 - multiple QoS parameters
 - TDM emulation
- Application: efficient WFQ implementations

WFQ Packet Scheduling

Packet departure time based on fluid-flow fair queueing algorithm

$$F_i^k = \max\{F_i^{k-1}, V(a_i^k)\} + \frac{L_i^k}{\phi_i}$$

- Packet inserted in logical queue
- Queue is sorted with respect to departure times
- Complexity:
 - $O(\log n)$ for selecting next packet
 - O(n) for computation of virtual function

TSFQ Inter-Tier Scheduling

TSFQ Intra-Tier Scheduling: Fixed Packets

TSFQ Intra-Tier Scheduling: Variable Packets

