
Architectural Support for Internet Evolution and
Innovation (Invited Paper)

Rudra Dutta†, Ilia Baldine‡, Anjing Wang†, Mohan Iyer†, George N. Rouskas†
†Computer Science Department, NCSU, and ‡Renaissance Computing Institute, UNC-CH

Abstract—The architecture of the modern Internet encom-
passes a large number of principles, concepts and assumptions,
that have evolved over several decades. In this paper, we
introduce the SILO architecture, a meta-design framework within
which the system design can change and evolve. We describe
the actual architecture itself, as well as the “proof-of-concept”
software prototype we have built.

I. TOWARD A NEW INTERNET ARCHITECTURE

The architecture of something as complex as the modern
Internet encompasses a large number of principles, concepts
and assumptions, which necessarily bear periodic re-visiting
and re-evaluation in order to assess how well they have
withstood the test of time. Such attempts have been made
periodically in the past, but really started coming in force in
the early 2000’s, with programs like DARPA NewArch [4],
NSF FIND [1], EU FIRE [2] and China’s CNGI all addressing
the question of the “new” Internet architecture. So far this
architecture has managed to survive and adapt to the changing
requirements and technologies while providing opportunities
for innovation and growth. On the one hand, such adaptability
seems to confirm that some of the original principles have
allowed the architecture to survive for over 30 years. On the
other, it begs the question if the survival of the architecture
is in fact being ensured by the reluctance to question those
principles. Such contradiction will not be easily resolved, nor
should it be. A dramatic shift to a new architecture should
only be possible for the most compelling of reasons, and so,
the existence of this contradiction creates the ultimate “tussle”
for the networking researcher community.

The diversity of points of view within the community
makes it difficult to see clearly the fundamental elements
of the architecture and their infl uence over each other. Most
importantly for the researcher interested in architecture, this
makes it nearly impossible to answer concisely the question
of what the Internet architecture actually is, or even what
concerns are encompassed by the term “Internet architecture”.
What things should be considered part of the architecture of
a complex system, and what should be considered specific
design decisions, comparatively more mutable? In our SILO
project [3] we came to recognize that the important problem is
not to obtain a particular design or arrangement of specific fea-
tures, but rather, to obtain a meta-design that explicitly allows
for future change. This principle, which we call designing for
change, became fundamental to our project. In the process, we

This work was supported in part by the NSF under grants CNS-0626103
and CNS-0732330.

have come to develop our own answer to the question of what
architecture actually is: it is precisely the characteristics of the
system that does not change itself, but provides a framework
within which the system design can change and evolve. The
current architecture houses an effective design, but is not itself
effective in enabling evolution. Our challenge has been to
articulate the necessary characteristics of an architecture that
will be successful in doing so.

We describe the SILO architecture and software prototype
in Sections II and III, and we conclude in Section IV.

II. SILO ARCHITECTURE: (META-)DESIGN FOR CHANGE

In the SILO project we began with a single basic obser-
vation: that protocol research has stagnated despite the clear
need to improve data transfers over the new high-speed optical
and wireless technologies. This stagnation points to a weak
point in the original Internet architecture, that somehow has
disallowed the evolution and development of this aspect of
the architecture. The cause of this stagnation, in our opinion,
lies in: (1) the difficult barrier to entry in implementing,
deploying and experimenting with new data transfer protocols
in the TCP/IP stack, except for user-space; (2) perhaps more
importantly, the lack of clear separation between policies
and mechanisms in TCP/IP design (e.g., window-based fl ow
control vs. the various ways in which the window size may
change) preventing the reuse of various components; and (3)
the lack of a pre-defined agreed-upon way for protocols at
different layers to share information with each other for the
purpose of optimizing their behavior for different optimization
criteria. Based on this observation, it became clear that what is
needed is a new architectural framework that will address these
deficiencies and allow for a continuing evolution of protocols
and their adaptation to new uses and media types.

A. Design Principles

As a starting point, we adopted a view that layering of
protocol modules is a desirable feature that has withstood the
test of time, as it made data encapsulation easy, and simplified
buffer management. The layer boundaries, on the other hand,
do not have to be in specific places; to our minds, this caused
entrenchment of existing protocols, and is one of the causes of
the identified ossification of the Internet architecture. Based on
this initial assumption, the desirable characteristics of a new
architecture to generalize protocol layering started to emerge:
that (1) each data fl ow should have its own arrangement
of layered modules, such that the application or the system
could create such arrangements based on application needs

2010 IEEE 4th International Symposium on Advanced Networks and Telecommunication Systems

1



S1

S4

S5

S7

S8

Cross−
Service
Tuning

Knobs

S1

S3

S6

S8

App

S2

S3

S6

S7

S9

Silo &
Service
Mgmt

Composability
Constraints

App

Physical Layers

App

Fig. 1. Generalization of layering in SILO

and underlying physical layer attributes; (2) the constituent
modules should be small and reusable to assist in the evolution
by providing ready-made partial solutions; and (3) the modules
should be able to communicate with each other over a well
defined set of interfaces.

These three principles became the basis of the SILO archi-
tecture. We refer to each individual layered arrangement serv-
ing a single data fl ow as a silo and we refer to individual layers
within a silo as services and methods (i.e., specific implemen-
tations of services). Figure 1 depicts three application-specific
silos, each consisting of a vertical arrangement of services
(each service is represented as a rectangle labeled S1,S2, . . .);
the other elements shown in the figure are explained shortly.

B. Support for Service Deployment and Composition

Several other architectural elements developed from these
basic principles. As the system evolves, new reusable modules
(services and methods) may be implemented and deployed to
fulfill the changing requirements of various applications, while
allowing the reuse of existing ones.

Since not all modules can be assumed to be able to co-exist
with each other in the same silo, it is necessary to keep track
of module compatibility. We refer to these as composability
constraints. These constraints may be specified by the creators
of the modules when the modules are made available, or they
may be automatically deduced based on the description of
module functionality. We envision that knowledge distilled
from deployment experience of network operators, collec-
tively, can also be stored here. The number of such constraints
can be expected to be large and grow with time. This pointed
out to us the need for automated silo composition, which can
be accomplished by one or more algorithms based on the
application specification. This automated construction of silos
became a crucial part of the architecture.

C. Support for Cross-Layer Interactions and Control

From the perspective of cross-layer interactions, it also
became desirable to not simply allow modules to communicate
with each other outside the data fl ow, but to allow for an exter-
nal entity to access module states for purposes of optimizing
the behavior of individual silos and/or the system as a whole.
We refer to this function as cross-service tuning, and it is
accomplished by querying individual modules via gauges and
modifying their state via knobs. Both gauges and knobs must
be well-defined and exposed as part of the module interface.

SILO API

SILO 
Construction 

Agent

Universe of 
Services 
Storage

SILO 
Tuning 
Agent

SILO 
Management

Agent

sil
o

re
qu

es
t/r

ec
ip

e

ontology
access

method DSOs/

knob/gauge 

descriptions

da
ta

co
nt

ro
l

Tuning 
Strategies 
Storage

optimization
policies

packet traffic
data and 
control 
channel

Application

Fig. 2. SILO functional architecture.

The important aspect of this approach is that the optimization
algorithm can be pluggable, just like the modules within a
silo, allowing for easy re-targeting of optimization objectives
by a substitution of the optimization algorithm. This addresses
the previously identified deficiency of the current architecture,
where policies and methods in protocol implementations are
frequently mixed together, not allowing for evolution of one
without affecting the other.
D. SILO Functional Blocks

Another way to look at the SILO architecture is from the
point of view of functional blocks. At the heart of the system
is the Silo Management Agent (SMA), which is responsible for
maintaining the state of individual data fl ows and associated
silos. The application communicates with this entity via a
standard API passing data, as well as silo meta-information,
including the description of desired services. The SMA is
assisted by a Silo Composition Agent (SCA) which contains
algorithms responsible for assembling silos based on appli-
cation requests and known composability constraints between
services and methods. All service descriptions, method imple-
mentations, constraints and interface definitions are stored in
the Universe of Services Storage (USS) module. Both the SMA
and SCA consult this module in the course of their operations.
Finally there is a separate Tuning Strategies Storage module
which houses various algorithms capable of optimizing the
behavior of individual silos for specific objectives. This op-
timization is achieved by manipulating knobs that methods
expose. This functional view is shown in Figure 2.

A typical sequence of operations within the SILO archi-
tecture consists of the following: (a) an application requests a
new silo from the SMA by specifying, possibly in some vague
form, its communications preferences; (b) the SMA passes the
request to the SCA, which invokes one of the composition
algorithms and, when successful, passes back to the SMA
a silo recipe, which describes the ordered list of services
that will make up the new silo; (c) the SMA instantiates a
new silo by loading the methods described in the recipe and
instantiating a state for the new data fl ow, and it passes a
silo handle back to the application; (d) the application begins
communicating while an appropriate optimization algorithm is
applied to the silo via the tuning agent.
E. Support for Evolution and Innovation

Let us now address the issue of why this architecture is bet-
ter suited for evolution than the current one. As we mentioned

2



Transport 
technologies

SILO

Ethernet

OTN
SONET

PPP
802.11

802.16

Applications

SILO 
Universe

Physical interfaces

Fig. 3. The SILO hourglass.

in the previous section, our mantra for this project has been
“design for change”, and we believe we have succeeded in ac-
complishing this goal. The architecture we have described does
not mandate that any specific services be defined or methods
implemented. It does not dictate that the services be arranged
in a specific fashion, and leaves a great deal of freedom to the
implementors of services and methods. What it does define
is a generic structure in which these services can coexist to
help applications fulfill their communications needs, which
can vary depending on the type of application, the system
it is running on, and the underlying networking technologies
available to it. Thus, as the application needs evolve along with
the networking technologies, new communications paradigms
can be implemented by adding new modules into the system.
At the same time, all previously developed modules remain
available, ensuring a smooth evolution.

The described architecture is a meta-design which allows
its elements (the services and methods, the composition and
tuning algorithms) to evolve independently, as application
needs change and networking technologies evolve. Where, in
the current architecture, the IP protocol forms the narrow waist
of the hourglass (i.e., the fundamental invariant), in the SILO
architecture the convergence point is the conformance to the
meta-design, not a protocol (which is part of the design itself).
Rather than a protocol which all else must be built on and
under, SILO offers the silo abstraction as an invariant, the
narrow waist in the hourglass of this meta-design (Figure 3).

III. THE SILO SOFTWARE PROTOTYPE

We have developed a prototype implementation which
serves as proof-of-concept demonstration of the feasibility
of the SILO framework. This prototype, available from the
project website [3], is implemented in portable C++ and
Python as a collection of user-space processes running on a
recent version of Linux. Individual services as well as tuning
algorithms are implemented as dynamically loadable libraries
(DLLs or DSOs). The general structure of the prototype
follows the functional architecture in Figure 2.

One of the important challenges we encountered when ad-
dressing the problem of dynamically composable silos was re-
lated to the problem of representing the relationships (compos-
ability constraints) between the various services and modules.
Essentially, this is a problem of knowledge representation.
These composability constraints take the form of statements

similar to “Service A requires Service B” or “Service A cannot
coexist with Service B”, which can be modulated by additional
specifications such as ‘above’ or ‘below’ or ‘immediately
above’ or ‘immediately below’. Additionally, we also needed
to deal with the problem of specifying application preferences
or requests for silos, which can be described as application-
specific composability constraints. To address this problem we
turned to ontologies, specifically, ontology tools developed by
the semantic web community.

We adopted RDF (Resource Description Framework) as
the basis for ontology representation in the SILO framework.
Relying on RDF-XML syntax we were able to create a schema
defining various possible relationships between the elements
of the SILO architecture, namely, services and methods.
These relationships include the aforementioned composability
constraints, which can be combined into complex expres-
sions using conjunction, disjunction and negation. Using this
schema, we have defined a sample ontology for the services
we implemented in the current prototype. The application
constraints/requests are expressed using the same schema. This
uniform approach to describing both application requests as
well as the SILO ontology is advantageous in that a request,
issued by the application and expressed in RDF-XML, can be
merged into the SILO ontology to create a new ontology with
two sets of constraints – the original SILO constraints and
those expressed by the application, on which the composition
algorithm then operates. Using existing semantic web tools,
we have implemented several composition algorithms [5] that
operate on these ontologies and create silo recipes.

Our RDF schema also allows us to express other knowledge,
such as the functions of services (an example of a service
function could be “congestion control” or “error correction”),
as well as their data effects (examples include cloning of
a buffer, splitting or combining of buffers, etc). These are
intended to aid composition algorithms in deciding the set
of services to be included in a silo, when an application is
unable to provide precise specifications in the request. Using
this additional information in the composition algorithm is an
active area of our research.

IV. CONCLUSIONS

We have presented the SILO network architecture, a meta-
design that provides a framework within which the system
design can change and evolve. Our prototype software imple-
mentation realizes all key SILO concepts, demonstrating the
feasibility of SILO and validating the design principles.

REFERENCES

[1] D. Fisher. US National Science Foundation and the Future Internet
Design. ACM Computer Communication Review, 37(3):85–87, July 2007.

[2] A. Gavras, A. Karila, S. Fdida, M. May, and M. Potts. Future internet
research and experimentation: The FIRE intitiative. ACM Computer
Communication Review, 37(3):89–92, July 2007.

[3] The SILO Project Team. The SILO NSF FIND project website.
http://www.net-silos.net/, 2007.

[4] D. D. Clark et al. Newarch project: Future-generation internet architec-
ture. http://www.isi.edu/newarch/.

[5] M. Vellala, A. Wang, G. N. Rouskas, R. Dutta, I. Baldine, and D. Steven-
son. A composition algorithm for the SILO cross-layer optimization
service architecture. In Proceedings of ANTS, December 2007.

3


