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Abstract—The architecture of the modern Internet encom-
passes a large number of principles, concepts and assumptions,
that have evolved over several decades. In this paper, we argue
that while the current architecture houses an effective design, it is
not itself effective in enabling evolution. To achieve the latter goal,
we introduce the SILO architecture, a meta-design framework
within which the system design can change and evolve. We list
some insights about architectural research that guided ourwork,
and also state the goals we formulated for our architecture.We
then describe that actual architecture itself, connectingit with
relevant prior and current research work. We show how the
promise of enabling change is validated by showing our recent
work on supporting virtualization as well as cross-layer research
in optics using SILO. We present an early case study on the
usefulness of SILO in lowering the barrier to contribution and
innovation in network protocols, and we conclude with a listof
open research problems.

I. TOWARD A NEW INTERNET ARCHITECTURE

In 1972, Robert Metcalfe was famously able to capture
the essence of networking with the phrase “Networking is
inter-process communication.” Nevertheless, describingthe
architecturethat enables this communication to take place is
by no means an easy task. The architecture of something as
complex as the modern Internet encompasses a large number
of principles, concepts and assumptions, which necessarily
bear periodic re-visiting and re-evaluation in order to assess
how well they have withstood the test of time. Such attempts
have been made periodically in the past, but really started
coming in force in the early 2000’s, with programs like
DARPA NewArch [27], NSF FIND [11], EU FIRE [13] and
China’s CNGI all addressing the question of the “new” Internet
architecture.

The degree to which the Internet continues to permeate
modern life with hundreds of new uses and applications,
adapted to various networking technologies (from optical,
to mobile wireless, to satellite), raises concerns with the
longevity of the Internet architecture. The original simple file
transfer protocols and UUNET gave way to e-mail and WWW,
which by now are becoming eclipsed by streaming media,
compute grids and clouds, instant messaging and peer-to-peer
applications. Every step in this evolution raises the prospect
of re-evaluation of the fundamental principles and assumptions
underlying the Internet architecture. So far this architecture has
managed to survive and adapt to the changing requirements
and technologies while providing immense opportunities for
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innovation and growth. On the one hand, such adaptability
seems to confirm that some of the original principles have
truly been prescient to allow the architecture to survive for
over 30 years. On the other, it begs the question if the survival
of the architecture is in fact being ensured by the reluctance
to question those principles, cemented by shoehorning novel
applications and technologies into the existing architecture
without giving thought to its suitability.

Such contradiction will not be easily resolved, nor should
it be. A dramatic shift to a new architecture should only
be possible for the most compelling of reasons, and so, the
existence of this contradiction creates the ultimate “tussle” [7]
for the networking researcher community. This tussle pits
the investment in time, technologies and capital made in the
existing architecture against the possibilities which open up by
adapting the new architecture in allowing for creation of novel
and improved services over the Internet as well as opening new
areas of research and discovery. It also allows us to continually
refine the definition of the Internet architecture and separate
and re-examine the various aspects of it. A sampling of the
projects funded through the NSF FIND program, targeted at
re-examining the architecture of the Internet, illustrates the
point: there are projects concerned with naming [19], [16],
routing [3], [17], protocol architectures [9], which examine
these and other aspects from perspectives of security, man-
agement [24], environmental impact [1] and economics [16].
Another dimension is presented by the range of technologies
allowing devices to communicate: wireless, cellular, optical [4]
and adaptations of the Internet architecture to them.

This diversity of points of view makes it difficult to see
clearly the fundamental elements of the architecture and their
influence over each other. Most importantly for the researcher
interested in architecture, this makes it nearly impossible to
answer concisely the question of what the Internet architecture
actually is, or even what concerns are encompassed by the
term “Internet architecture”. What things should be considered
part of the architecture of a complex system, and what should
be considered specific design decisions, comparatively more
mutable? This further fuels the “to change or not to change”
tussle we alluded to above.

One way to make progress in the tussle appears to be in
creating modifications in the current architecture, which enable
new functionality or services not possible today, while limiting
the impact on the rest of the architecture, in essence evolving
the architecture while preserving backward compatibility[8].
This approach has the additional merit of paying heed to



the concerns expressed by some in the research community
regarding the potential of clean-slate approaches to be far
divorced from reality, with no reasonable chance of translating
to deployment [8]. Such concerns have been epitomized by the
phrase “Clean-slate is not blue-sky.”

In our project named SILO (ServicesIntegration, controL
and Optimization) we started, in a way, by following this
approach. We did not attempt to rethink the Internet as a
whole. Instead, we identified one particular aspect of the
Internet architecture that, in our opinion, created a significant
barrier to its future development. We proposed a way to modify
this aspect in a way that is least impactful on the rest of the
architecture and demonstrated the use of this new architecture
via a prototype implementation and case studies.

Somewhat to our surprise, however, what emerged from our
research was a new understanding regarding the problem at
hand. Specifically, we came to recognize that the important
problem isnot to obtain a particular design or arrangement
of specific features, but rather, to obtain ameta-designthat
explicitly allows for future change. With a system like the
Internet, the goal is not to design the “next” system, or even
the “best next” system, but rather a system that can sustain
continuing change and innovation.

This principle, which we calldesigning for change, became
fundamental to our project. In the process, we have come to
develop our own answer to the question of what architecture
actually is:it is precisely the characteristics of the system that
does not change itself, but provides a framework within which
the system design can change and evolve.The current archi-
tecture houses an effective design, but is not itself effective in
enabling evolution. Our challenge has been to articulate the
necessary minimum characteristics of an architecture thatwill
be successful in doing so.

This paper is organized as follows. In Section II we discuss
some pertinent problems with the current Internet architecture,
motivating the SILO architecture we describe in Section III.
We describe the SILO software prototype and an early case
study in Section IV, and in Section V we report our ongoing
research. We discuss prior related research projects in Sec-
tion VI, and we conclude with a list of open problems in
Section VII.

II. T HE PROBLEMS WITH THE CURRENT ARCHITECTURE

As witnessed by the breadth of scope of the various FIND-
related projects, ideas on how to improve the current Internet
cover a wide range of approaches. These ideas are frequently
driven by the difficulties that arise in attempting to integrate
some new functionality into the Internet architecture. In the
SILO project we began with a single basic observation:
that protocol research has stagnated despite the clear need
to improve data transfers over the new high-speed optical
and wireless technologies and has been reduced to designing
variants of TCP. This stagnation points to a weak point in the
original Internet architecture, that somehow has disallowed the
evolution and development of this aspect of the architecture.
The cause of this stagnation, in our opinion, lies in:

1) the difficult barrier to entry in implementing, deploying
and experimenting with new data transfer protocols in
the TCP/IP stack, except for user-space;

2) perhaps more importantly, the lack of clear separation
between policies and mechanisms in TCP/IP design
(e.g., window-based flow control vs. the various ways
in which the window size can respond to changes in the
network environment) preventing the reuse of various
components; and

3) the lack of a pre-defined agreed-upon way for protocols
at different layers to share information with each other
for the purpose of optimizing their behavior for different
optimization criteria (of the user, the system, the network
or a combination thereof).

This lack of flexibility, for example, prevents applications
that would ideally prefer to use some parts of the functionality
of the TCP/IP stack, but not others, in transmitting data. For
instance, being able to request a specific mode of flow control
(or totally remove it), while still retaining in-order delivery of
TCP may be desirable. However the current implementations
make no allowance for such flexibility.

The lack of explicit and well-defined cross-layer interaction
mechanisms have resulted in more subtle problems: these
interactions are implemented anyway, but in anad-hocfashion,
resulting in a monolithic implementation where TCP and IP
codes are intermingled to achieve higher efficiencies. As a re-
sult, clarity and reusability are sacrificed, with the unintended
consequence of making each further unit of development and
research more difficult. In a way, this is a self-reinforcing
process, with each modification making further modifications
of the whole structure more difficult, ensuring that in the long
run TCP and its modifications remain the dominant mode
of data transport. When it comes to adding new cross-layer
interactions, particularly with the physical layer, the problem
is even more pronounced, as is indicated by the fact that no
standard cross layer solution has been widely adopted, for
example, to assist TCP over wireless by taking advantage of
physical layer conditions, despite a clear need and more than
a decade of extensive research results in this area.

Finally, the proliferation of half-layer solutions, including
MPLS and IPSec, point at another aspect of this problem:
that the protocol layers as we know them (TCP/IP or OSI
stacks) may no longer be relevant but are merely markers
for some vague functional boundaries within the architecture.
These half-layer solutions clearly address important needs, yet
the original Internet architecture had no way of describing
their place within a data flow. Furthermore, the “layering as
optimization decomposition” framework [6], [18], a systematic
and formal approach in defining the network protocols within
each layer, highlights another shortcoming of fixed protocol
stacks, namely, that the optimal layering structure depends
strongly on both application requirements and the underlying
network environment, and can be quite different than the
existing TCP/IP stack.

In essence, the TCP/IP stack has become ossified, prevent-
ing further development and evolution of protocols within its



framework [2]. Even when new transport service abstractions
have been developed to address emerging application require-
ments (e.g., reliable datagrams [21] or structured streams[12])
they cannot be accommodated by, or co-exist within, the
current architecture. Applications written today that require
data services not accommodated by the TCP/UDP dichotomy
are left to take one of several paths:

• implement their own UDP-based data transfer mecha-
nisms without the ability to reuse the elements of the
existing architecture or to take advantage of kernel-space
optimizations in buffer management;

• adapt an existing TCP implementation to new situations,
e.g., new media like wireless, or large bandwidth-delay
product optical networks; or

• abandon the old and “roll their own” implementation, as
has occurred in sensor networks, where TCP/IP has been
supplanted by a simpler implementation suitable for the
low-cost/low-power sensor hardware.

These approaches point to a significant risk of fracturing
the future protocol development into their applicable domains
(wireless, optical, sensor, mobile). In turn, these networks
are then forced to communicate with each other or “the
(canonical) Internet” via proxies or gateways. In a way, this is
a “balkanization” of the network as apprehended in [20]. From
our perspective, such an outcome is undesirable and presents
the fundamental challenge to the concept of IP as a simple
convergence point (often referred to as IP being the “narrow
waist” of the “hourglass” protocol stack), which stands as
one of the fundamental assumptions of the current Internet
architecture.

Based on the identified shortcomings of the current Internet
architecture, it became clear that what is needed, is a new
architectural framework that will address these deficiencies
and allow for a continuing evolution of protocols and their
adaptation to new uses and media types.

III. SILO A RCHITECTURE: (META-)DESIGN FOR CHANGE

A. Design Principles

As a starting point, we adopted a view that layering of pro-
tocol modules within a data flow was a desirable feature that
has withstood the test of time, as it made data encapsulation
easy, and simplified buffer management. The layerboundaries,
on the other hand, do not have to be in specific places; to our
minds, this caused entrenchment of existing protocols, andis
one of the causes of the identified ossification of the Internet
architecture. Based on this initial assumption, the desirable
characteristics of a new architecture togeneralize protocol
layering started to emerge: that

1) each data flow should have its own arrangement of
layered modules, such that the application or the system
could create such arrangements based on application
needs and underlying physical layer attributes;

2) the constituent modules should be small and reusable to
assist in the evolution by providing ready-made partial
solutions; and
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Fig. 1. Generalization of layering in SILO

3) the modules should be able to communicate with each
other over a well defined set of interfaces.

These three principles became the basis of the SILO ar-
chitecture. We refer to each individual layered arrangement
serving a single data flow as asilo and we refer to individual
layers within a silo asservicesand methods(more on this
later). Figure 1 depicts three application-specific silos,each
consisting of a vertical arrangement of services (each service
is represented as a rectangle labeled S1,S2,. . .); the other
elements shown in the figure are explained shortly.

B. Support for Service Deployment and Composition

Several other architectural elements developed from these
basic principles. As the system evolves, new reusable modules
(services and methods) may be implemented and deployed
to fulfill the changing requirements of various applications,
while allowing the reuse of existing ones. One may think of
a downloadable driver/plug-in model as being appropriate in
this context – new services and methods may be added to the
system via one or more trusted remote repositories.

Since not all modules can be assumed to be able to co-exist
with each other in the same silo, it is necessary to keep track
of module compatibility. We refer to these ascomposability
constraints. These constraints may be specified by the creators
of the modules when the modules are made available, or they
may be automatically deduced based on the description of
module functionality. We envision that knowledge distilled
from deployment experience of network operators, collec-
tively, can also be stored here. The number of such constraints
can be expected to be large and grow with time. This pointed
out to us the need for automated silo composition, which can
be accomplished by one or more algorithms based on the
application specification. This automated construction ofsilos
became a crucial part of the architecture.

C. Support for Cross-Layer Interactions and Control

From the perspective of cross-layer interactions, it also
became desirable to not simply allow modules to communicate
with each other outside the data flow, but to allow for an exter-
nal entity to access module states for purposes of optimizing
the behavior of individual silos and/or the system as a whole.
We refer to this function ascross-service tuning, and it is
accomplished by querying individual modules viagaugesand
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Fig. 2. Services vs. methods

modifying their state viaknobs. Both gauges and knobs must
be well-defined and exposed as part of the module interface.
The important aspect of this approach is that the optimization
algorithm can be pluggable, just like the modules within a
silo, allowing for easy re-targeting of optimization objectives
by a substitution of the optimization algorithm. This addresses
the previously identified deficiency of the current architecture,
where policies and methods in protocol implementations are
frequently mixed together, not allowing for evolution of one
without affecting the other.

D. Services vs. Methods

The service/method dichotomy introduced earlier becomes
important from the point of view of system scalability. Bor-
rowing from object-oriented programming concepts, what we
call services are generic functions (such asencryption, header
checksum, or flow control), while methods are specific imple-
mentations of services. Thus, in some sense, methods are poly-
morphic on services. This relationship allows for aggregation
of some composability constraints based on generic service
definitions, which necessarily propagate to the methods im-
plementing this service, thus making the job of the developer,
as well as of the composition algorithm, substantially easier.

Each service is described from the point of view of its
functionality, its generic interfaces (to the services immedi-
ately above and below it in a silo), as well as the knobs and
gauges it exposes. These, as well as composability constraints
are inherited by methods implementing this service. The
methods implementing services must conform to this interface
definition, however they may be allowed to expose method-
specific knobs and gauges, as seen in Figure 2.

E. SILO Functional Blocks

Another way to look at the SILO architecture is from the
point of view of functional blocks. This architectural viewalso
served as the basis of the prototype implementation described
in the next section. At the heart of the system is theSilo
Management Agent(SMA), which is responsible for main-
taining the state of individual data flows and associated silos.
The application communicates with this entity via a standard
API passing data, as well as silo meta-information, including
the description of desired services. The SMA is assisted by
a Silo Composition Agent(SCA) which contains algorithms
responsible for assembling silos based on application requests
and known composability constraints between services and
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Fig. 3. SILO functional architecture.

methods. All service descriptions, method implementations,
constraints and interface definitions are stored in theUniverse
of Services Storage(USS) module. Both the SMA and SCA
consult this module in the course of their operations. Finally
there is a separateTuning Strategies Storagemodule which
houses various algorithms capable of optimizing the behavior
of individual silos (or their collections) for specific objectives.
This optimization is achieved by monitoring gauges and ma-
nipulating knobs that methods within instantiated silos expose.
This functional view of architecture is shown in Figure 3.

A typical sequence of operations within the SILO archi-
tecture consists of the following: (a) an application requests
a new silo from the SMA by specifying, possibly in some
vague form, its communications preferences; (b) the SMA
passes the request to the SCA, which invokes one of the
composition algorithms and, when successful, passes back
to the SMA a silo recipe, which explicitly describes the
ordered list of services that will make up the new silo; (c)
the SMA instantiates a new silo by loading the methods
described in the recipe and instantiating a state for the new
data flow, and it passes a silo handle back to the application;
(d) the application begins communicating while an appropriate
optimization algorithm is applied to the silo via the tuning
agent.

It is quite clear that, while this architecture offers a great
deal of flexibility in arranging communication services, this
flexibility comes at some cost. One important problem that
needs to be addressed is that of an agreement on the silo
structure between two communicating systems, noting that
the silos need not be identical to accomplish communications
tasks (monitoring or accounting services are a trivial example
of services that require no strict counterpart in the far-end
silo). The solution to this problem may come in one of
several flavors. One approach may be an out-of-band chan-
nel, which allows two SMAs to communicate and create an
agreement between them prior to applications commencing
their communications. This approach may be suitable for a
peer-to-peer model of communication. Another method, more
suitable for a client-server model, allows for a just-in-time
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analysis of compatibility between two silos by embedding a
fingerprint of the client silo structure in the first packet that
is sent out. Based on the information in that packet, the SMA
can determine if the communication between a client and
an already instantiated server is possible. In our work, this
remains a problem still open for further investigation.

F. Support for Evolution and Innovation

Let us now address the issue of why this architecture is bet-
ter suited for evolution than the current one. As we mentioned
in the previous section, our mantra for this project has been
“design for change”, and we believe we have succeeded in ac-
complishing this goal. The architecture we have described does
not mandate that any specific services be defined or methods
implemented. It does not dictate that the services be arranged
in a specific fashion, and leaves a great deal of freedom to the
implementors of services and methods. What it does define
is a generic structure in which these services can coexist to
help applications fulfill their communications needs, which
can vary depending on the type of application, the system
it is running on, and the underlying networking technologies
available to it. Thus, as the application needs evolve alongwith
the networking technologies, new communications paradigms
can be implemented by adding new modules into the system.
At the same time, all previously developed modules remain
available, ensuring a smooth evolution.

The described architecture is ameta-designwhich allows
its elements (the services and methods, the composition and
tuning algorithms) to evolve independently, as application
needs change and networking technologies evolve. Where, in
the current architecture, the IP protocol forms the narrow waist
of the hourglass (i.e., the fundamental invariant), in the SILO
architecture the convergence point is the conformance to the
meta-design,not a protocol (which is part of the design itself).
Rather than a protocol which all else must be built on and
under, SILO offers the silo abstraction as an invariant, the
narrow waist in the hourglass of this meta-design (Figure 4).

IV. PROTOTYPE ANDCASE STUDY

We have developed a working prototype implementation
which serves as proof-of-concept demonstration of the fea-
sibility of the SILO framework. This prototype, which is

publicly available from the project website [26], is imple-
mented in portable C++ and Python as a collection of user-
space processes running on a recent version of Linux (al-
though the prototype carries no explicit dependencies on the
Linux kernel). Individual services as well as tuning algorithms
are implemented as dynamically loadable libraries (DLLs or
DSOs). The general structure of the prototype follows the
functional architecture in Figure 3.

One of the important challenges we encountered when ad-
dressing the problem of dynamically composable silos was re-
lated to the problem of representing the relationships (compos-
ability constraints) between the various services and modules.
Essentially, this is a problem of knowledge representation.
These composability constraints take the form of statements
similar to “Service A requires Service B” or “Service A cannot
coexist with Service B”, which can be modulated by additional
specifications such as ‘above’ or ‘below’ or ‘immediately
above’ or ‘immediately below’. Additionally, we also needed
to deal with the problem of specifying application preferences
or requests for silos, which can be described asapplication-
specificcomposability constraints. To address this problem we
turned toontologies, specifically, ontology tools developed by
the semantic web community.

We adopted RDF (Resource Description Framework) as
the basis for ontology representation in the SILO framework.
Relying on RDF-XML syntax we were able to create a schema
defining various possible relationships between the elements
of the SILO architecture, namely, services and methods.
These relationships include the aforementioned composability
constraints, which can be combined into complex expres-
sions using conjunction, disjunction and negation. Using this
schema, we have defined a sample ontology for the services
we implemented in the current prototype. The application
constraints/requests are expressed using the same schema.This
uniform approach to describing both application requests as
well as the SILO ontology is advantageous in that a request,
issued by the application and expressed in RDF-XML, can be
merged into the SILO ontology to create a new ontology with
two sets of constraints – the original SILO constraints and
those expressed by the application, on which the composition
algorithm then operates. Using existing semantic web tools,
we have implemented several composition algorithms [30] that
operate on these ontologies and create silo recipes, from which
silos can be instantiated.

Our RDF schema also allows us to express other knowledge,
such as the functions of services (an example of a service
function could be “congestion control” or “error correction”
or “reliable delivery”), as well as their data effects (examples
include cloning of a buffer, splitting or combining of buffers,
transformation, and finally null, which implies no data effect).
These are intended to aid composition algorithms in deciding
the set of services to be included in a silo, when an application
is unable to provide precise specifications in the request. Using
this additional information in the composition algorithm is an
active area of our research.



A. Case study

Does SILO work? Is there any evidence to show that it
lowers the barrier to continuing innovation, its stated goal? Of
course, the answer to such a question would take a long and
diverse experimental effort, and to be convincing, would have
to come at least partly from actual developer communities after
at least partial deployment.

However, we have been able to conduct a small case
study which has yielded encouraging results. In the Fall of
2008, we made a simplified version of the SILO codebase
available to graduate students taking the introductory computer
networks course at North Carolina State University. Students
are encouraged to take this course as a prerequisite to advanced
graduate courses on networking topics, and most students
taking the course have no prior networking courses, or even
a single undergraduate course on general networking topics.
Students are required to undertake a small individual project
as one of the deliverables, which typically involves conducting
a literature research on a focused topic and synthesizing the
results in a report. In this instance, students were offeredthe
option to try their hand at programming a small networking
protocol as a SILO service as an alternative project. Nine out
of the approximately fifty students in the class chose to do so.
All but one of these students had not coded any networking
software previously.

To our satisfaction, all nine produced code to perform non-
trivial services, and the code not only worked, but it was
possible to compose the services into a stack and interoperate
them, although there was no communication or effort among
the students to preserve interoperability during the semester.
In one case, the code required reworking by the teaching
assistant, because the student concerned had (against instruc-
tions) modified the SILO codebase distribution. The services
coded by the students were implementations of ARQ, error
control, adaptive compression, rate control, and bit stuffing.
Testing services such as bit error simulators were also coded,
and two students attempted to investigate source routing and
label switching, going into the territory of SILO services over
multiple hops, which are as yet comparatively unformed and
malleable in our architectural vision.

While this is only the veriest beginnings of trying to validate
SILO, we feel that this case study at least demonstrates that
the barrier to entry into programming networking services has
been lowered, in that the path from conceptual understanding
of a networking protocol function to attaining the ability to
produce useful code for the same is dramatically shorter. In
future similar case studies, we hope to study the reaction
to such beginning programmers to the tuning agent and
ontology capabilities. And as always, we continue to invite
the community to download the SILO code from our project
website [26], try using it, and send us news about their positive
and negative experiences.

V. ONGOING SILO RESEARCH: V IRTUALIZATION AND

CROSS-LAYER EXPERIMENTATION

The SILO architecture has the potential to provide new
insight into a number of research areas and enable new and
fruitful directions of investigation and experimentation. In this
section we address two topics that are the subject of active
research and development within the SILO project.

A. Virtualization

Network virtualization efforts have attracted growing in-
terest recently. Virtualization allows the same resource to
be shared by different users, with independent and possibly
different views. In network virtualization, a substrate network
is shared by a virtualization system or agent which provides
interfaces to different clients.

Testbeds such as PlanetLab have demonstrated network
virtualization, and other efforts such as Emulab have allowed
investigation of a virtualized network through an emulated
environment. The Global Environment for Networking Inno-
vation (GENI) has identified virtualization as a basic design
strategy for the envisioned GENI facility to enable experimen-
tation support for diverse research projects. More importantly,
it has been conjectured that virtualization itself could become
an essential part of the future Internet architecture. The FIND
portfolio also contains projects on virtualization [29], [2].
Nevertheless, network virtualization is comparatively less ma-
ture than OS virtualization, being a significantly more recent
field. We can expect there will be substantial ongoing work
in increasing the isolation, generality and applicabilityof this
area in the short- to mid-term. As such, it is an important area
for any new architecture to consider.

Accordingly, we now describe our approach to realize
virtualization within the SILO framework in order to achieve
greater reusability. We go on to conjecture that such a realiza-
tion might allow the concept of network virtualization to be
generalized.

1) Virtualization as Service:So far, network virtualization
has been strongly coupled to the platform and hardware of
the substrate. Logically, however, network virtualization con-
sists of many coordinated individual virtualization capabilities,
distributed over networking elements, that share the common
functionality of maintaining resource partitions and enforcing
them. In keeping with the SILO vision, we can view these
functions as separate and composable services.

The most basic of these services is that ofsplitting and
mergingflows; these services must obviously be paired. This
is no more than the ability to mux/demux multiple contexts.
Note that this service is a highly reusable one, and can be
expected to be useful in diverse scenarios whenever there is
aggregation/dis-aggregation of flows, such as mapping to/from
physical interfaces, or at intermediate nodes for equivalence
classes on a priority or other basis, or label stacking.

In the networking context, virtualization is usually inter-
preted as implying two capabilities beyond simple sharing.The
first is isolation: each user should be unaware and unaffected
by the presence of other users, and should feel that it operates
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on a dedicated physical network. This is sometimes also
called “slicing.” This capability can be broken down into
two services: (i) slice maintenance, which keeps track of the
various slices and the resources used by them, and (ii) access
control, which monitors and regulates the resource usage of
each slice, and decides whether any new slices requested can
be allowed to be created or not; for example, rate control such
as leaky bucket would be an access control function.

The second capability isdiversity:each user should be able
to use the substrate in any manner in which it can be used,
rather than being restricted to use a single type of service
(even if strictly timeshared). This is akin to the ability to
run different operating systems on different virtual machines.
In SILO, this capability is natively supported, through the
composable nature of the stack (silo). Not only do different
silos naturally contain different sets of services, but thecom-
posability constraints provide a way to indicate what set of
upper services may be chosen by different slices when building
on a particular virtualized substrate.

The definition of a standard set of services for virtualization
means that every realization of this service (for different
substrates) would implement the functional interfaces specified
by the service itself, thus any user of the virtualization agent
would always be able to depend on these standard interfaces.
Articulating this basic interface is part of our goal in this
regard. For example, consider the case of virtualizing an
802.11 access point with the use of multiple SSIDs; the
interface must allow specification of the share of each slice.
However, since the different slices can use different varieties
of 802.11 with different speeds, the sharing must really be
specified in terms of time shares of the wireless medium,
which is the appropriate sharing basis in this context.

2) Generalizing Virtualization:Following the principle that
a virtual slice of a network should be perceived just like the
network itself by the user, we are led to the scenario that
a slice of a network may be further virtualized. A provider
who obtains a virtual slice and then supports different isolated
customers may desire this scenario. The current virtualization
approaches do not generalize gracefully to this possibility,
because they depend on customized interfaces to a unique
underlying hardware. If virtualization is expressed as a set of
services, however, it should be possible to design the services
so that such generalization is possible simply by re-using the

services, as illustrated in Figure 5.
Clearly, there are open issues and challenges with this

approach. One obvious question is whether the multiple levels
of virtualization should be mediated by a single SMA or
whether the SMA itself should run within a virtualization, and
thus multiple copies of SMA should run on the multiple stacks.
Either approach is possible to proceed with, but we believe the
former is the correct choice and is the one we are in the process
of implementing. In OS virtualization, the virtualizationagent
is itself a program and requires some level of abstraction to
run, though it maps virtual machine requests to the physical
machine down to a high level of detail. Successive levels of
virtualization with agents at all levels being supported bythe
same lower level kernel are difficult to conceive. However,
networking virtualization agents do not seek to virtualizethe
OS which supports them. As such, the kernel support they
require can be obtained through a unique SMA.

It may appear from this discussion that with per-flow silo
states, there is no need to virtualize, and in fact it is possible
to extend all the slices to the very bottom (as indicated
with the dotted lines in Figure 5). However, the advantage
of our virtualization-as-a-service approach lies precisely in
state maintenance; a service which is not called upon to
distinguish between multiple higher level users can affordto
keep state only for a single silo, and the virtualization service
encapsulates the state keeping for the various users.

3) Cross-Virtualization Optimization:Finally, it is possible
to conceive of cross-layer interaction across virtualization
boundaries, both in terms of composability constraints, and
tuning. Returning to Figure 5, the service S1 may require
the illusion of a constant bit-rate channel below it, and the
virtualization below it may be providing it with this by
isolation. If, however, there is some service still furtherdown
that does not obey this restriction (some form of statistical
multiplexing, for example), then the illusion will fail. Itmust
be possible to express this dependence of S1 as a constraint,
which must relate services across a virtualization boundary.
It appears harder to motivate the need to tune performance
across boundaries, or even (as the SMA could potentially
allow) across different slices. Although we have come up
with some use cases, they are not persuasive. However, we
recall that the same was true of the layering abstraction itself,
and it is only recently that cross-layer interactions have come
to be perceived as essential. We feel that cross-virtualization
optimization is also an issue worth investigation, even if the
motivation cannot be clearly seen now.

B. Cross-Layer Experimentation

In today’s networks, the physical layer is typically con-
sidered as a black box: sequences of bits are delivered to
it for transmission, without the higher layers being aware of
exactly how the transmission is accomplished. This separation
of concerns imposed by the layering principle has allowed the
development of upper layer protocols that are independent of
the physical channel characteristics, but it has now become
too restrictive as it prevents other protocols or applications



from taking advantage of additional functionalities that are
increasingly available at the physical layer.

Specifically, in the optical domain, we are witnessing the
emergence of optical layer devices that are:

1) intelligent and self-aware, that is, they can sense or
measure their own characteristics and performance, and

2) programmable, that is, their behavior can be altered
through software control.

The software logic defining more and more of these devices
requires cross-layer interactions, hence the current strictly
layered architecture cannot capture the full potential of the
optical layer. For instance, the optical substrate increasingly
employs various optical monitors and sensors, as well as pools
of amplifiers and other impairment compensation devices. The
monitoring and sensing devices are capable of measuring
loss, polarization mode dispersion (PMD), or other signal
impairments; based on this information, it should then be
possible to use the appropriate impairment compensation to
deliver the required signal quality to the application. But
such a solution cannot be accomplished within the current
architecture, and has to be engineeredoutside of itseparately
for each application and impairment type; clearly, this is not
an efficient or scalable approach.

Reconfigurable optical add-drop multiplexers (ROADMs)
and optical splitters with tunable fanout (for optical multicast)
are two more examples of currently available devices whose
behavior can be programmed according to the wishes of higher
layer protocols. Looking several years into the future, one
can anticipate the development of other sophisticated devices
such as programmable MUX-DEMUX devices (e.g., that allow
the waveband size to adjust dynamically), or even hardware
structures in which the slot size can be adjustable

In the SILO architecture, all these new and diverse func-
tionalities within (what is currently referred to as) the physical
layer will typically be implemented as separate services, each
with its own control interfaces (knobs) that would allow
higher-level services and applications direct access to, and con-
trol of, the behavior of the optical substrate. Hence, the SILO
architecture has the ability to facilitate a diverse collection
of important cross-layer functions, including traffic groom-
ing [10], impairment-aware routing [25], [31], and multi-layer
network survivability [22] that have been studied extensively,
as well as others that may emerge in the future.

As a first step towards realizing this vision, we have
completed the design and implementation of a virtual con-
catenation (VCAT) and the link capacity adjustment scheme
(LCAS) [15] as a set of SILO services within the software
prototype. In this initial stage, the services operate overan
environment that emulates SONET transport. Nevertheless,we
have been successful in demonstrating cross-layer interactions
by having the VCAT service increase or decrease the number
of concatenated circuits in response to application requests
and/or (emulated) transport network failures.

We also note that there is considerable interest within the
GENI community to extend the programmability and virtual-
ization functionality that is core to the GENI facility, allthe

way down to the optical layer so as to enable meaningful and
transforming optical networking research. Currently, however,
a clear road map on how to achieve such a “GENI-ized”
optical layer has not been articulated, mainly due to the lack
of interfaces that would provide GENI operations access to
the functionality of the optical layer devices.

We believe that the SILO architecture would be an ideal
vehicle for enabling optical-layer-aware networking within
GENI, as well as enabling cross-layer research through explicit
control interfaces (e.g., such as SILO knobs). Therefore, we
are in the process of outlining specific strategies for incorpo-
rating the SILO concepts within the GENI architecture.

VI. PRIOR RELATED WORK

One of the earliest attempts to impose orderly design rules
on networking protocols is definitely the x-kernel project [14].
While SILO is similar to the x-kernel in introducing well-
defined interfaces for protocol modules and organizing module
interactions, it is important to recognize several major differ-
ences: (a) x-kernel was an OS-centric effort in implementing
existing network protocols as sets of communicating processes
inside the novel kernel, while SILO is an attempt to introduce
a network protocol meta-design that is independent of any
assumptions about the underlying OS; (b) x-kernel made
an early attempt at streamlining some of the cross-layer
communications mechanisms; SILO makes cross-layer tuning
and optimization enabled by such mechanisms an explicit
focus of the framework, and finally (c) SILO is focused on
the problem of automated dynamic composition of protocol
stacks based on individual application requests and module
composability constraints, while the x-kernel protocols are pre-
arranged statically at boot time.

Among recent clean-slate research, there are two projects
whose scope extends to include the whole network stack and
hence are most closely related to our own project. The first
is work on the role-based architecture (RBA) [5], carried out
as part of the NewArch project [27]. RBA represents a non-
layered approach to the design of network protocols, and
organizes communication in functional units referred to as
“roles.” Roles are not hierarchically organized, and thus may
interact in many different ways; as a result, the metadata inthe
packet header corresponding to different roles form a “heap,”
not a “stack” as in conventional layering, and may be accessed
and modified in any order. The main motivation for RBA was
to address the frequent layer violations that occur in the current
Internet architecture, the unexpected feature interactions that
emerge as a result [5], and to accommodate “middle boxes.”

The second is the recursive network architecture
(RNA) [28], [23] project, also funded by FIND. RNA
introduces the concept of a “meta-protocol” which serves asa
generic protocol layer. The meta-protocol includes a number
of fundamental services, as well as configurable capabilities,
and serves as a building block for creating protocol layers.
Specifically, each layer of a stack is an instantiation of the
same meta-protocol; however, the meta-protocol instance at a
particular layer is configured based on the properties of the



layers below it. The use of a single tunable meta-protocol
module in RNA makes it possible to support dynamic
service composition, and facilitates coordination among the
layers of the stack; both are design goals of our own SILO
architecture, which takes a different approach in realizing
these capabilities.

VII. CONCLUSIONS ANDOPEN PROBLEMS

We have presented the SILO network architecture, a meta-
design that provides a framework within which the system
design can change and evolve. Our prototype software imple-
mentation realizes all key SILO concepts, demonstrating the
feasibility of SILO and validating the design principles. An
early case study also indicates that SILO has the potential
to lower the bar in terms of implementing and experimenting
with network protocols. Nevertheless, there are additional open
problems associated with the SILO architecture that we plan
to study, including:

• Agreement on silo structure with remote end.As we
mentioned in Section III, the flexibility offered by the
SILO architecture comes at a price: the need for an
agreement between communicating applications about
the structure of silos on both ends. We have already
identified several solutions to this problem, however it
is an interesting enough problem to continue keeping it
open. Some desirable characteristics of an ideal solution
are: low overhead of the agreement protocol, high degree
of success in establishing agreement and security of the
agreement process.

• Stability and fairness.The stability of today’s Internet
is in part guaranteed by the fact that the same carefully
designed algorithms govern the behaviors of TCP flows
to achieve fairness among them. As demonstrated in
the literature, this stability is fragile and can be taken
advantage of by non-compliant TCP implementations to
achieve higher throughput rates compared to unmodified
versions. SILO allows a plug-and-play approach to sub-
stituting optimization policies into protocol stacks, thus
ensuring stability and fairness of the system within some
pre-defined envelope of behavior becomes paramount.

• SILO in the core and associated scalability problems.
Most of our work so far has concentrated on the edge
of the network where applications construct silos to com-
municate with one another, and we have not yet carefully
considered the structure of the networking stacks in the
network core. It is clear that the SILO concept can
be extended to the core, by providing value addition
modules/services to individual flows or groups of flows,
as long as the scalability issues are addressed.

• Silo composition based on fuzzy application requests.
As we indicated in Section III, the problem of silo
composition based on application requests remains open.
One of the important areas to be studied is the ability
to construct silos based on vague specifications from
the application which may provide minimal information
about its needs, e.g., “reliable delivery with encryption”.

This type of fuzzy or inexact specification requires an
extended ontology of services in which some reasoning
can take place. The solutions will be multiple and the
system must pick the one that by some criteria optimizes
overall system behavior or some other objective.
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