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Abstract

We consider wavelength routing networks with and without wavelength converters, and
several wavelength allocation policies. We show through numerical and simulation results
that the blocking probabilities for the random wavelength allocation and the circuit-switched
case provide upper and lower bounds on the blocking probabilities for two wavelength al-
location policies that are most likely to be used in practice, namely, most-used and �rst-�t
allocation. Furthermore, we demonstrate that using the most-used or �rst-�t policies has an
e�ect on call blocking probabilities that is equivalent to employing converters at a number of
nodes in a network with the random allocation policy. These results have been obtained for
a wide range of loads for both single-path and general mesh topology networks. The main
conclusion of our work is that the gains obtained by employing specialized and expensive
hardware (namely, wavelength converters) can be realized cost-e�ectively by making more
intelligent choices in software (namely, the wavelength allocation policy).

1 Introduction

Recent advances in wavelength division multiplexing (WDM) and optical switching make it pos-
sible to contemplate the deployment of wavelength routing networks that will provide backbone
connectivity over wide-area distances and at very high data rates [7]. A wavelength routing
network consists of wavelength routers and the �ber links that interconnect them. Wavelength
routers are optical switches capable of routing a light signal at a given wavelength from any
input port to any output port, making it possible to establish end-to-end lightpaths, i.e., direct
optical connections without any intermediate electronics. The functionality of optical switches
may be enhanced by employing wavelength converters, devices that are capable of shifting an in-
coming wavelength to a di�erent outgoing wavelength [11]. Wavelength conversion is a desirable
feature since it improves the performance of the network in terms of call blocking probability.
However, this gain in performance must be weighted against the cost of wavelength converters.

The problem of computing call blocking probabilities under static (�xed or alternate) routing
with random wavelength allocation and with or without wavelength converters has been studied
in [1, 9, 2, 6, 12, 14]. The model presented in [1] is based on the assumption that wavelength use
on each link is characterized by a �xed probability, independently of other wavelengths and links,
and thus, it does not capture the dynamic nature of tra�c. In [9] it was assumed that statistics
of link loads are mutually independent, an approximation that is not accurate for sparse network
topologies. In [2] a Markov chain with state-dependent arrival rates was developed to model
call blocking in arbitrary mesh topologies and �xed routing; this technique was extended to
alternate routing in [6]. While more accurate, this approach is computationally intensive and
can only be applied to networks of small size in which paths have at most three links. A more
tractable model was presented in [12] to compute recursively the blocking probabilities assuming
that the load on link i of a path depends only on the load of link i� 1. Finally, a study of call
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blocking under non-Poisson input tra�c was presented in [14], under the assumption that link
loads are statistically independent.

Other wavelength allocation schemes, as well as dynamic routing are harder to analyze.
First-�t wavelength allocation was studied using simulation in [3, 9], and it was shown to
perform better than random allocation, while an analytical overow model for �rst-�t allocation
was developed in [8]. A dynamic routing algorithm that selects the least loaded path-wavelength
pair was also studied in [8], and in [10] an unconstrained dynamic routing scheme with a number
of wavelength allocation policies was evaluated. Except in [12, 13], all other studies assume
that either all or none of the wavelength routers have wavelength conversion capabilities. The
work in [12] takes a probabilistic approach in modeling wavelength conversion by introducing
the converter density, which represents the probability that a node is capable of conversion
independently of other nodes in the network. Finally, in [13] a dynamic programming algorithm
to determine the location of converters on a single path that minimizes average or maximum
blocking probability was developed under the assumption of independent link loads.

Most of the approximate analytical techniques developed for computing blocking proba-
bilities in wavelength routing networks [9, 2, 6, 14, 8, 10, 13] make the assumption that link
blocking events are independent and amount to the well-known link decomposition approach [5].
Also, the development of some other techniques is based on the additional assumption that link
loads are also independent. Link decomposition has been extensively used in conventional cir-
cuit switched networks where there is no requirement for the same wavelength to be used on
successive links of the path taken by a call. The accuracy of these underlying approximations
also depends on the tra�c load, the network topology, and the routing and wavelength allo-
cation schemes employed. While link decomposition techniques make it possible to study the
qualitative behavior of wavelength routing networks, we believe that more accurate analytical
tools are needed to e�ciently evaluate the performance of these networks, as well as to tackle
complex network design problems.

We have considered the problem of computing call blocking probabilities in mesh wavelength
routing networks with �xed and alternate routing and random wavelength allocation in [16].
Unlike previous studies, we have developed an iterative path decomposition algorithm for ana-
lyzing arbitrary network topologies. Speci�cally, we analyze a given network by decomposing
it into a number of single path sub-systems. These sub-systems are then analyzed in isolation
using our algorithm for calculating the blocking probabilities in a single path in a wavelength
routing network [15]. The individual solutions are appropriately combined to form a solution
for the overall network. This process repeats until the blocking probabilities converge. Our ap-
proach accounts for the correlation of both link loads and link blocking events, giving accurate
results for a wide range of loads and network topologies. Our algorithms can also compute call
blocking probabilities in a mesh network where only a subset of arbitrarily selected nodes are
capable of wavelength conversion.

In this paper, we study the blocking performance of several wavelength allocation policies
for various network topologies and tra�c patterns. We show that the most-used and �rst-�t
policies have very similar call blocking probabilities for all calls in a network, regardless of the
number of hops used by the calls. We also demonstrate that the random policy and the circuit-
switched case (i.e., a system with a converter in each node), for which analytical solutions exist
for networks of large size, provide lower and upper bounds on the call blocking probability
under the �rst-�t and most-used policies. We also present results which indicate that the call
blocking probabilities of the �rst �t and most-used policies is similar to that of the random
policy when a number of converters is employed in the network.

In Section 2 we study a single path in a wavelength routing network, and in Section 3 we
consider mesh network topologies. We conclude with a summary of our �ndings in Section 4.



2 A Single Path of a Network

We consider a single path of a wavelength routing network. A k-hop path consists of k+1 nodes
labeled 0; 1; � � � ; k, and hop i; i = 1; � � � ; k, represents the link between nodes i� 1 and i. Each
link in the path supports exactly W wavelengths, and each node is capable of transmitting and
receiving on any of the W wavelengths. We assume that calls arrive as a Poisson process. Let
�ij ; j � i, denote the arrival rate of calls that use hops i through j of the path, i.e., calls that
originate at node i�1 and terminate at node j. If the request can be satis�ed, an optical circuit
is established between the source and destination for the duration of the call. Call holding times
are exponentially distributed with mean 1/�. Also, let �ij = �ij=� denote the o�ered load of
calls using hops i through j.

We de�ne a \segment" of a k-hop path as a sub-path consisting of one or more consecutive
links of the original path. We let nij , j � i, be a random variable representing the number
of calls using hops i through j that are currently active. We also let fij; j � i, be a random
variable representing the number of wavelengths that are free on all hops i through j. We shall
see shortly that random variables nij and fij are part of the state description of the Markov
process corresponding to the k-hop path.

Some of the nodes in the path can be equipped with a wavelength converter. These nodes
can switch an incoming wavelength to an arbitrary outgoing wavelength. If no wavelength
converters are employed in the path, a call can only be established if the same wavelength is
free on all the links used by the call. This is known as the wavelength continuity requirement,
and it increases the probability of blocking for calls using multiple hops. If a call cannot be
established due to lack of available wavelengths, the call is blocked. On the other hand, if a call
can be accommodated, it is assigned one of the wavelengths that are available on the links used
by the call. If there are multiple wavelengths available, a wavelength allocation policy must be
employed to select a wavelength for the call. Di�erent selection policies lead to di�erent call
blocking probabilities. In this paper we investigate the following four wavelength allocation
policies:

� Random allocation: a call is randomly assigned to one of the wavelengths that are available
on all the links that will be used by the call.

� Most-used allocation: the wavelength that is already in use on the largest number of links
in the path is assigned to the call; ties are broken arbitrarily. The objective of the policy
is to keep more wavelengths available for calls traveling over long paths.

� Least-used allocation: the call is assigned to the wavelength that is currently used in the
smallest number of links in the path, with ties broken arbitrarily. This policy results
in wavelength fragmentation, leading to higher blocking probability for calls using long
paths.

� First-�t allocation: the wavelengths on each link are given labels in a �xed order, and the
call is assigned to the wavelength with the smallest label that is available on all the links it
requires. The objective of this allocation scheme is to minimize wavelength fragmentation.
As we shall show later, its performance is very close to that of the most-used policy, but
it is easier to implement since there is no need to maintain information on the global use
of wavelengths.

In a path with wavelength converters, the above allocation policies are used to assign a wave-
length to the call within each segment of the path whose starting and ending nodes are equipped
with converters. In addition to these wavelength allocation policies, we will also consider the
following case:

� Circuit-switched paths: paths in which there are converters at all nodes. In circuit-
switching, a call can be established as long as at least one wavelength (not necessarily



the same one) is free on each of the links required by the call. Consequently, wavelength
allocation is not an issue under circuit-switching.

In our study, we have used a number of di�erent tra�c load patterns to compare the four
wavelength allocation policies against each other and against circuit-switching. These patterns
are representative of the wide range of loading situations that one expects to encounter in
practice, and can be found in [17]. To ensure that the results are comparable across the di�erent
patterns, the load values were chosen so that the total load is the same for all patterns.

2.1 Policy Comparison for a Single Path of a Network

We have shown in [15] that the evolution of a 2-hop path with random wavelength allocation
can be characterized by the Markov process (n11; n12; n22; f12). The �rst three random variables
in the state description provide the number of active calls between the three source-destination
pairs in the path, and the last random variable gives the number of wavelengths that are free
on both links of the path. The state transition diagram of this Markov process is shown in
Figure 1 for W = 2 wavelengths, and it is straightforward to see that the process is not time-
reversible [15]. By modifying a few of the transition rates of this process, we were able to derive
a time-reversible Markov process with the same state space, which has a product-form solution.
We have demonstrated in [15] that the blocking probabilities obtained through the product-
form solution to the time-reversible Markov process are very close to the blocking probabilities
obtained through the numerical solution to the original Markov process for a wide range of
tra�c loads.

Let us now consider the same 2-hop path with the most-used wavelength allocation policy.
This policy can be modeled as a Markov process with the same state description as the random
policy case, i.e., (n11; n12; n22; f12). The key di�erence is that, under the most-used policy, if
n11 > n22, then we know that there is at least one wavelength that is used on hop 1 but not used
on hop 2. Thus, an incoming call that uses the second hop only will be assigned a wavelength
that is already in use on the �rst hop, and will cause a transition to state (n11; n12; n22 +
1; f12); similarly for n22 > n11 and incoming calls using only the �rst hop. (Under the random
wavelength allocation policy, the transition could be to either state (n11; n12; n22 +1; f12) or to
state (n11; n12; n22+1; f12� 1) if the number of free wavelengths on both hops f12 > 0 and one
of these wavelengths is assigned to the call.)

The state transition diagram of the Markov process for the most-used allocation policy is
shown in Figure 2 for a 2-hop path with W = 2 wavelengths. Again, it is straightforward
to verify that this Markov process is not time-reversible. Comparing to Figure 1, we note
that despite having the same state space, the two processes di�er in two ways. First, some of
the transition rates are di�erent; for instance the transition rate from state (0,0,1,1) to state
(1,0,1,1) is equal to �11=2 for the random allocation, but �11 for the most-used allocation.
Second, some of the transitions are missing in the new Markov process. For example, there is a
transition from state (0,0,1,1) to state (1,0,1,0) under random allocation in Figure 1, but there
is no such transition in Figure 2. Furthermore, since there is a transition from state (1,0,1,0) to
state (0,0,1,1) in Figure 2, but no transition in the reverse direction, it is not possible to obtain
an approximate time-reversible process by simply modifying some of the transition rates, as we
did for the random policy. Although we do not have an approximate product-form solution for
the most-used allocation policy, the state space for a 2-hop path is small enough so that the
solution to the Markov process can be obtained numerically.

Based on similar arguments, it can be determined that the least-used wavelength allocation
policy can also be modeled by a Markov process with the state description (n11; n12; n22; f12).
The state transition diagram for this process is shown in Figure 3, and it can be easily veri�ed
that the process is not time-reversible.

If a converter is placed at node 1 of a 2-hop path (the only interesting possibility in this
case), the system becomes equivalent to a 2-hop circuit-switched path, and it can be described by



0,0,0,20,0,1,11,0,1,11,0,0,1

2,0,0,0 2,0,1,0 1,0,2,0 0,0,2,0

0,2,0,0

0,1,0,10,1,1,01,1,1,01,1,0,0

1,0,1,0

2,0,2,0

λ
22

µ
22

µ
11

λ11 λ
2222

µ

λ11 µ
11λ

22

µ
22

2µ
11

2µ
22

λ
22

λ
22

λ11

µ
11

22
λλ11 2µ11

λ   /2
22

µ
22

λ
22

µ
12 λ1212

µ λ12
µ λ12 12

µ λ1212

λ12 12µ
11

λ

µ

11

11

λ11

22
λ

µ
22

λ11

µ
11λ

22

22
µ

λ   /2
22

µ
22

µ
22

2µ
22

2µ

n  = 0

n  = 1

n  = 2
12

12

12

λ   /211

µ
11

λ   /211

µ 11

Figure 1: State space (n11; n12; n22; f12) of a
2-hop path with W = 2 wavelengths (random
allocation)
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Figure 2: State space (n11; n12; n22; f12) of a
2-hop path with W = 2 wavelengths (most-
used allocation)

the three-dimensional Markov process (n11; n12; n22). Random variable f12 becomes redundant
because calls using both hops can now use any of the (W � n12 � n22) available wavelengths
on the second hop. It is well-known that this process has a closed-form solution. In Figure 4
we show the state space of a 2-hop circuit switched path with two wavelengths. Although this
path is described by the above 3-dimensional process, we include in the state description of
Figure 4 the variable f12 to make it easier to compare to Figures 1{3. For instance, the fact
that there are no transitions into state (1,0,1,0) in the �gure can be explained by recalling that
f12 = 0 (i.e., that no wavelength is free on both links of the path) implies that calls traversing
both hops are blocked. However, since exactly one wavelength is free on each hop (even if it is
not the same one), calls using both hops cannot be blocked in the circuit-switched path, and
the system will never enter state (1,0,1,0), only state (1,0,1,1).

The �rst-�t wavelength allocation policy can also be modeled as a Markov process, but
the size of its state space is in the order of W 5, too large to obtain a numerical solution even
for relatively small values of W . In view of this, the blocking probabilities for this policy are
obtained by simulation only.

2.1.1 Numerical Comparisons

Let us �rst consider the blocking probabilities of the random, most-used, least-used, and circuit-
switched systems for calls traversing both links of the 2-hop path. In Figures 1 to 4, the blocking
states for these calls are those with f12 = 0, i.e., those states in which neither of the two
wavelengths is free on both links. We also observe that, except for state (1,0,1,0) at the bottom
of each of the four �gures, the transitions (and transition rates) in and out of all other blocking
states are exactly the same for all four cases. Consequently, we expect that the di�erence in the
blocking probability experienced by calls traversing both links of the path under the di�erent
policies will be mainly due to the steady-state probability of blocking state (1,0,1,0).

Referring to Figure 4, we note that the corresponding Markov process never enters state
(1,0,1,0). Thus, we expect that calls traversing both hops will experience the least blocking
probability in a circuit-switched path. In Figure 2 (most-used policy) we note that there are
two transitions into state (1,0,1,0), and four transitions out of it. The blocking probability
will be higher under this policy compared to the circuit-switched case. The Markov process in
Figure 1 (random policy) has two additional transitions into state (1,0,1,0) from states (0,0,1,1)
and (1,0,0,1) with rates �11=2 and �22=2, respectively. Therefore, the blocking probability of
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these calls under the random policy will be higher than under the most-used policy. Finally,
the Markov process in Figure 3 (least-used policy) has the same transitions as the one in
Figure 1, but the transition rates into state (1,0,1,0) from states (0,0,1,1) and (1,0,0,1) are �11
and �22, respectively. Therefore, we expect that these calls will experience the highest blocking
probability under the least-used policy.

We now note that the lower the blocking probability for calls traversing both hops, the larger
the number of such calls accepted, and the larger the number of wavelengths they occupy, thus
leaving fewer wavelengths available for calls using a single link (either the �rst or the second)
of the path. Hence, we expect that the behavior of the four policies in terms of the blocking
probability of calls using a single link of the path will be exactly the opposite of what was
discussed above. Speci�cally, we expect the least-used policy to provide the lowest blocking
probability for these calls, followed by the random, the most-used, and the circuit-switched
policies, in that order.

The above conclusions, derived by direct comparison of the states of the Markov processes,
are in agreement with intuition. We have con�rmed these conclusions by numerically comparing
the blocking probabilities of the various policies for 128 di�erent load values. Figures 5 and 6
show results for two cases corresponding to a uniform and descending load pattern, respectively,
and for W = 10 wavelengths. More speci�cally, the arrival rates used to obtain the results
in Figure 5 were �11 = 0:2; �12 = 0:1; �22 = 0:2, while for the results in Figure 6 we used
�11 = 3:0; �12 = 2:0; �22 = 2:0. In both �gures we plot the blocking probability for the three
types of calls, namely, calls using the �rst hop only (label \hop 1" in the x-axis of the �gures),
calls using the second hop only (label \hop 2"), and calls using both hops (label \both hops").
We �rst note that the results are a�ected by the tra�c pattern used. For instance, under uniform
loading (Figure 5), calls using the �rst hop only experience the same blocking probability as
hops using the second hop only, while in the descending pattern (Figure 6), due to the lower
load o�ered to the second hop, the latter calls experience a much lower blocking probability for
all four policies. More importantly, the relative values of the blocking probabilities for the four
policies are also consistent with our discussion above. Very similar results have been obtained
for all 128 di�erent load values.

In Figure 7 we compare the most-used and �rst-�t policies for the same arrival rates as
those used for Figure 6. We observe that the blocking probabilities of the �rst-�t policy are
almost identical to those of the most-used policy for all three types of calls. This result can be
explained by noting that both policies attempt to maximize the number of wavelengths that
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are available for calls that use both hops of the 2-hop path by reducing the \fragmentation" of
the set of wavelengths. The most-used policy assigns to an incoming call that requires a single
hop of the path a wavelength that is already used on the other hop, if such a wavelength exists.
On the other hand, the �rst-�t policy attempts to achieve the same goal by searching the set
of wavelengths in a �xed order, thus increasing the chances that a wavelength used on a single
hop will be assigned to an incoming call using the other hop. As can be seen from Figure 7,
the most-used policy is slightly better, but overall the blocking probability values of the two
policies are very close. Similar results have been obtained for all 128 tra�c loads.

The relative behavior of the four policies for longer paths is very similar to shown in Figures 5
and 7 for a wide range of tra�c patterns. Speci�cally, for calls using one or two hops of a path
only, the least-used policy provides the lowest blocking probability, followed by the random
policy, the most-used policy, and the circuit-switched case. However, for calls traversing three
or more hops of the path, the situation is reversed. Due to space limitations, results for paths
longer than two hops are omitted, but can be found in [17]. Since, under the least-used policy,
the blocking probability of calls using multiple hops increases signi�cantly, we will not consider
the least-used policy any further.

Finally, in Figure 8 we compare the �rst-�t policy to the random (no converters) and circuit-
switched cases for a 10-hop path (more results for 10-hop paths can be found in [17]). Two
interesting observations can be made. First, the blocking probability values of the �rst-�t
policy are always between the corresponding values of the random and circuit-switched cases.
In other words, the blocking probability values under the random and circuit-switched cases
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provide lower and upper bounds for the blocking performance of the �rst-�t policy. Second,
the �rst-�t policy is quite e�ective in reducing the blocking probability of calls traveling over
multiple hops (which are the ones that experience the highest blocking probability under the
random policy) close to the level of the circuit-switched case. Very similar results have been
obtained for the other tra�c patterns [17].

3 Mesh Wavelength Routing Networks

In this section we consider the NSFNET irregular topology in Figure 9. Results for other
topologies can be found in [17]. Since we use the tra�c data reported in [4], following that
study, we have augmented the 14-node NSFNET topology with nodes 1 and 16 in Figure 9.
We present detailed results for the blocking probabilities of calls involving nodes along the
path (3,5,6,7,9,12,15,16). There are 28 source-destination pairs in this path, and in Figures 10
to 14 they have been labeled so that numbers 1 to 7 refer to pairs with one-hop paths, numbers 8
to 15 correspond to pairs with two-hop paths, etc.

We have used two tra�c patterns. For the �rst pattern, the call arrival rates are �sd = 0:6�l,
where l is the length of the shortest path from s to d. The second tra�c pattern was designed
to reect actual tra�c statistics collected on the NSFNET backbone network [4]. Clearly, this
data, collected over a packet-switched network, cannot be directly applied to a circuit-switched
wavelength routing network. However, our intention is simply to capture the relative tra�c
demands among the di�erent source-destination pairs. To this end, we �rst divided the entries
of the matrix in [4] by the link capacity to obtain the \o�ered load" �sd per source-destination
pair. Since the resulting values were too small, we multiplied them by a constant to obtain
reasonable values for the o�ered load. Then, assuming that all calls have a mean holding time
1=� = 1, the o�ered load values become the arrival rates �sd used in the experiments.

Figure 10 compares the �rst-�t to the most-used policies, and we again see that that the
two policies result in almost identical blocking probability values for all calls. Figures 11 and 12
demonstrate that the random and circuit-switched cases provide upper and lower bounds on
the performance of the �rst-�t policy, similar to the single-path cases studied above. Finally,
in Figures 13 and 14 we compare the �rst-�t policy to the random policy with converters. The
converters were placed in the network using the optimization techniques in [16]. As can be seen,
using the �rst-�t policy is roughly equivalent to employing a signi�cant number of converters
in the network. The overall behavior of the graphs in these �gures is very similar to the single
path case as well as other topologies (see [17]), indicating that our observations and conclusions
are valid for a wide range of topologies and tra�c patterns.
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Figure 11: Policy comparison, NSFNET, traf-
�c pattern based on locality
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Figure 12: Policy comparison, NSFNET, pat-
tern based on actual tra�c
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Figure 13: First-�t policy vs. random pol-
icy with converters, NSFNET, tra�c pattern
based on locality
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Figure 14: First-�t policy vs. random policy
with converters, NSFNET, pattern based on
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4 Concluding Remarks

We have shown that the most-used and �rst-�t policies have very similar call blocking proba-
bilities for all calls in a network, regardless of the number of hops used by the calls. The two
policies tend to favor calls using multiple paths at the expense of calls using a single path. This
is a desirable feature, since calls traversing multiple paths experience the highest blocking prob-
ability. However, the most-used policy requires that the network nodes exchange information
about the network-wide usage of wavelengths, while the �rst-�t policy only relies on a �xed
ordering of wavelengths, and is signi�cantly easier to implement.

We have also shown that the random policy and the circuit-switched case provide bounds
on the call blocking probability under the �rst-�t (or most-used) policy. Speci�cally, for calls
using one or two hops, the random policy provides a lower bound and the circuit-switched case
provides an upper bound, while for calls using longer paths the bounds are reversed.

We have presented results which indicate that the call blocking probabilities under the �rst-
�t policy are similar to those under the random policy but employing a number of converters in
the network. In most cases, introducing the �rst-�t policy results in a decrease in the blocking
probability of calls traveling over multiple hops to a level very close to the blocking probability
experienced under the circuit-switched case. Since, in terms of implementation, there is no
signi�cant di�erence between the �rst-�t and random policies, the gains obtained by employing
expensive hardware can be realized by making more intelligent choices in software.



It also appears that the bene�ts of the �rst-�t policy diminish at high loads. It is in these
situations that employing converters would bene�t calls traversing a large number of hops.
However, the number of converters to be employed in this case must be very large, close to
the number of nodes in the network, and even if all nodes contain converters the blocking
probability will remain at (reduced but) high levels. Since it is unlikely that future wavelength
routing networks will be designed to operate at such high call blocking probabilities, reducing
the call blocking probabilities in this case may not be of practical importance.

While previous studies of \sparse" wavelength conversion have measured the improvement
obtained by employing converters in conjunction only with the random wavelength allocation
policy, we have shown that an equivalent improvement can be achieved merely by using appro-
priate allocation policies such as �rst-�t or most-used.
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