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Abstract

We consider the problem of designing a virtual topology to minimize electronic routing,
that is, grooming traÆc, in wavelength routed optical rings. The full virtual topology
design problem is NP-hard even in the restricted case where the physical topology is a
ring, and heuristics have been proposed in the literature. We present a new framework
of bounds which can be used to evaluate the performance of heuristics, and which requires
signi�cantly less computation than evaluating the optimal solution. This framework consists
of a sequence of bounds, both upper and lower, in which each successive bound is at least
as strong as the previous one. The number of bounds to be evaluated for a given problem
instance is only limited by the computational power available. The bounds are based on
decomposing the ring into sets of nodes arranged in a path, and adopting the locally optimal
topology within each set. While we only consider the objective of minimizing electronic
routing in this paper, our approach to obtaining the sequence of bounds can be applied to
many virtual topology problems on rings. The upper bounds we obtain also provide a useful
series of heuristic solutions.

1 Introduction

In recent years, wavelength routed optical networks have been seen to be an attractive archi-
tecture for the next generation of backbone networks. This is due to the high bandwidth in
�bers with wavelength division multiplexing (WDM) and the ability to trade o� some of the
bandwidth for elimination of electro-optic processing delays using wavelength routing [4]. It has
also been noted in literature that, at least in the short term, physical topologies in the forms
of rings are of more interest because of available higher layer protocols such as SONET/SDH
[6, 5].

Two concerns have recently emerged in this area: it has been recognized that the the cost of
network components, speci�cally electro-optic equipment and SONET add/drop multiplexers
(ADMs), is a more meaningful metric for the network or topology rather than the number
of wavelengths, and that the independent traÆc streams that wavelength routed networks
will carry are likely to have small bandwidth requirements compared even to the bandwidth
available in a single wavelength of a WDM system. These two issues give rise to the concept
of traÆc grooming [6, 5, 11, 12, 2, 1, 7] which refers to techniques used to combine lower speed
traÆc components onto available wavelengths in order to meet network design goals such as
cost minimization.

The problem of designing logical topologies for rings that minimize cost as measured by
the amount of electro-optic equipment has recently received much attention in the literature
[11, 12, 1, 2, 5, 6, 7]. The problem is addressed in part or full to arrive at heuristic solutions
in [11, 12, 2, 7]. A common cost measure used in literature is the number of SONET ADMs

�This work was supported by the NSF under grant NCR-9701113.



[5, 11]. Wavelength assignment to lightpaths has been recognized to be an important part of
the problem and several studies focus on this [9, 5], while others consider the lightpath routing
problem as well [7]. In [11, 12], a strategy of �rst grooming traÆc components into circles is
presented; in [11] these circles are then groomed, in [12] they are scheduled in a sequence of
virtual topologies. Heuristic algorithms to minimize network cost by grooming are presented in
[2], for special traÆc patterns such as uniform, certain cases of cross-traÆc, and hub. In [1], a
heuristic algorithm based on a bipartite matching formulation of the problem is presented for
speci�c traÆc characteristics.

As has been noted in literature [4, 11], the problem of logical topology design is NP-hard even
for a physical ring topology, and achievability bounds are useful for evaluating performances of
heuristic algorithms. We present a new framework for computing bounds for the problem of
optimal traÆc grooming in physical ring topologies. We decompose the ring into path segments
consisting of successively larger number of nodes. We show that solving a path segment exactly
is much easier than solving a ring of the same number of nodes. We combine the path solutions
to obtain a series of bounds, both lower and upper. Computation of the bounds require less
e�ort than computing the optimal value, and depending on the problem instance, several bounds
in the sequence are likely to require signi�cantly less e�ort.

The problem we consider is very general, as we do not impose any constraints on the traÆc
patterns. Furthermore, the upper bounds we derive are based on actual feasible topologies,
so our algorithm for obtaining the upper bounds is a heuristic for the general problem of
traÆc grooming. Finally, although we illustrate our approach using a speci�c formulation of
the problem, it is straightforward to modify it to apply to a wide range of problem variants
with di�erent objective functions and/or constraints such as multiple �ber links between nodes,
physical hop limit, bidirectional rings, etc.

2 Problem Formulation

We consider a unidirectional ring R with N nodes numbered from 0 to N � 1, as shown in
Figure 1(a) (working ring only). The �ber link between each pair of nodes can support W
wavelengths, and carries traÆc in the clockwise direction; in other words, data 
ows from a
node i to the next node i� 1 on the ring, where � denotes addition modulo-N . (Similarly we
use 	 to denote subtraction modulo-N .) The links of R are numbered from 0 to N � 1, such
that the link from node i to node i� 1 is numbered i. Each node in the ring is equipped with
a wavelength add/drop multiplexer (WADM) (see Figure 1(b)). A WADM can perform three
functions. It can add or drop optical traÆc from/into electronic form, for electronic processing.
The processing is traÆc termination or possibly electronic routing. It can also optically switch
some wavelengths from the incoming link of a node directly to its outgoing link without the need
for electro-optic conversion of the signal carried on the wavelength. We assume that estimates
of the aggregate node-to-node traÆc are available, requiring the design of a virtual or logical
topology (see the discussion below) consisting of a set of static lightpaths. (We do not consider
the dynamic case of requests for lightpaths or traÆc components arriving continuously during
operation, this latter problem has been considered elsewhere [13, 14, references thereof].) The
traÆc demands between pairs of nodes in the ring are given in the traÆc matrix T = [t(sd)].
All traÆc is expressed in terms of some base rate (e.g. OC3) and the bandwidth available in a
single wavelength is denoted by C in this unit.

Given the ring physical topology, a logical topology is de�ned by establishing lightpaths

between pairs of nodes. A lightpath is a direct optical connection. More speci�cally, if a
lightpath spans more than one physical link in the ring, its wavelength is optically passed
through by WADMs at intermediate nodes. We assume that ring nodes are not equipped
with wavelength converters, therefore a lightpath must be assigned the same wavelength on all
physical links along its path.



In this paper we have chosen to concentrate on the total electronic forwarding (routing)
performed by a virtual topology as the performance metric to be optimized. This is of in-
terest because such forwarding involves electro-optic conversion and added message delay and
processor load at the intermediate nodes. There is also the possibility of increased bu�er re-
quirement and queueing delay. We forbid a traÆc component to be carried completely around
the ring before being delivered at the destination, thus each traÆc component can traverse a
given link at most once. This is reasonable because the alternative consumes more bandwidth,
and is likely to require more electronic routing. We can formulate the problem of designing a
virtual topology for a ring network such that the total amount of electronic routing at the ring
nodes is minimized as an Integer Linear Problem (ILP), following the formulation in [4] for
the general topology case. The speci�c details and the mathematical formulation for the ring
network is omitted here and can be found in [3]. It consists of O(N4 +N2W ) constraints and
O(N4 + N2W ) variables, where N is the number of nodes in the ring, and W the number of
wavelengths.

3 Path Decomposition of a Ring Network

De�nition of Decomposition: We consider a ring R with N nodes labeled 0 � � � (N � 1), in
order, and traÆc matrix T . We de�ne a segment of length n; 1 � n � N , starting at node i; 0 �
i < N , as the part of the ringR that includes the n consecutive nodes i; i�1; i�2; � � � ; i�(n�1),
and the links between them.

We de�ne a decomposition of ring R around a segment of length n starting at node i as a

path P
(i)
n that consists of n+ 2 nodes and n+ 1 links as follows: the n nodes and n� 1 links

of the segment of ring R of length n starting at node i, a new node S and a link from S to i,

and a new node D and a link from node i � (n � 1) to D. We also refer to P
(i)
n as an n-node

decomposition of ring R starting at node i. Figure 2 shows such a decomposition.

Associated with the decomposition P
(i)
n is a new traÆc matrix T
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t(sd); if i � s � d � i� (n� 1)P
j =2fi;i�1;���;d	1g t

(jd); if s = S; i � d � i� (n� 1)P
j =2fs�1;s�2;���;i�(n�1)g t

(sj); if d = D; i � s � i� (n� 1)

tpass�thru(i; n); if s = S; d = D
0; otherwise

(1)

where tpass�thru(i; n) denotes the traÆc of the original matrix T that passes through the segment
of length n starting at node i, i.e., traÆc on ring R that uses the links of the segment but does
not either originate or terminate at any of the nodes in that segment. The amount of this traÆc
can be readily obtained by inspection of traÆc matrix T . We have used s � d in the above
expression to denote that node s precedes node d in the decomposition and s � d to denote
that node s precedes and may be the same as node d in the decomposition.

Because of the way the traÆc matrix for the decomposition is de�ned in (1), from the point
of view of any node k; i � k � i � (n � 1) in the segment, the traÆc pattern in the new path

P
(i)
n is exactly the same as in the original ring. The new nodes S and D are introduced in the

decomposition to abstract the interaction of traÆc components between nodes in and outside
the segment. The new node S acts as the source of all traÆc 
owing into the segment in the
real ring. Similarly, the new node D acts as the destination for all traÆc seen to 
ow out of
the segment. The details of the 
ow of these traÆc components in the rest of the ring is hidden

from the segment. Finally, the fact that P
(i)
n is a path (i.e., that there is no link from node D

to node S) means that the details of traÆc in the original ring that does not involve any nodes
or links of the segment are hidden in the decomposition.



Solving Path Segments in Isolation: Consider the traÆc matrix T
P

(i)
n

=

�
t
(sd)

P
(i)
n

�
of the

decomposition P
(i)
n of a segment of length n starting at node i in the ring R, as given in (1).

This matrix can be thought of as representing the traÆc demands in a ring network consisting
of nodes S; i; : : : ; i� (n� 1);D, where there is simply no traÆc 
owing over the link from node
D to node S. Consequently, the ILP formulation we mentioned in Section 2 can be used to
obtain a virtual topology that minimizes electronic routing for this ring with traÆc matrix T

P
(i)
n

.

Since the ILP formulation disallows traÆc routing that carries a traÆc component beyond its
destination and all around the ring, no lightpaths can be formed to carry traÆc over the link
from D to S that is absent in the decomposition. Thus, the topology obtained in this manner

can be directly applied to the path P
(i)
n . When we use the ILP to �nd an optimal topology for

path P
(i)
n we will say that we solve the n-node segment in isolation.

The topology so obtained achieves the locally best value for electronic routing for the set of
nodes in the decomposition, but does not take into account the rest of the ring. This topology
may not form the subtopology for these nodes for any optimal solution, or even any feasible
solution, of the complete ring. We denote the optimal objective value for the decomposition

P
(i)
n by �

(i)
n . Since the new nodes S and D do not contribute any electronic routing, and the

traÆc pattern seen by the n nodes abstracted from the real ring is the same as when they are

included in the ring, �
(i)
n also represents the locally best (lowest) amount of electronic routing

at this set of nodes when considered as part of the ring.
Our motivation for using the path decomposition described in this section is two-fold. First,

as the number n of nodes in a segment starting at some node i increases, the resulting decom-

position P
(i)
n will more closely approximate the original ring. As a result, the bounds we obtain

will be tighter with increasing n. Second and more importantly, a path decomposition signi�-
cantly alleviates the problem of exponential growth in computational requirements for solving
the original ILP for an n-node network. This result is a direct consequence of the following
lemma. The proof is straightforward and is based on assigning arbitrary wavelengths on the
�rst link and extending them over the path. It is omitted here, and can be found in [3].

Lemma 3.1 A wavelength assignment always exists for a feasible virtual topology on a uni-

directional path network, and it can be obtained in time linear in the number of links and the

number of wavelengths W per link.

In solving the decomposed problem, we are merely interested in the optimum value of the
objective, since this is the value from which we will obtain the bounds. Since we know that
a wavelength assignment is always possible, we can eliminate the variables and constraints
related to wavelength assignment from our formulation. The order of the numbers of variables
and constraints remain the same, but a signi�cant number of them are removed. This creates a
formulation that is smaller and requires dramatically less computation to solve. In practice, we
have found that eliminating the wavelength assignment subproblem can result in a reduction in
computation time by several orders of magnitude. For instance, completely solving a six-node
ring network using the original formulation (with wavelength assignment) requires between 60
and 90 minutes on a Sun Ultra-10 workstation. However, solving a six-node path network
using the simpli�ed formulation (no wavelength assignment) requires only a few seconds. In
both cases, we used the LINGO scienti�c computation package which utilizes branch-and-bound
algorithms to solve the ILP.

4 Bounds

In this section we describe how we can combine the �
(i)
n values we get from n-node decom-

positions to obtain lower as well as upper bounds on the total amount of electronic routing



performed in the optimal case by a virtual topology on the original ring. The method of
combination is di�erent for lower and upper bounds.

4.1 Lower Bound

Recall that �
(i)
1 represents the locally best amount of electronic routing that can be achieved

at node i considered in isolation and therefore in any toplogy, there can be no topology which

achieves an even lower value. Thus, �
(i)
1 is a lower bound on the amount of electronic routing

performed at node i for any feasible virtual topology, and in particular, for the optimal virtual

topology. Since �
(i)
1 represents contribution to the electronic routing only by node i, we can add

the contributions together for each node to obtain a lower bound on the total electronic routing

performed for all nodes in a feasible virtual topology. We denote this sum by �1 =
PN�1

i=0 �
(i)
1 .

The quantity �1 is a lower bound on the objective value (total electronic routing) for any
feasible virtual topology, and in particular, for the optimal virtual topology for the ring R.

Generalizing this notion, we �nd that we can add the �
(i)
n values for any set of decompositions

that involve segments that are disjoint in the ring, and we are still guaranteed to obtain a lower
bound on the objective value for any feasible topology. We formalize this in the following
lemma:

Lemma 4.1 Let �n be a set of segments of ring R which partition the nodes of the ring in

segments of length n or smaller. Let lk; lk � n; denote the length (number of nodes) of segment

k; k = 1; � � � ; j �n j, and let ik denote its starting node. The quantity

�(�n) =

j�njX
k=1

�
(ik)
lk

(2)

is a lower bound on the objective value for any feasible virtual topology on the ring R, and

therefore on the optimal objective value.

We now de�ne �n as:
�n = maxf�(�n)g (3)

where the maximum is taken over all partitions of the ring which contain segments with n or
less nodes. Figure 4 shows two partitions of the same ring, the �rst containing only 1- and
2-node segments, and the second containing only 1-, 2- and 3-node segments. Note that our
de�nition of �1 before is consistent with this general de�nition.

It is obvious from de�nition (3) that the set of partitions we consider in computing �n+1 is
a proper superset of that we consider in computing �n. As a result, we have a strong sequence
of bounds in which each is at least as tight as the previous one, that is, �n+1 � �n 8n 2
f1 � � � (N � 1)g.

4.2 Upper Bound

We �rst note that the value of the objective function for any feasible virtual topology sets an
upper bound on the optimal value, since it corresponds to an actual solution and the optimal
solution can only be better than or as good as this solution. Thus, we consider di�erent
achievable topologies and we obtain upper bounds from them.

First we consider the simplest virtual topology possible, namely, the topology consisting only
ofW single-hop lightpaths from each node i to the next node i�1. All traÆc not terminating at
any given node must be electronically routed by that node. We will call this the no-wavelength-
routing topology, since no wavelengths are optically routed at any node and each lightpath
spans exactly one physical link. (This type of topology is called a PPWDM ring in [6].) In such
a topology, each node i performs the maximum possible amount of electronic routing, which



we denote by  (i). Quantities  (i); i = 0; � � � ; (N � 1), can be readily obtained from the traÆc
matrix T . We denote the total electronic routing performed under the no-wavelength-routing
topology by 	0 =

PN�1
i=0  (i). Since this is a feasible topology, 	0 is an upper bound on the

optimal electronic routing,
Let us call concentrator nodes those nodes which do not perform any optical forwarding (in

the no-wavelength-routing topology, every node is a concentrator node). Nodes S and D can be
viewed as concentrator nodes in the single node decomposition, thus we see that nodes of any
segment preceded and succeeded by a concentrator node each is free to route traÆc to achieve

the local best case, corresponding to �
(i)
n for that segment. For example, a topology may be

created by alternating concentrator nodes with single nodes which route traÆc according to
the corresponding single node decomposition solutions. This topology is illustrated in Figure 3,
where the even-numbered nodes are concentrator nodes. The objective value for such a topology

would be an alternate sum of �
(i)
1 and  (i) values. For the strongest possible upper bound, we

would choose the topology which minimizes this sum.
It is now straightforward to obtain a strong sequence of upper bounds along the same lines.

We de�ne 	n as the lowest objective value we obtain for all topologies which are created by
alternating concentrator nodes with segments no larger than n nodes in size. We can once
again consider this in light of partitions of the nodes of a ring. Now, however, the partitions
are constrained not only to use segments of n-nodes or less, but every alternate segment must
contain exactly one node. These alternate single-node segments are used as concentrator nodes
in the topology we create, rather than as single-node decompositions.

We note that since every decomposed segment has to alternate with a concentrator node,
we can only use up to N � 1 node decompositions, and cannot use N -node decompositions as
for the lower bounds. As before, the set of all topologies we consider in obtaining 	n+1 is a
superset of the set of all topologies we consider in obtaining 	n, therefore we may assert that
	n+1 � 	n 8n 2 f0 � � � (N � 2)g, giving us a strong sequence of upper bounds.

Because the bounds f	ng are based on actual feasibly topologies, they also provide us with
a useful series of heuristic solutions to the ring. Below we mention a result which shows the
tightness of the bounds and thus the goodness of the heuristics, and we see in Section 5 that even
the �rst few solutions of the series can outperform a simplistic heuristic. The later solutions
in the series can compare favorably with some heuristics reported in literature. Speci�cally,
	N�1 must be as good or better than a single-hub architecture [6, 2, 1], because it considers all
topologies with a single concentrator node (which is equivalent to a hub node). For a similar
reason, 	k; k � dN=2e must be as good or better than a double hub design, if the hubs are
constrained to be diametrically opposite in the ring.

Both the upper and the lower bounds get progressively tighter with increasing n, and for
the �nal bounds we can assert that:

	N�1 � �N�1 �
N�1
min
i=0

( (i) � �
(i)
1 ) (4)

The derivation is based on considering a partition of the ring into the single node which yields

the minimum  (i) � �
(i)
1 , and the N � 1 decomposition formed by the rest of the nodes. We

then obtain both and upper and lower bound from this partition and compare them to 	N�1

and �N�1. The derivation is omitted here and can be found in [3].
The bounds �n (and 	n) for successive values of n incorporate progressively more informa-

tion about the problem and as such require progressively more computational e�ort to deter-

mine. The dominating factor in the computational e�ort is the calculation of the �
(i)
n values

required for a given bound, as we have noted before the number of variables and constraints
increase as O(n4). Thus the maximum value of n for which we can determine the corresponding
bounds is limited by this computational e�ort. The computational e�ort required to combine

the �
(i)
n values into the best available bounds is O(2N ) for a straightforward algorithm, but the



problem can be presented as a dynamic programming problem which takes only O(n2N) time
to solve. We omit this algorithm here. The algorithm can be found in [3], as well as a lemma
which can introduce a further constant order reduction in the computation required.

5 Numerical Results

We de�ne a traÆc pattern as statistically symmetric in which the traÆc components of the form
t(s�x;d�x) for all x and for any given s and d are all drawn from the same distribution. In such
a case the traÆc pattern looks roughly the same from all nodes of the ring. We concentrate on
such traÆc patterns for producing our numerical results because for highly asymmetric traÆc
patterns the di�erence in performance between the best and worst performing topologies is
likely to be less. We further categorize statistically symmetric traÆc matrices as rising, falling
or uniform depending on whether the traÆc components sourced by a node to other nodes
increase, decrease or remain the same with distance to destination node. This concept is also
statistical in nature. We characterize a traÆc pattern by the average physical traÆc load on
the links of the ring (the loads on individual links are likely to be close to each other because
of the symmetrical nature of the traÆc) expressed as a fraction of WC, the maximum possible,
for comparison purposes.

We present results pertaining to 8-node and 16-node rings. For most of our results, the
value of W was taken to be between 16 and 20 and the value of C around 48. We used
randomly generated statistically symmetric traÆc matrices for all the runs. A discrete uniform
probability distribution was used for all traÆc generation. We focus on characteristic physical
load values of 50% and 90%. Only a sampling of the results obtained are presented here; for
more numerical results see [3].

The quantity 	0 denotes the amount of electronic routing performed by a topology that
does not employ optical forwarding at all. This is often actually used in networks at transitory
stages [4, 8]. We can consider this case to correspond to no grooming, that is, no e�ort has
been made to groom individual traÆc components into lightpaths. The other extreme (not
necessarily achievable) is complete grooming, in which all traÆc is groomed into lightpaths and
no electronic routing is performed. The actual amount of electronic routing performed by any
feasible topology falls between these limits and may be expressed as a fraction of 	0 to indicate
the e�ectiveness of grooming. We express all quantities plotted below by normalizing them to
	0 to express grooming e�ectiveness values accordingly.

Figures 5 and 6 show detailed results for 8-node rings, statistically uniform traÆc with
50% load, and statistically rising traÆc with 90% load respectively. Figures 7 and 8 both show
detailed results for 16 node rings, statistically falling traÆc with 90% load. Figure 7 represents a
case where the traÆc from a node falls to zero at the farthest node, whereas Figure 8 represents
one in which the traÆc falls to zero at a node halfway around the ring, and is zero to the farther
nodes. All the results show similar characteristics. There is a sharp decrease from 	0 to 	1

and more moderate decrease thereafter. The quantity 	7 is between 0.1 and 0.2 in all cases.
We generally observe that we get good grooming e�ectiveness and that the lower bounds are
comparatively less in magnitude. This validates our approach of describing the values of the
bounds with respect to the no-optical-forwarding case rather than the optimal value, because
it indicates that a high value of electronic routing for some feasible topology is more likely
to result from lack of grooming (and can be corrected by proper grooming) than being the
inevitable consequence of a high optimal value. We also plot the values of two lower bounds
computed after the fashion of the Moore bound following [10]. These have been developed by
consideration of general topologies and it is expected that our bounds, derived for the special
case of the ring, will be tighter. In fact we see that, in most cases, we obtain only the trivial
value of 0 for these bounds. However, for the 16-node ring in the case where traÆc falls to zero
at the end of the ring (�gure 7), the �rst bound has a comparable value to the largest �n we



have obtained.
The other two �gures represent results of 30 traÆc matrices of the same traÆc characteristics

each. Figure 9 represents an ensemble of 30 traÆc matrices of 8-node rings, each of uniform
traÆc with 90% load; in this case the absolute electronic routing values are plotted. Figure 10
represents an ensemble of 30 traÆc matrices of 16-node rings, uniform traÆc with 50% load;
normalized data as with the previous results are plotted. The 2-hop lower bound is also plotted.
For the latter ensemble the highest value of n for which �n and 	n are plotted is 5, for the
earlier one it is 6. The ensemble results con�rm the detailed results we obtained earlier.

We also plot an easy to compute lower bound on the performance of a simple heuristic which
is based on solving the problem optimally but using only single-hop and two-hop lightpaths,
a heuristic attractive for its simplicity and potential for easy OAM. A lower bound on the
performance of such a heuristic is easy to obtain by considering the minimum number of times
each traÆc component must be electronically routed. We call this bound the 2-hop lower bound.
Since 	0 and 	1 are obtained from topologies that can by de�nition contain no lightpaths longer
than two hops, the objective value of the optimal two-hop topology will by de�nition be equal to
or less than these. However, in both detailed and ensemble results we see that most 	n values
for n > 1 are lower than the 2-hop lower bound. Thus even the �rst few solutions provided by
our framework can outperform simplistic heuristics such as the two hop optimal topology.

6 Concluding Remarks

We have considered the problem of grooming traÆc in virtual topology design for wavelength
routed optical networks. We have created a framework of bounds, both upper and lower, on
the optimal value of the amount of traÆc electronically routed in the network. The bounds are
obtained based on the idea of decomposing the ring network a few nodes at a time. We specify
the decomposition method and derive a result showing that solving the decompositions is a
considerably more tractable problem than solving the complete problem. We present a method
of combining these partial solutions into a sequence of bounds, both upper and lower, in which
every successive bound is at least as strong as the last one.

We present numerical results of the computation of these bounds by computing the bounds
on di�erent families of traÆc matrices. Numerical results indicate that the expectations from
theoretical considerations are ful�lled. For larger rings, the sequence cannot be computed to
the end and we are limited by the availability of computing power in how far we can compute
this sequence. The numerical results show that we can get good results in either case. The
upper bounds are based on constructing actual feasible topologies on the network, and thus
also provide us with a sequence of increasingly good heuristics. The framework can be adapted
to other formulations of the problem on the ring network, and we feel this is a useful framework
in a broad context of ring problems for wavelength routing optical networks.
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Figure 5: Detailed results for N = 8, Statisti-
cally uniform pattern, 50% load
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Figure 6: Detailed results for N = 8, Statisti-
cally rising pattern,90% load
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Figure 7: Detailed results for N = 16, Sta-
tistically falling pattern, 90% load, falling to
end
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Figure 8: Detailed results for N = 16, Sta-
tistically falling pattern, 90% load, falling to
N=2
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Figure 9: Ensemble results for N = 8, Statis-
tically uniform pattern, 90% load, electronic
routing
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Figure 10: Ensemble results for N = 16, Sta-
tistically uniform pattern, 50% load, (normal-
ized)


