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Abstract: We develop a new solution approach for the traffic grooming problem by
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subproblem. We solve the VTTR subproblem with a new partial LP relaxation technique.
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1. Introduction

Traffic grooming is a fundamental design problem in optical networks to aggregate individual traffic requests onto
wavelengths so as to improve bandwidth utilization across the network and minimize the use of network resources.
Offline version of such network design problems have been shown to be NP-hard [1]. They have been formulated as
integer linear programs (ILPs) and assume the existence of a traffic matrix representing the demands between node
pairs. Basic ILP formulations of the problem are available in [2] and [3].
The basic ILP formulation and most variants of ILP formulations to solve traffic grooming problem suffer from two

main challenges: scalability and wavelength fragmentation. We develop a new decomposition algorithm and partial
LP relaxation technique for the traffic grooming problem, which addresses the above challenges well.

2. Basic ILP Formulation and Challenges

We are interested in minimizing the total number of lightpaths used in the network. Hence, we consider the following
minimization problem that we refer to as TG.

Problem 2.1 (TG) Given graph G, number of wavelengths W, wavelength capacity C, and traffic demand matrix T ,
establish the minimium number of lightpaths to carry all traffic demands.

The ILP formulations to the above problem consist of an objective function of minimizing the number of lightpaths
established, and three sets of constraints: virtual topology and traffic routing constraints, lightpath routing constraints,
and wavelength assignment constraints (the actural formulations are omitted due to the space limit).
There are two essential challenges to the above formulations. The first one is that they are solvable only for small

network topologies [4], due to the enormous number of constraints and variables. Another challenge is wavelength
fragmentation. Since the objective is a function that depends only on the number of lightpaths and is independent of
the number of wavelengths used to color the lightpaths, the ILP solver will not make any attempt to minimize the
number of wavelengths. Such an approach will result in severe fragmentation of wavelengths.

3. A New Decomposition of Traffic Grooming

We decompose the TG problem defined earlier into two subproblems, the virtual topology and traffic routing (VTTR)
subproblem, and the routing and wavelength assignment (RWA) subproblem.

3.1. Virtual Topology and Traffic Routing (VTTR)
Definition 3.1 (VTTR) Given the number N of nodes in the graph G of TG, the wavelength capacity C, and traffic
demand matrix T , establish the minimum number of lightpaths to carry all trafic demands.

The ILP formulations to VTTR subproblem have the same objective function, but under only one of constraints, the
virtual topology and traffic routing constraints.
Note that the VTTR problem does not take as input the network graph G, only the traffic demand matrix T (and,

hence, the number of nodes,N). Consequently, the output of the problem is simply the set of lightpaths to be established
but not the (physical) paths that these lightpaths take in the network. The virtual topology determined by VTTR will
be reconciled with the physical topology using the second subproblem, as we discuss shortly.



3.2. Routing and wavelength Assignment (RWA)
Definition 3.2 (RWA) Given the graph G of TG and the set of lightpath demands L determined by the solution to
VTTR, route the lightpaths on the physical topology of G and assign a wavelength to each lightpath so as to minimize
the number of distinct wavelengths required.

The RWA problem is one of selecting a path and wavelength for each lightpath, subject to capacity and wavelength
constraints. It is a fundamental problem in optical network design, and has been studied extensively. In [5] we de-
veloped an exact ILP formulation based on maximal independent sets (MIS) that solves the RWA problem in rings
of size up to N = 16 nodes (the maximum size supported by SONET technology and hence de facto maximum size
of deployed ring networks) in just 2-3 seconds, several orders of magnitude faster than earlier known solutions. We
have also developed a path-based formulations that solve the RWA problem in mesh networks up to two orders of
magnitude faster than existing techniques [6]. Therefore, we solve the RWA subproblem using the techniques in [5,6]
rather than using the corresponding part of the formulation of the TG problem.

3.3. Sequential Solution to the VTTR and RWA Problems
We propose to solve the TG problem by sequentially solving its two subproblems: 1). Solve VTTR to obtain the set L of
lightpaths to be established, and the routing of traffic demands over these lightpaths. 2). Solve RWA to find a path and
wavelength for each lightpath in the set L so as to minimize the number of distinct wavelengths used in the solution.
Recall that the first step of the solution produces a set L of lightpaths that are determined only by the traffic demands

and are not tied to the physical topology of the network. However, the second step routes the lightpaths over the
physical links of the network, hence ensuring that the final solution is consistent with the network topology.
The following two lemmas state the properties of this sequential solution.

Lemma 3.1 Let P!TG and P!VTTR denote the number of lightpaths returned by the optimal solutions to the TG and VTTR
problems, respectively. Then: P!

VTTR ≤ P!TG.

Proof. The VTTR subproblem is a relaxed version of the original TG problem with two sets of constraints removed.
Hence, the objective value of an optimal solution to VTTR cannot be greater than that of an optimal solution to TG.

Lemma 3.2 Let W !
RWA be the number of wavelengths returned as the optimal solution to the RWA subproblem that

takes as input the optimal solution S!VTTR of the VTTR subproblem. If W !
RWA ≤W, where W is the number of available

wavelengths given as input to the original TG problem, then S!VTTR, together with the lightpath routing and wavelength
assignment determined by the RWA subproblem, is an optimal solution to TG.

Proof. According to Lemma 3.1, the number of lightpaths in the solution S!VTTR is such that P!VTTR ≤ P!TG. After the
RWA is solved, the routing and wavelength assignment of the lightpaths in S!VTTR satisfy all the physical topology
and wavelength assignment constraints. Hence, the final result of sequentially solving the two subproblems is also a
feasible solution to the original problem TG, i.e., P!VTTR ≥ P!TG, from which the result of the lemma follows.
The practical implication of Lemma 3.2 is that whenever the network is not wavelength (bandwidth) limited, the

sequentially solving VTTR and RWA will yield an optimal solution to the original TG problem that also minimizes the
number of wavelengths used for the given set of lightpaths.

4. Partial LP Relaxation of VTTR

We define the relaxed version of VTTR as the following:

Definition 4.1 (VTTR-rlx) Given the number N of node in the graph G of TG, the wavelength capacity C, and traffic
demand matrix T , establish the minimum number of lightpaths to carry all traffic demands while allowing fractional
lightpaths to exist between any pair of nodes.

Denote li j (in the output lightpath set L) as the number of lightpaths to establish from node i to node j. The solution
to VTTR could be obtained by rounding-up all real values of li j in VTTR-rlx. However, the round-up results in a large
optimality gap. To strike a good balance between running time and solution quality, we develop a new algorithm to
treat the integer constraints on lightpath variables li j as lazy constraints, and activate only a subset of them.
Consider the optimal solution {li j} to theVTTR-rlx problem and the corresponding feasible solution {#li j$} to VTTR,

obtained by rounding up all the lightpath variables. Let us define:Ui j =
li j
#li j$

, li j > 0. The quantityUi j represents the
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Fig. 1. Wavelength usage comparison
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utilization of the lightpaths from node i to node j in the rounded-up feasible solution. When the utilization is high (i.e.,
Ui j is close to 1.0), the corresponding lightpath resources are used effectively in the solution; furthermore, rounding
up the corresponding lightpath variable to obtain a feasible solution makes only a small contribution to the optimality
gap. Then, we develop our new relaxation algorithm as follows: 1). Solve VTTR-rlx to obtain the optimal solution and
determine the corresponding feasible solution obtained by rounding up all non-integer lightpath variables. 2). Calculate
Ui j for all non-integer lightpaths in the optimal solution and modify VTTR-rlx to activate the integrality constraints
for the variables for which Ui j ≤ uthr, a predetermined threshold. 3). Determine the final solution by rounding up the
modified VTTR-rlx outputs. We found out that by setting uthr = 0.8, the solution in is within extra 5% of the optimal.

5. Numerical Results

Figure 1 plots the number of wavelengths used by solutions to the TG problem for five problem instances on a six-
node ring network; each solution is obtained by providing the stated number W of wavelengths as input to the TG
formulation. In addition, it also includes the number of wavelengths obtained by sequentially solving the VTTR and
RWA subproblems on each of the five instances. As we can see, the sequential solution uses fewer wavelengths than
any of the solutions to the original TG problem. Figure 2 compares the running time as a function of ring network size
of new approach and basic formulations for solving the TG problem. As we can see, the new approach scales much
better than the basic formulations, especially in larger networks.

6. Conclusion

We have presented a new decomposition approach to solve the traffic grooming problem sequentially, that scales
well and enables network designers and operators to carry out extensive “what-if” analysis. The decomposition is
exact when the network is not wavelength limited, and also minimizes the number of wavelengths used, avoiding the
wavelength fragmentation issues of typical ILP formulations of the traffic grooming problem. We also developed an
new partial LP relaxation that can be used to achieve a desired tradeoff between running time and solution quality.
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