
ABSTRACT

YUHONG ZHU. Computing Call Blocking Probabilities in Wavelength Routing Networks.
(Under the direction of Dr. Harry G. Perros and Dr. George N. Rouskas.)

We study a class of circuit switched wavelength routing networks with �xed or

alternate routing, with or without converts, and with various wavelength allocation poli-

cies. We �rst construct an exact Markov process and an approximate Markov process which

has a closed-form solution for a single path. We also develop an iterative decomposition

algorithm to analyze long paths with or without wavelength converters e�ectively. Based

on this algorithm, we then present an iterative path decomposition algorithm to evaluate

the blocking performance of mesh topology networks with �xed and alternate routing ac-

curately and e�ciently. The decomposition approach can naturally capture the correlation

of both link loads and link blocking events, giving accurate results for a wide range of loads

and network topologies. Our model also allows non-uniform tra�c, i.e., call request arrival

rates that can vary with the source-destination pair, and it can be used when the location

of converters is �xed but arbitrary. Our algorithm represents a simple and computationally

e�cient solution to the di�cult problem of computing call blocking probabilities in wave-

length routing networks. Finally we show through numerical and simulation results that the

blocking probabilities for the random wavelength allocation and the circuit-switched case

provide upper and lower bounds on the blocking probabilities for two wavelength allocation

policies that are most likely to be use in practice, namely most-used and �rst-�t allocation.

Furthermore, we demonstrate that using these two policies has an e�ect on call blocking

probabilities that is equivalent to employing converters at a number of nodes in the network.
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Chapter 1

Introduction

We study a class of circuit-switched wavelength routing networks with and with-

out wavelength converters, with �xed routing and alternate routing, and with various wave-

length allocation policies. We present a new analytical framework to evaluate the blocking

performance of such networks accurately and e�ciently. Our model is fairly general and it

allows non-uniform tra�c, i.e., call request arrival rates can vary with the source-destination

pair. It also accounts for the correlation among the loads at all links in a path, and it can

be used when the location of converters is �xed but arbitrary.

We �rst present the solution to a single path of a wavelength routing network with

and without wavelength converters. Then we extend our algorithm to a mesh topology

network with �xed routing and alternate routing. Finally we study several wavelength

allocation policies.

The following sections briey summarize our work on each of the problems.

1.1 Blocking in a Single Path of a Network

We �rst construct an exact Markov process that captures the behavior of a path

in terms of wavelength use. We also obtain an approximate Markov process which has a

closed-form solution that can be e�ciently computed for short paths. We then develop

an iterative algorithm to analyze approximately arbitrarily long paths. The algorithm

decomposes a path into shorter segments which are then studied in isolation using the

corresponding approximate Markov process. The individual solutions are appropriately

combined to obtain a solution for the original path. Finally, we demonstrate how our
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analytical techniques can be used to gain insight into the problem of converter placement

along a path.

1.2 Blocking in Mesh Topologies

We present an iterative path decomposition algorithm to evaluate the blocking

performance of such networks with and without wavelength converters, and with �xed

routing or alternate routing. Our iterative algorithm analyzes the original network by

decomposing it into single path sub-systems. These sub-systems are analyzed in isolation

by using our previous algorithms for a single path of a wavelength routing network, and the

individual results are appropriately combined to obtain a solution for the overall network.

We also demonstrate how our analytical techniques can be applied to gain insight into the

problem of converter placement in mesh topologies.

1.3 Comparison of Wavelength Allocation Policies

We show through numerical and simulation results that the blocking probabilities

obtained through our previous analytical expressions for the random wavelength allocation

and the circuit-switched case provide upper and lower bounds on the blocking probabilities

for two wavelength allocation policies that are most likely to be used in practice, namely,

most-used and �rst-�t allocation. Furthermore, we demonstrate that using either of these

two policies has an e�ect on call blocking probabilities that is equivalent to employing

converters at a number of nodes in the network. These results have been obtained for both

single-path and general mesh topology networks, and for a wide range of loads. The main

conclusion of our work is that the gains obtained by employing specialized and expensive

hardware (namely, wavelength converters) can be realized cost-e�ectively by making more

intelligent choices in software (namely, the wavelength allocation policy).

1.4 Thesis Organization

In Chapter 2 we present the main features of optical networks and introduce the

subject of all-optical WDM networks. In Chapter 3 we review the previous work done in the

area of call blocking in wavelength routing networks. Chapter 4 contains a new analytical
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framework for a single path. In Chapter 5 we extend the single path method to mesh

topologies. In Chapter 6 we compare di�erent wavelength allocation policies. Finally in

Chapter 7 we conclude our work and discuss future research.



4

Chapter 2

Wavelength Routing Networks

2.1 Why Optical Networking?

The growing demand for more bandwidth has been pushed by the increasing num-

ber of users in the Internet. Multi-media tra�c which combines the voice, data and video

consumes large amount of bandwidth. There is not enough capacity of our network today to

support the exponential growth in users' tra�c. The traditional copper wire, even coaxial

cable, is limited by electronic speeds to a few Gbps. Radio has a total bandwidth of 25 GHz

which is still insu�cient. In contrast, �ber can o�er huge bandwidth nearly 50 terabits per

second (Tbps). Optical networks are emerging as a replacement of traditional copper wire

networks.

In addition to its huge bandwidth, �ber o�ers low signal attenuation ( as low as

0.2dB/km) and low signal distortion. The low error rate of �ber can simplify the conven-

tional reliability improvement methods used on coppers. Optical networks are also easy to

maintain because of their lower power requirement, low material usage, and small space

requirement. From many years now, �ber has been installed at the rate of 4000 strand

miles per day. Also, the sales of optical networking equipment based on wavelength division

multiplexing (WDM) technology has risen to more than one billion dollars. Meanwhile,

all-optical networks (AON), using optical switches instead of electronic devices along the

signal path, are emerging from laboratories into �eld trials [21, 25, 11, 26].
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2.2 Evolution of Optical Networks

The �rst-generation optical networks simply use optical �ber as a transmission

medium to replace copper cables. Electronic devices handle the switching and processing

of the bits. Such kinds of networks as SONET (synchronous optical network) and SDH

(Synchronous digital hierarchy) are deployed in wide area networks (WAN), while FDDI

(�ber distributed data interface) is used in local area network (LAN). The transfer rate can

reach up to10Gb/s.

To increase the capacity on existing �ber, wavelength division multiplexing (WDM)

is employed. The traditional time devision multiplexing (TDM) demands that each port

handles not only its own bits but also those belonging to other ports. The TDM bit rate

may be much higher than the electronic processing speed. WDM, on the other hand, which

handles only its own bits at each port, does not have such requirement. While the tech-

nology of optical TDM and CDM (code division multiplexing) are still studied in research

laboratories, WDM technology is mature and widely used in the industry. WDM transmits

data simultaneously on multiple carrier wavelengths over the same �ber, i.e., each wave-

length supports a single communication channel operating at whatever rate one desires.

Furthermore, WDM is more economical than the traditional way for higher baud rates of

transmission. Today, WDM involves mainly point-to-point communication systems. How-

ever, �ber interconnection devices, such as passive star and optical switches, provide the

possibility of a purely optical network, or an all-optical network (AON).

2.2.1 Point-to-Point WDM Systems

WDMpoint-to-point communication systems are being deployed by several telecom-

munication companies. Figure 2.1 shows a typical four-channel point-to-point WDM trans-

mission system. The maximum number of channels is about 40 so far, but this number is

likely to increase in the near future. However, these systems are not optical networks by

themselves but a convenient multiplexing scheme.

2.2.2 Wavelength Add/Drop Multiplexers

A Wavelength Add/Drop Multiplexer (WADM) enables a small number of con-

tiguous wavelengths to be added and dropped without demultiplexing the entire wavelength

bundle. Figure 2.2 shows a WADM consisting of a demux, a set of 2 x 2 switches and a
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mux. With the exception of �i, �1 and �w ow through the 2 x 2 switches in the \bar"

state. However, the 2 x 2 switches for �i is con�gured in the \cross" state. The signal on

the wavelength �i is \dropped" locally, and a new signal can be \added" on to the same

wavelength at this WADM location.

2.2.3 Broadcast-and-Select Networks

The broadcast and select star network shown in Figure 2.3 is most useful for LANs

and MANs. Network nodes are connected to a passive star via two-way �bers. Di�erent

nodes transmit on di�erent wavelengths. Their signals are optically combined by the star

and broadcasted on their receive �bers to all of the nodes. Each node uses an optical �lter in

order to receive the desired wavelength. The passive star network can also support multicast

services because any number of receiving nodes can tune to the same particular wavelength.

Since the end nodes perform the switching functions in terms of wavelength tunability, the

broadcast and select networks can still function if one node is down. There are two types

of broadcast and select star networks: single-hop and multihop. The single-hop network

assumes that a tunable device can access all the available wavelengths, which means that

any node can reach any other node. In a multihop network, a tunable device can only tune

to some of the available wavelengths but not to all of them, which means that not every

node is capable of communicating with any other node within a single hop.

2.2.4 Wavelength Routed Networks

A wavelength-routed optical network is shown in Figure 2.4. Such a network is

highly scalable and suitable for wide area networks (WANs). A wavelength routing network

consists of wavelength routers and the �ber links that interconnect them. A wavelength

router is an optical switches capable of routing the light signal of a given wavelength from

any input port to any output port. In this way, it is possible to establish end-to-end

lightpaths, i.e., direct optical connections without any intermediate electronics. The same

wavelength may be spatially reused to carry multiple connections through these devices. A

lightpath uses the same wavelength on every link in its path. This requirement is referred as

the wavelength continuity constraint. For example in Figure 2.4, a signal travels from Host

2 to Host B using wavelength W2. If a signal originates at Host 3 on wavelength W2 and

reaches the middle wavelength router R2, it cannot continue toward Router R3 because the



7

TE

TE

TE

TE

λ1

λ3
λ4

λ1

λ3
λ4

TE

TE

TE

TE

λ2λ2

Demultiplexing TerminalMultiplexing Terminal

λ2

Optical Amplifier

Figure 2.1: A four-channel point-to-point WDM transmission system

...

...
...

...
MUXDEMUX

λ1

λω

λ i

Figure 2.2: A Wavelength Add/Drop Multiplexer (WADM)
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wavelength W2 is already taken by the signal from Host 2. The signal cannot be switched

to wavelength W1 even though W1 is free.

2.3 Routing and Wavelength Assignment

In wavelength-routed optical networks, a lightpath can be set up and taken down

upon demand. A source-destination connection may be established over several di�erent

paths. Routing algorithms must be used to determine which path to choose. Once the path

is found, a wavelength is assigned to it.

Routing algorithms can be classi�ed into static and adaptive. A static route pro-

cess does not vary with time, whereas an adaptive route may vary with time. Two widely

used static routing techniques are: �xed routing and �xed alternate routing. In �xed rout-

ing, each source-destination pair is assigned to a single path. If there is no free wavelength

available on the path, calls are blocked. In �xed alternate routing, a set of paths (consisting

of one primary path and one or more alternate paths) is assigned to each source-destination

pair. A call use the alternate paths if it is blocked on the primary path. The set of alternate

routing is searched in a �xed order in order to �nd an available path. Adaptive routing in

circuit-switched networks such as Dynamic Alternate Routing and Dynamic Nonhierarchi-

cal Routing provide exibility, e�ciency and robustness to the systems. Dynamic routing

tries to �nd the \best" path through the network based on the state information of the

entire network.

While the operation of wavelength routing networks is expected to be similar to

that of conventional circuit switched networks, several new issues arise which add signi�cant

complexity to the problems of design and performance evaluation of the former. Speci�cally,

the existence of multiple distinct wavelengths makes it necessary to employ a wavelength

allocation policy to assign an incoming call to one of the (possibly many) available wave-

lengths. In conventional circuit switched networks, all circuits are similar.

The following wavelength allocation policies have been proposed: random, most-

used, least used and �rst-�t. Random method means that a wavelength from the set of avail-

able wavelengths is randomly selected. Most-used method selects an available wavelength

that is most utilized on other links. Least-used method selects an available wavelength

that is least utilized on other links. In the �rst-�t method, all wavelengths are numbered

from 1 to N . The available wavelength with the smallest index is chosen. Random and
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�rst-�t policies are easy to implement in practice. On the other hand, most-used and least-

used policies have to select a wavelength based on the current state of the whole set of

wavelengths.

2.4 Wavelength Conversion

Wavelength conversion can improve the e�ciency of WDM networks. A wave-

length converter is capable of shifting an incoming wavelength to a di�erent outgoing wave-

length. It eliminates the wavelength continuity constraint. Back to the example in Figure

2.4, if we put a wavelength converter at the middle wavelength router R2, the signal from

Host 3 can be switched from wavelength W2 to W1, and it can continue to travel towards

router R3.

A WDM network with a wavelength converter at every node behaves in the same

way as the traditional circuit-switched network, and it has a lower blocking probability.

However, any gains in performance must be weighted against the cost of wavelength con-

verters. Thus, limited wavelength conversion raise a new problem: optimal placement of

converter. Given a network topology and a �xed number of converters, an optimal placement

algorithm can decide where the converters should be placed to achieve the best performance

for di�erent types of tra�c. In practice, wavelength converters can only convert wavelengths

in a certain range. Limited-range converters may still be economical and achieve the same

performance as the full-range converters.
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Chapter 3

Previous Work

3.1 Wavelength Routing Algorithms

The call blocking performance of optical wavelength routing networks with static

(�xed or alternate) routing, random wavelength allocation policy has been studied in [4,

2, 18, 3, 12, 28, 15, 20, 31]. In [4], a six-node network is used with �xed and dynamic

alternate routing (using a small set of alternate paths for each origin-destination pair)

under the random and �rst-�t wavelength selection algorithms. Blocking probabilities with

and without wavelength converters are obtained by simulation. The routing strategy used

is not adaptive to network load, and the simulations were performed only for a particular

value of the o�ered load. The model presented in [2] is based on the assumption that

wavelength use on each link is characterized by a �xed probability, independently of other

wavelengths and links, and thus, it does not capture the dynamic nature of tra�c. In [18] it

was assumed that statistics of link loads are mutually independent, an approximation that

is not accurate for sparse network topologies. In [3] a Markov chain with state-dependent

arrival rates was developed to model call blocking in arbitrary mesh topologies with �xed

routing; it was extended in [12] to alternate routing. While more accurate, this approach

is computationally intensive and can only be applied to networks of small size in which

paths have at most three links. A more tractable model was presented in [28] to compute

recursively blocking probabilities assuming that the load on link i of a path depends only

on the load of link i � 1. A dynamic routing algorithm that selects the least loaded path-

wavelength pair was studied in [15], and in [20] an unconstrained dynamic routing scheme

with a number of wavelength allocation policies was evaluated. Finally, a study of call
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blocking under non-Poisson input tra�c was presented in [31], under the assumption that

link loads are statistically independent.

Most of the approximate analytical techniques developed for computing blocking

probabilities in wavelength routing networks [18, 3, 12, 31, 15, 20, 29] make the assumption

that link blocking events are independent, amount to the well-known link decomposition

approach [10], while the development of some techniques is based on the additional as-

sumption that link loads are also independent. Link decomposition has been extensively

used in conventional circuit switched networks where there is no requirement for the same

wavelength to be used on successive links of the path taken by a call. The accuracy of these

underlying approximations also depends on the tra�c load, the network topology, and the

routing and wavelength allocation schemes employed. While link decomposition techniques

make it possible to study the qualitative behavior of wavelength routing networks, more

accurate analytical tools are needed both to evaluate e�ciently the performance of these

networks, as well as to tackle complex network design problems, such as selecting optical

switches on which to employ wavelength converters.

3.2 Wavelength Conversion

The work in [24] gives lower bound on the blocking probabilities in networks with

and without wavelength converters using an integer linear programming formulation. The

study considers only �xed shortest path routing and the �rst-�t wavelength allocation al-

gorithm. A wavelength conversion gain corresponding to 10%� 40% increase in wavelength

reuse (utilization) is shown. However, these gains are obtained at a blocking probabil-

ity of 10�2. In [33], an integer linear programming formulation of the same problem was

presented for multihop networks. Blocking probabilities for a 24-node mesh network are

reported, where wavelength assignment and path selection are performed by using separate

heuristic algorithms.

In [14], it was shown that intermediately connected networks, such as a mesh net-

work, have the largest gain with wavelength conversions. In [19], unconstrained routing is

used in conjunction with an exhaustive search over the wavelength set in order to evaluate

the e�ects of wavelength converters, assuming that a limited number of wavelength con-

verters and that each converter has no restrictions on the wavelengths of the channels it

can connect.
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In [2], an analytic algorithm for a single path with converters under simple tra�c

models is presented. The work in [28] takes a probabilistic approach in modeling wavelength

conversion by introducing the converter density, which represents the probability that a

node is capable of wavelength conversion independently of other nodes in the network.

While this approach works well when the objective is the estimation of the expected call

blocking performance, it cannot be used to calculate the actual blocking probability on

individual paths when the placement of converters is known, nor can it be used to compare

various converter placement strategies. Finally, in [29] a dynamic programming algorithm

to determine the location of converters on a single path that minimizes average or maximum

blocking probability was developed under the assumption of independent link loads.

Limited-range wavelength conversion, i.e., those wavelength converters can only

switch one wavelength into a certain set of wavelengths, also has been studied in the litera-

ture. In [23], it was shown that there are ring and star networks with minimal wavelength

conversion capabilities that can perform o�-line channel assignment as well as networks with

full wavelength conversion. In [32] , a network with limited wavelength conversion is used

to study the performance due to limited wavelength shifting capability of devices based on

four wave mixing. There are some recent results on the online channel assignment problem

for ring and tree networks [7, 9], where lightpath requests arrive and leave the network

dynamically. The problem of recovering from link and node faults in ring networks using

limited wavelength conversion is addressed in [8]. In [27], the results demonstrate that

limited wavelength translation of fairly small degree is su�cient to obtain bene�ts com-

parable to those obtained by full wavelength translation, using an analytical model. [13]

develops an approximate analytic method to allow exible wavelength assignment policies

and limited-range wavelength conversion by using virtual of layered-graph approach.

The performance of arbitrary network topologies with any number of wavelength

converters has not been studied in the literature yet. Although an optimal converter place-

ment for a single path was proposed in [29], the converter placement problem for mesh

topologies has not been addressed yet.

3.3 Wavelength Allocation Policies

In [1], an integer programming formulation of the optimal routing and wavelength

assignment problem combined with randomized rounding was presented. The objective of
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the solution is to minimize the number of wavelengths needed, given a set of lightpath

requests. The work in [30] evaluates the performance improvement due to the deployment

of multiple �bers between node pairs. The most-used wavelength selection algorithm selects

the available wavelength which is currently utilized on the largest number of �bers. First-�t

wavelength allocation was studied using simulation in [5, 18], and it was shown to perform

better than random allocation, while an analytical overow model for �rst-�t allocation

was developed in [20], and was extended to non-Poisson model in [15]. However, current

research work does not relate the performance of wavelength allocation policies (software)

and wavelength converters (hardware).
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Chapter 4

Blocking in Single Path of a

Network

4.1 Wavelength Routing Network Model

We consider a single path in a circuit-switched wavelength routing network. Each

link in the path supports exactly W wavelengths, and each node is capable of transmitting

and receiving on any of these W wavelengths. Call requests between a source and a desti-

nation node arrive at the source according to a Poisson process with a rate that depends on

the source-destination pair. If the request can be satis�ed, an optical circuit is established

between the source and destination for the duration of the call. Call holding times are

exponentially distributed with a mean that also depends on the source-destination pair.

In our model, we allow some of the nodes in the path to employ wavelength

converters. These nodes can switch an incoming wavelength to an arbitrary outgoing wave-

length. (When there are converters at all nodes, the situation is identical to that in classical

circuit-switching networks, a special case of the more general scenario discussed here.) If

no wavelength converters are employed in the path, a call can only be established if the

same wavelength is free on all the links used by the call. This is known as the wavelength

continuity requirement, and it increases the probability of call blocking. If a call cannot be

established due to lack of available wavelengths, the call is blocked. On the other hand, if a

call can be accommodated, it is randomly assigned one of the wavelengths that are available

on the links used by the call 1. Thus, we only consider the random wavelength assignment

1In a path with wavelength converters, a wavelength is randomly assigned within each segment of the
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policy in this chapter.

We de�ne a path \segment" as a sub-path consisting of one or more consecutive

links of the original path. (Unless noted otherwise, the terms \hop" and \link" will be used

interchangeably.) The following notation will be used throughout the paper (refer to Figure

4.1).

� A k-hop path consists of k + 1 nodes labeled 0; 1; � � � ; k. Hence, hop i; i = 1; � � � ; k,

represents the link between nodes i� 1 and i.

� �ij; j � i, is the Poisson arrival rate of calls that use hops i through j, inclusive. For

instance, �22 is the arrival rate of calls that only use hop 2 (that is, those arriving at

node 1 and leaving at node 2), while �12 is the arrival rate of calls using hops 1 and

2 (i.e., those that arrive at node 0 and leave at node 2).

� 1/�ij ; j � i, is the mean of the (exponentially distributed) holding time of calls using

hops i through j, inclusive. Also, �ij = �ij=�ij is the o�ered load of these calls.

� nij , j � i, is the number of calls using hops i through j, inclusive, that are currently

active in the network.

� fij ; j � i, is the number of wavelengths that are free on all hops i through j, inclusive.

4.2 Exact and Approximate Markov Process Models

In this section we present exact and approximate Markov process models that

capture the dynamic behavior of a k-hop path in terms of wavelength use. The approximate

Markov process has a closed-form solution for its steady-state probability, and it provides

path consisting of links between successive nodes with converters.
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an accurate approximation to the blocking probabilities obtained through the exact Markov

process. We �rst study paths without wavelength converters (in Section 4.2.1), and then

we extend our results to paths with converters employed at some nodes (in Section 4.2.2).

4.2.1 Paths With No Wavelength Conversion

Exact Markov Process Model

Let us �rst consider the 2-hop path (without converters) shown in Figure 4.2. It

is straightforward to verify that the evolution of this system can be characterized by the

four-dimensional Markov process (n11; n12; n22; f12). In addition, on each hop, the number

of busy wavelengths plus the number of wavelengths that are free on both hops may not

exceed the number W of available wavelengths. This condition leads to the following two

constraints that the parameters of the Markov process must satisfy:

n11 + n12 + f12 � W and n12 + n22 + f12 � W (4.1)

The above result can be generalized to k-hop paths, k > 2. Let Mk denote the

Markov process corresponding to a k-hop path. There are k2 parameters in a state n of

Markov processMk, as follows:

n = (n11; n12; � � � ; n1k; n22; � � � ; n2k; � � � ; nkk; f12; f13; � � � ; f1k; f23; � � � ; f2k; � � � ; fk�1;k) (4.2)

The �rst k(k+1)

2
parameters nij ; 1 � i � j � k, in the state description (4.2) provide the

number of active calls between all possible source-destination pairs in the path. The last
(k�1)k

2
parameters fij ; 1 � i < j � k, represent the number of wavelengths that are free

on all segments of the path consisting of two or more links. The following constraints are

imposed on the state space of Markov processMk:

fij � fi;j�1 � � � � � fi;i+1; 1 � i < j � k (4.3)
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fij � fi+1;j � � � � � fj�1;j ; 1 � i < j � k (4.4)8>>><
>>>:

Pk
j=1 n1j + f12 � W; l = 1Pl
i=1

Pk
j=l nij + fl�1;l + fl;l+1 � fl�1;l+1 � W; l = 2; � � � ; k � 1Pk

i=1 nik + fk�1;k � W; l = k

(4.5)

The set of constraints (4.3) (respectively, (4.4)) account for the fact that, if a wavelength

is free on all hops of a m-hop segment, then it is also free on the �rst (respectively, last)

m� 1 hops of the segment. The k constraints (4.5) ensure that the number of wavelengths

(used or free) on each hop of the path does not exceed W . For instance, let us refer to the

�rst constraint in (4.5); the others can be explained using similar arguments. The sum in

the left hand side of the constraint corresponds to the total number of active calls that use

hop 1, while f12 is the total number of wavelengths that are free on both hops 1 and 2. By

de�nition (see Section 4.1 and constraint (4.3)), parameter f12 includes the free wavelengths

on all path segments of two or mode hops starting with hop 1. Therefore, the terms in left

hand side of this constraint must sum up to at most W (if they sum up to less than W , the

di�erence represents the number of wavelengths that are free on hop 1 but are not free on

hop 2, and hence, can only be assigned to calls using only hop 1).

We have the following lemma.

Lemma 4.2.1 The stochastic process de�ned in (4.2) is a Markov process.

Proof. See Appendix A.1. 2

Markov process Mk captures the correlation of wavelength use on all links of a

k-hop path, and it can be used to provide an exact solution for the probability that a

call request will be blocked. Unfortunately, the large number of parameters in its state

description makes it impossible to numerically solve the MC for anything but very short

paths and small values of W . In addition, the transition rates of Markov process Mk are

state-dependent. In Figure 4.3 we show the state space (n11; n12; n22; f12) and the transition

rates of Markov processM2, for W = 2 wavelengths. From the �gure we can see that there

exists a sequence of states, n1; � � � ; ns, such that

r(n1; n2)r(n2; n3) � � �r(ns�1; ns)r(ns; n1) 6= r(n1; ns)r(ns; ns�1) � � �r(n3; n2)r(n2; n1)

(4.6)

where r(n; n0) is the transition rate from state n to state n0. Two such sequences of states

are: (1,1,1,0),(1,0,1,1),(1,0,0,1),(1,1,0,0), and (1,1,1,0),(1,0,1,1),(0,0,1,1),(0,1,1,0). There-

fore, Kolmogorov's criterion for reversibility [16, Theorem 1.8] is not satis�ed, and the
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Figure 4.3: State space (n11; n12; n22; f12) of a 2-hop path with W = 2 wavelengths

Markov process is not time-reversible. It is straightforward to show that this result is true

in general, and that Markov processMk; k � 2 is not time-reversible when W > 1.

In the following subsection we show how to modifyMk to obtain an approximate,

time-reversible Markov process that has a closed-form solution.

Approximate Time-Reversible Markov Process Model

A closer examination of Figure 4.3 reveals that the two four-state sequences men-

tioned above are the shortest sequences of states for which (4.6) holds true; any other

sequence that satis�es (4.6) contains one of these two sequences. We also note that both

four-state sequences involve transitions that cause changes in the value of parameter n12.

Let us de�ne L2;c as the sub-chain of Markov processM2 that includes only the states for

which the value of parameter n12 = c:

L2;c = f(n11; n12; n22; f12) : n12 = cg ; c = 0; � � � ;W (4.7)
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Sub-chain L2;c corresponds to a new system with W � c wavelengths per hop, in which no

calls using both hops ever arrive (that is, �12 = 0 in this new system). Then, it can be

easily veri�ed that Kolmogorov's criterion for reversibility is satis�ed by any sequence of

states that includes only states from a certain sub-chain L2;c.

On the other hand, let us consider the four-state sequence n1 = (n11; n12; n22; f12),

n2 = (n11; n12 + 1; n22; f12 � 1), n3 = (n11 + 1; n12 + 1; n22; f12 � 1), and n4 = (n11 +

1; n12; n22; f12), shown in Figure 4.4, which includes states from two di�erent sub-chains 2.

We have that:

r(n1; n2) = �12; r(n3; n4) = (n12 + 1)�12

r(n2; n1) = (n12 + 1)�12; r(n4; n3) = �12
(4.8)

so these transition rates balance along the two directions. However, the rates of the other

transitions do not balance, since 3:

r(n2; n3) = �11

�
1� f12�1

W�(n12+1)�n11

�
; r(n4; n1) = (n11 + 1)�11

�
1� W�n12�n22

n11+1

�

r(n3; n2) = (n11 + 1)�11
�
1� W�(n12+1)�n22

n11+1

�
; r(n1; n4) = �11

�
1� f12

W�n11�n12

�
(4.9)

It is due to transitions between states with di�erent values of parameter n12 that Markov

processM2 is not time-reversible.

Returning to Figure 4.3, we note that if the transition rate from state (1,0,1,1)

to state (1,1,1,0) is changed to 2�11 (from �11), then the Markov process becomes time-

reversible. This is an important result because, as we will see in a moment, we can obtain

2Similar arguments apply when n3 and n4 are obtained from n2 and n1, respectively, by incrementing

the value of parameter n22 instead of that of parameter n11.
3To obtain r(n2; n3) we multiply the arrival rate �11 by the probability that the wavelength assigned to

the new call is one of the wavelengths used on the second hop, or equivalently, the probability that the new

state will have the same value for parameter f12. To obtain r(n4; n1), we multiply the rate (n11 + 1)� by

the probability that the terminating call will free a wavelength that is used on the second hop, and thus the
new state has the same value for f12. Similarly for the other rates.
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a closed-form solution for the time-reversible process. However, when each hop supports

more than 2 wavelengths, a larger number of transition rates must be modi�ed to yield a

time-reversible Markov process. The rule for changing the transition rates is as follows.

Consider all states n = (n11; c; n22; f12) of sub-chain L2;c with n11 > 0 and
n22 > 0, for which there is a transition with rate r(n; n0) = �12 to a state
n0 = (n11; c + 1; n22; f12 � 1) of sub-chain L2;c+1. If these transition rates are
changed to:

r0(n; n0) = �12
f12(W � n12)

f11f22
= �12

f12(W � n12)

(W � n11 � n12)(W � n22 � n12)
(4.10)

then we obtain a new Markov process which is time-reversible.

In fact, it is straightforward to show that if the transition rate r(n1; n2) in (4.8) is modi�ed

according to this rule, then the four-state sequence in Figure 4.4 will satisfy Kolmogorov's

criterion for reversibility.

The above observations can be generalized to a k-hop path, k � 2. Consider a

sub-chain Lk;c ofMk which includes all states of the Markov process for which the number

of active calls using two or more hops is constant:

Lk;c = fn 2 Mk : nij = cij = constant; i < jg ; c = (c12; � � � ; c1k; c23; � � � ; c2k; � � � ; ck�1;k)

(4.11)

Sub-chain Lk;c models a k-hop path in which there are no arrivals of calls using two or more

hops (i.e., �ij = 0 for i < j), and in which each hop supports a �xed number of wavelengths

(that can be di�erent from the number of wavelengths supported by other hops). Then,

it is straightforward to verify that any sequence of states that includes only states from

sub-chain Lk;c satis�es Kolmogorov's criterion for reversibility, but there exist sequences

that include states from di�erent sub-chains that violate this criterion.

We now introduce a new time-reversible Markov process M0
k which is derived

fromMk as follows. The new Markov processM0
k has the same state space and the same

transitions asMk. The vast majority of the transition rates of the new Markov process are

the same as the respective rates ofMk. However, to ensure that the new Markov process

is time-reversible, the transition rates between some pairs of states must be appropriately

modi�ed. Consider the states n of sub-chain Lk;c for which there exists a transition with
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rate �lm; l < m; to a state n0 of another sub-chain Lk;c0 ; c 6= c0:

Nk;c =
�
n 2 Lk;c : 9 i; j; l;m; l � i < j � m; nii > 0; njj > 0; nlm < W; flm > 0

	
(4.12)

The transition rate r(n; n0) = �lm in Markov processMk. In the new Markov processM0
k

the transition rate is changed to:

r0(n; n0) = �lm
flm

�Pl
i=1 nil + fll

� �Pl+1
i=1 ni;l+1 + fl+1;l+1

�
� � �
�Pm�1

i=1 ni;m�1 + fm�1;m�1

�
fll fl+1;l+1 � � � fm;m

(4.13)

Markov process M0
k has a closed-form solution for its steady-state probability

that resembles the product form solution in queuing networks [17]. Let Gk(W ) denote the

normalizing constant for a k-hop path with W wavelengths per link. Then, the solution of

Markov processM0
2 corresponding to the 2-hop path in Figure 4.2 is 4:

�(n11; n12; n22; f12) =
1

G2(W )

�n1111 �
n12
12 �

n22
22

n11!n12!n22!

�
W � n11 � n12

f12

� �
n11

W � n12 � n22 � f12

�
�

W � n12

W � n12 � n22

�

(4.14)

while the solution to Markov processM0
3 corresponding to a 3-hop path with state descrip-

tion n = (n11; n12; n13; n22; n23; n33f12; f13; f23) is given by:

�(n) =
1

G3(W )

�n1111 �
n12
12 �

n13
13 �

n22
22 �

n23
23 �

n33
33

n11!n12!n13!n22!n23!n33!

�
W � n11 � n12 � n13

f12

� �
n11

W � n12 � n22 � n13 � f12

�
�

W � n12

W � n12 � n22

�

�

�
W � n11 � n12

f12

� �
n11

W � n12 � n22 � f12

�
�

W � n12

W � n12 � n22

�
�

W � n11 � n12

f12

� �
n11

W � n12 � n22 � f12

�
�

W � n12

W � n12 � n22

� (4.15)

We can write down the solution to any Markov processM0
k; k > 3, by a straight-

forward generalization of expressions (4.14) and (4.15). Speci�cally, the solution to M0
k,

4The closed-form solution (4.14) is similar to the one presented in [28]. However, there are several
important di�erences in the two approaches. First, the solution in [28] was derived by considering a three-

dimensional Markov process (n11; n12; n22), while as we have shown, the fourth parameter f12 is necessary

to completely characterize a 2-hop path. Second, we have shown that the closed-form solution (4.14) is
the exact solution to an approximate Markov process; in contrast, in [28, Section II.C] this result was

derived as a solution to the original 2-hop problem, without explicitly stating that it is an approximation.

Finally, whereas only a 2-hop path was studied in [28], our approach is far more general, and it leads to an
approximate closed-form solution for any k-hop path, k � 2 (see also (4.15)).
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for any k, is the product of k2 terms as follows. The �rst k(k + 1)=2 terms are of the form

�
nij
ij =nij , and each corresponds to one of parameters nij in the state description (4.2). The

last k(k� 1)=2 terms are combinatorial terms, each corresponding to one of the dependent

variables fij in the state description (4.2).

The signi�cance of the new Markov process M0
k will be illustrated in Section 4.4

and Figures 4.7 and 4.8, where it will be shown that the blocking probabilities obtained

through the closed-form solution ofM0
k closely approximate the exact blocking probabilities

obtained through the numerical solution ofMk. Hence, our main contribution in this area

is the development of a time reversible Markov process, with a closed-form solution for its

steady-state probability that can be easily written down, which accurately captures the

correlation of wavelength use among the links of a path.

Of course, the main concern in any product-form solution is the computation of

the normalizing constant. Using brute force enumeration, we can obtain the product form

solution of M0
k for up to 25 wavelengths, when the number of hops is k = 3, and for up

to 8 wavelengths when k = 4. (As a comparison, for k = 3 we can obtain the numerical

solution ofMk only up to W = 4.) Despite our e�orts, we have not been able to devise a

recursive procedure that would allow us to compute the normalizing constant in time that

is polynomial in W and k. Therefore, a di�erent approximate method is needed for paths

longer than four hops. In Section 4.3 we describe an iterative decomposition algorithm that

can be used to e�ciently obtain the blocking probabilities for paths of arbitrary length.

4.2.2 Paths With Wavelength Conversion

Let us now turn our attention to paths in which wavelength converters are em-

ployed at some nodes. We show how the results of Section 4.2.1 can be extended to this

case, leading to a method which can be used to obtain the call blocking probabilities in a

k-hop path when the placement of converters is known.

Let us again refer to Figure 4.2, and let us assume that wavelength converters are

located at node 1 (the only interesting possibility in this case). We immediately see that the

2-hop system can now be described by the three-dimensional Markov process (n11; n12; n22).

Parameter f12 is no longer necessary because wavelength continuity is not required, and calls

continuing on both hops can now use any of the (W � n12 � n22) available wavelengths on

the second hop. In other words, the 2-hop system with a converter at node 1 becomes
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equivalent to a 2-hop circuit-switched path.

In the general case, consider a k-hop path, k � 2, with converters employed at one

or more nodes. This path can be modeled by a new Markov process which is simpler than

Mk, as follows. The new Markov process has the same k(k+1)

2
parameters nij asMk, but

some of the parameters fij are no longer present in the state description. More speci�cally,

let us consider the case when a converter is employed at node l; 0 < l < k; of the path. Then,

parameters fij ; i � l < j, which are required forMk, are not part of the state description

of the new Markov process. Because of the converter at node l, a call using hops i through

j, inclusive, can now be completed as long as there is at least one free wavelength on hops i

through l, and at least one free wavelength on hops l+ 1 through j. Therefore, parameters

fil and fl+1;j (which remain part of the state description) provide all the information needed

to determine whether the call can be completed, making fij redundant.

It is now straightforward to show that the Markov process for a k-hop path that

employs wavelength converters is not time-reversible, except for k = 2. We can then use an

approach similar to the one we followed in Section 4.2.1 to modify some of the transition

rates of this process in order to obtain an approximate, time-reversible Markov process which

has a closed-form solution. Thus, we have developed exact and approximate Markov process

models for computing the call blocking probabilities in paths with wavelength conversion

capabilities.

4.3 Decomposition Algorithm for Long Paths

Let K denote the largest integer such that the normalizing constant of the closed-

form solution to Markov processM0
k can be computed within a reasonably short amount of

time (currently, K = 3 or 4, depending on the number W of wavelengths per link, but this

value may increase if we can improve our method for computing the normalizing constant).

Consider a k-hop path. If k � K, the path can be analyzed approximately by solving the

corresponding Markov processM0
k. If, on the other hand, k > K, the approximate closed-

form solution cannot be used directly. In this section we develop an iterative decomposition

algorithm to analyze paths of length greater than K. As before, we �rst consider paths

without converters, and we then extend the algorithm to handle wavelength conversion.
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4.3.1 Paths With No Wavelength Conversion

We analyze a k-hop path, k = lK + m; l � 1; m < K, by decomposing it into

l K-hop segments and one m-hop segment in tandem. Each segment is �rst analyzed in

isolation using the corresponding Markov processM0
k. The arrival rates of calls originating

(terminating) in a segment but terminating (originating) in another segment are accounted

for by increasing the arrival rate of calls of the individual segments. The individual solutions

can then be appropriately combined to obtain an initial value for the blocking probability

of calls that traverse more than one segment. Using these initial estimates, the arrival rates

to each segment are modi�ed and each segment is again solved in isolation to obtain a

new solution. These new individual solutions are again combined to update the blocking

probability of calls traversing multiple segments. The process is repeated until the blocking

probabilities converge.

A detailed description of our iterative algorithm is provided in Figure 4.5. We

now illustrate the operation of the algorithm by referring to Figure 4.6 which shows a 4-hop

path and its decomposition into two 2-hop segments. We let �11; �12; � � � ; �44, be the arrival

rates of calls to the original 4-hop path, and we use �
(1)
11 ; �

(1)
12 ; �

(1)
22 and �

(2)
11 ; �

(2)
12 ; �

(2)
22 to

denote the arrival rates of calls to the �rst and second segments, respectively. However, the

interpretation of the arrival rates for the 2-hop segments is somewhat di�erent under our

decomposition approach. Speci�cally, �
(1)
12 accounts for all the calls of the original 4-hop

path that originate at node 0 and terminate at node 2 or higher; similarly for �
(1)
22 . On the

other hand, �(2)12 accounts for all calls of the original path that originate at nodes 2 and

lower and terminate at node 4; similarly for �
(2)
11 . Below, we describe briey the main steps

of our algorithm.

Initially, we solve the �rst segment in isolation by using

�
(1)
12 = (1� q14)�14 + (1� q13)�13 + �12 (4.16)

�
(1)
22 = (1� q24)�24 + (1� q23)�23 + �22 (4.17)

�
(1)
11 = �11 (4.18)

Quantity qij ; 1 � i � 2 < j � 4; represents the current estimate of the conditional

probability that a call using hops i through j (where i lies within the �rst segment and j

lies within the second segment) will be blocked given that a free wavelength for the call

exists within the �rst segment. For the �rst iteration, we use qij = 0 for all i and j; how
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Decomposition Algorithm for Paths Without Converters

A k-hop path, k = K +m;m � K, is decomposed into a K-hop segment (segment 1) and

an m-hop segment (segment 2). Segment 1 consists of nodes 0 to K, and segment 2 consists

of nodes K to K = m of the original path. �ij refer to the call arrival rates in the original

path, whereas �
(n)
ij refer to call arrival rates in segment n; n = 1; 2.

1. begin

2. h 0 //Initialization step

// p
(1)
ij (h) is the blocking probability of calls using hops i through j of segment 1

// F
(1)
ij is the average number of free wavelengths on hops i through j of segment 1

p
(1)
ij (h) 0; F

(1)
ij  W; 1 � i � j � K

// p
(2)
ij (h) is the blocking probability of calls using hops i through j of segment 2

// F
(2)
ij is the average number of free wavelengths on hops i through j of segment 2

p
(2)
ij (h) 0; F

(2)
ij  W; 1 � i � j � m

// qij(h) is the conditional probability that an inter-segment call will be blocked in

// segment 2, given that it has found a free wavelength in segment 1

qij(h) 0; 1 � i � K < j � K +m

3. h h + 1 //h-th iteration

4. �
(1)
ij (h) �ij ; 1 � i � j < K //Segment 1

�
(1)

iK(h) �iK +
PK+m

j=K+1 �ij (1� qij(h� 1)) ; 1 � i � K

// include the e�ective arrival rate of calls continuing to segment 2

Solve segment 1 to obtain new values for p
(1)
ij (h) and F

(1)
ij (h)

5. �
(2)
ij (h) �K+i;K+j ; 1 < i � j � m //Segment 2

�
(2)
1j (h) �K+1;K+j +

PK
i=1 �i;K+j

�
1� p

(1)

iK(h� 1)
�
; 1 � j � m

// include the e�ective arrival rate of calls continuing from segment 1

Solve segment 2 to obtain new values for p
(2)
ij (h) and F

(2)
ij (h)

6. // Conditional blocking probability of inter-segment calls

qij(h) p
(2)
1;j�K(h) +

�
1� p

(2)
1;j�K(h)

�
Qij ; 1 � i � K < j � K +m, with Qij

7. Repeat from Step 3 until the blocking probabilities converge

8. end of the algorithm

Figure 4.5: Decomposition algorithm for long paths
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Figure 4.6: (a) A 4-hop path and (b) its decomposition into two 2-hop segments in tandem

these values are updated in subsequent iterations will be described shortly. Thus, the term

(1� q14)�14 in (4.16) represents the e�ective rate of calls using all four hops, as seen by the

�rst segment; similarly for the term (1� q13)�13. Expression (4.17) for �
(1)
22 includes similar

terms that account for the e�ective rate of calls which originate at node 1 and terminate at

nodes 2 or higher. On the other hand, expression (4.18) for �
(1)
11 does not include any such

terms, since this type of calls in the �rst segment do not involve calls of the original path

continuing to the second segment.

The solution to the �rst segment will yield an initial value for the probability

p
(1)
ij ; 1 � i � j � 2; that a call using hops i through j of the �rst segment will be

blocked within the segment. Therefore, the e�ective rate of calls originating at node 0 and

terminating at node 4 that is o�ered to the second segment can be initially estimated as

�14(1� p
(1)
12 ), while the e�ective rate of calls originating at node 1 and terminating at node

4 can be estimated as �24(1� p
(1)
22 ). We can now solve the second segment by using

�
(2)
12 = �14(1� p

(1)
12 ) + �24(1� p

1)
22) + �34 (4.19)

�
(2)
11 = �13(1� p

(1)
12 ) + �23(1� p

1)
22) + �33 (4.20)

�
(2)
22 = �44 (4.21)

Based on the above discussion, �
(2)
12 in (4.19) represents the e�ective rate of calls using the
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last two hops of the 4-hop path, as seen by the second segment. Expression (4.20) for �
(2)
11

can be explained using similar arguments, while expression (4.21) for �
(2)
22 contains only

one term since, as seen in Figure 4.6, it does not involve calls continuing from segment 1.

The solution to the second segment will provide an estimate of the blocking probabilities

p
(2)
ij ; 1 � j � 2; of calls traversing hops 1 and 2 of the second segment (i.e., hops 3 and 4 of

the original path).

We can now obtain new values for the conditional blocking probabilities qij ; 1 �

i � 2 < j � 4; used in (4.16) and (4.17), as follows. Consider a call using hops i through j,

where i lies in the �rst segment and j lies in the second segment. Given that at least one

free wavelength exists on hops i through 2 (i.e., the call successfully makes it through the

�rst segment), the call will be blocked if

1. there is no free wavelength in the links it uses in the second segment, or

2. there do exist free wavelengths in the second segment, but they are not the same as

the free wavelengths in the �rst two hops.

The probability of the �rst event occurring is equal to p
(2)
1;j�2, which is obtained

through the solution of the second segment. The probability of the second event is equal to

(1� p
(2)
1;j�2)Qij, where parameter Qij represents blocking due to the wavelength continuity

requirement for calls using hops i through j, where i lies in the �rst segment and j lies in the

second segment. Probability Qij cannot be computed exactly since each segment is solved

independently of the other, and thus, it is not possible to determine whether a wavelength

which is free in one segment will also be free in the other. An approximate value for this

probability can be obtained as follows. Let P
(1)
i;2 [W = n] (respectively, P

(2)
1;j�2[W = m])

denote the probability that there are n (resp., m) free wavelengths on the hops of the �rst

(resp., second) segment used by the call. Let R(n;m) denote the conditional probability

that there are no common wavelengths for the call to use in the two segments, given that

there are n (resp., m) free wavelengths on the hops it uses in the �rst (resp., second)

segment. Because of the random wavelength assignment policy, we have that:

R(n;m) =

8>>>>>>>>><
>>>>>>>>>:

0; n = 0 or m = 0

1; n+m � W�
W � n

m

�
�

W

m

� ; otherwise

(4.22)
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Then, we approximate the probability Qij of blocking due to the wavelength continuity

requirement as

Qij =
WX
n=1

WX
m=1

h
P
(1)
i2 [W = n] � P

(2)
1;j�2[W = m] � R(n;m)

i
�

2
41
2

0
@ �ij

�
(1)
i2

+
�ij

�
(2)
1;j�2

1
A
3
5

(4.23)

The double summation in the right hand side of (4.23) is the probability that there are

no common wavelengths for the call to use in the two segments, assuming that the two

segments are independent. We have found experimentally that adjusting this probability

by the last factor in (4.23) reduces the e�ect of the independence assumption and accurately

approximates the probability of blocking due to the wavelength continuity requirement for

a wide range of arrival rates. Note that the term �ij=�
(1)
i2 in (4.23) represents the fraction

of tra�c requiring free wavelengths on hops i through 2 of the �rst segment that is due

to calls on hops i through j > 2 in the original path (refer also to expressions (4.16) and

(4.17)). Similarly, the term �ij=�
(2)
1;j�2 in (4.23) represents the fraction of tra�c requiring

free wavelengths on hops 1 through j�2 of the second segment that is due to the calls under

consideration. Hence, the last factor in (4.23) adjusts the blocking probability obtained

through the independence assumption to capture the contribution of the calls using hops i

through j of the original path.

The new estimates for qij are then used in expressions (4.16) { (4.18) to update the

arrival rates for the �rst segment, the �rst segment is solved again, the estimates for p
(1)
ij are

updated and used in expressions (4.19) { (4.21), and so on. We repeat the process until the

blocking probabilities for all calls of the original path converge within a certain tolerance.

In all cases studied, we have found that the algorithm converges in only a few (under ten)

iterations even for long paths, and that the blocking probabilities obtained closely match

simulation results (more on this in Section 4.4).

The decomposition algorithm just described is similar in spirit to the decompo-

sition algorithms developed for tandem queuing networks with �nite capacity queues (see

[22]). This algorithm can be easily extended to handle paths decomposed into more than

two segments. We note that when employing the decomposition algorithm, the eventual

selection of the segment size will depend on the following factors: length of the original

path, how e�ciently we can calculate the normalizing constant for the Markov processM0
k

associated with each segment, and how accurate the approximate solution of M0
k is. It

is well known in decomposition algorithms that the larger the individual sub-systems that
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have to be analyzed in isolation, the better the accuracy of the decomposition algorithm.

Thus, as we mentioned in the beginning of this subsection, we have decided to decompose a

path in segments of the largest size K for which we can e�ciently compute the normalizing

constant, plus, possibly, a segment of smaller size, if the path length is not a multiple of K.

4.3.2 Paths With Wavelength Conversion

The iterative algorithm described above can also be used for paths with converters.

We note, however, that the addition of l < k converters leads to a natural decomposition of a

k-hop path into l+1 segments, with each segment consisting of the links between successive

nodes where converters are employed. Given such a decomposition, the blocking probability

of calls spanning several segments now depends only on the number of calls within each

segment (similar to the circuit switching case), not the actual wavelengths used by those

calls. Hence, the probability that a call spanning multiple segments will be successfully

completed becomes equal to the product of the probabilities of �nding a free wavelength

(not necessarily the same one) within each segment. Therefore, we choose to decompose

a path into segments between successive nodes with converters. These segments do not

contain converters, and they can be analyzed in isolation as described previously. If one of

these segments is too long, it can be analyzed using the iterative decomposition algorithm

in Figure 4.5.

Based on these observations, an overall solution can be obtained by using a mod-

i�ed version of the iterative algorithm developed for the no-converter case. In particular, a

k-hop path with a single converter located at node K < k can be analyzed using the algo-

rithm in Figure 4.5 after making a single modi�cation as follows: in Step 6, the expression

for the conditional blocking probabilities must be changed to qij = p
(2)

1;j�K . The second term

in the expression of Step 6 in Figure 4.5 (as well as in expression (4.23)) represents blocking

due to the wavelength continuity requirement, and since Q = 0 in this case, it drops out.

The algorithm can be extended in a straightforward way to handle paths with more than

one converters.

4.4 Numerical Results

We now demonstrate the accuracy of the blocking probabilities obtained with our

analytical techniques by comparing to either numerical or simulation results. We then apply
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our decomposition algorithm in order to determine the optimal placement of converters in

a path.

4.4.1 Accuracy of the Approximate Markov Process

In Figure 4.7 we plot the blocking probability of calls for each source-destination

node pair in a 2-hop path without converters, against the numberW of wavelengths per hop.

For each type of call we show two curves. The �rst curve is obtained through a numerical

solution of the exact Markov process M2, and is referred to as \exact solution" in the

�gure. The second curve is obtained from the closed-form solution of the approximate

Markov process M0
2, and is referred to as \approximate solution". As we can see, the

overall behavior of the two curves is similar for all types of calls, and, more importantly,

the approximate blocking probability is always very close to the exact value.

Figure 4.8 is similar to Figure 4.7, but presents results for a 3-hop path. We only

plot the blocking probability of calls for three of the six source-destination pairs, namely,

calls that traverse all three hops, calls that use only the last two hops, and calls that use

only the �rst hop. The behavior of the blocking probability of the other three types of

calls is very similar to that shown in Figure 4.8. Again, we observe that the values of

blocking probability obtained through the closed-form solution to Markov processM0
3 are

an accurate approximation of the exact values obtained from process M3. However, the

�gure does not include any values for the exact blocking probability in a 3-hop path when

W > 4 because the size of the exact Markov process is so large in this case that we could

not solve it numerically. (For the same reason we do not show any comparison results for

4-hop paths.)

Overall, the results shown in Figures 4.7 and 4.8 indicate that it is appropriate to

use the approximate Markov process when analyzing short paths. We emphasize that exact

Markov process cannot be solved numerically for a large number of wavelengths. Also, for

the same values of k andW , the closed-form solution of the approximate Markov process can

be obtained signi�cantly faster (up to an order of magnitude) than the numerical solution

to the exact process.
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4.4.2 Validation of the Decomposition Algorithm

The �gures in this subsection show the results of applying our iterative decompo-

sition algorithm to 6-hop and 10-hop paths with W = 10 wavelengths, and compare them

to results obtained through simulation. We include results for paths with and without con-

verters. Because of the very large number of parameters (i.e, the arrival rates �ij and mean

call holding times 1=�ij) that can potentially be varied, for the results presented here we

have decided to use the following values:

�ij = 1; 8 i; j; and �ij =

8<
:

0:3; i < j

�; i = j
(4.24)

In other words, we let the mean holding time to be equal to one for all calls, we �x the

arrival rate of all calls traversing two or more hops to the value 0.3, and we also set the

arrival rate of calls traversing exactly one hop to �. Figures 4.9 { 4.12 plot the call blocking

probability as we vary the value of �.

In Figures 4.9 and 4.10 we present results for a 6-hop path with and without

converters, and for W = 10. We note that there are 21 di�erent source-destination pairs in

a 6-hop path, making it impossible to present results for all of them here. Thus, we show

results for only two source-destination pairs. The blocking probability of calls traversing

all six hops in the path is plotted in Figure 4.9, while the blocking probability of calls

traversing hops 1 through 4 of the path is shown in Figure 4.10. In both �gures, the value

of � is varied from 0.1 to 0.5, while the arrival rate of all other calls is �xed to 0.3, as

described above. Each �gure contains two sets of plots, one for a path without converters,

and one for a path with a single converter. Each set consists of two plots, one corresponding

to results from our decomposition algorithm, and one corresponding to simulation results.

Recall that, for W = 10 wavelengths, we can e�ciently compute the closed-form solution of

the approximate Markov process for a 3-hop path, but not for a 4-hop path. Hence, we let

K = 3 in the decomposition algorithm of Figure 4.5, and we analyze a 6-hop path without

converters by decomposing it into two 3-hop segments. We refer to this decomposition as

a \3 � 3 decomposition". For the case when there is a single converter in the path, we

decided to place the converter at node 3, since this arrangement will also result in a 3� 3

decomposition.

From Figures 4.9 and 4.10 we observe that as the value of the load � increases,

the blocking probability of both types of calls increases. We also note that, when there is
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a converter at node 3, the blocking probability for both types of calls is signi�cantly lower

than when there is no converter. Both these results are expected. The most important

observation from these �gures, however, is the fact that the values of the blocking probability

obtained through our iterative decomposition algorithm are very close to the values obtained

through simulation. Results similar to the ones shown in these �gures were obtained for

calls for all other source-destination pairs, and for a wide range of tra�c loads.

The results in Figures 4.11 and 4.12 are very similar to those in Figures 4.9 and

4.10, but they correspond to a 10-hop path with W = 10 wavelengths. Again, we only plot

the blocking probability of calls for two source-destination pairs against the arrival rate �,

as the latter increases from 0.05 to 0.25. Figure 4.11 shows the blocking probability of calls

traversing all ten hops of the path, while Figure 4.12 presents the blocking probability of

calls using hops 2 through 6. As before, there are two sets of plots, one for a path without

converters, and one for a path employing three converters. For the no-converter case, in

addition to simulation results, we present the blocking probability values obtained through

1 � 3 � 3 � 3 decomposition approaches for a 10-hop path. The path is decomposed into

a 1-hop segment and three 3-hop segments For the converter case, the three converters are

assumed to be at nodes 3, 6, and 9, a con�guration that also results in a 3 � 3 � 3 � 1

decomposition. The general behavior of the curves in Figures 4.11 and 4.12 as � increases

are very similar to that of the curves in Figures 4.9 and 4.10. Regarding the accuracy of

our analytical techniques, we note that the results of our decomposition algorithm closely

match the simulation results for the path with converters.

Compare decomposition method to simulation. In particular, mention that the

decomposition algorithm converges in only a handful of iterations and takes a few minutes,

while the simulation takes several hours.

4.4.3 Converter Placement

We now consider the problem of determining the best placement of l converters on

a k-hop path, k > l, that optimizes a given objective function. It is important to emphasize

that our goal is simply to demonstrate how the analytical techniques developed earlier can

be used to gain insight into the problem of converter placement in a wavelength routing

network. A comprehensive study of this potentially di�cult problem is outside the scope of

this paper and will be undertaken in future work. All the results presented in this section
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are obtained by using the following approach:

� The performance parameter of interest in a k-hop path is the blocking probability

of the calls that travel over all k hops (i.e., the ones with arrival rate �1k, refer also

to Figure 4.1). Thus, our objective is to determine the location of l converters that

minimizes the blocking probability of these calls.

� To �nd the best converter placement we apply a straightforward method as follows.

We enumerate all possible ways of placing l converters on a k-hop path, and we eval-

uate the blocking probability of interest for each using the decomposition algorithm

presented in previous sections. The optimum placement is the one with the minimum

such probability.

We note that calls traveling over all k hops of a k-hop path will experience the highest

blocking probability. Hence, minimizing this parameter e�ectively minimizes the maximum

blocking probability of any call. On the other hand, there are
�

k � 1

l

�
ways of placing l

converters at the k � 1 internal nodes of a k-hop path. Therefore, we expect our straight-

forward enumeration approach to work well for reasonably long paths (e.g., k � 20). For

longer paths, when this method becomes prohibitively time consuming, heuristic approaches

aimed at determining a near-optimal placement of converters are needed. The speci�cation

and evaluation of such heuristics will be the subject of future research.

For our study, we consider a 10-hop path with W = 10 wavelengths, and six

di�erent tra�c load patterns. Figures 4.13 and 4.14 plot the load � of each hop in the path

for each load pattern 5. The six patterns are representative of the wide range of loading

situations one expects to encounter in practice. In the \uniform" pattern, all hops are

equally loaded. The \bowl" (respectively, \inverted bowl") pattern is such that the load

decreases (resp., increases) from hop 1 to hop 5, and then it increases (resp., decreases)

from hop 6 to fop 10. These patterns are shown in Figure 4.13. The \ascending" and

\descending" patterns are such that the load increases or decreases, respectively, from hop

1 to hop 10. Finally, in the oscillating pattern the load at each hop alternates between a

low and a high value. The last three load patterns are shown in Figure 4.14. To ensure

that the results are comparable across the di�erent patterns, the load values were chosen

so that the total network load (or, equivalently, the average load per hop) is the same for

all patterns.

5The load � for hop l is the sum of the o�ered loads �ij; i � l � j, for all calls that use hop l.
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In Figures 4.15 and 4.16 we plot the blocking probability of calls using all 10 hops

of the path for the optimal placement of l converters, 1 � l � 5. For comparison purposes,

we also plot the blocking probability of these calls on a path without converters (the values

for zero converters in these �gures). The blocking probabilities shown in Figures 4.15 and

4.16 correspond to the load patterns of Figures 4.13 and 4.14, respectively. The optimal

location of converters for the six di�erent load patterns is shown in Table 4.1.

From Figures 4.15 and 4.16 it is immediately obvious that the blocking probability

drops with the number of converters, as expected. However, after the initial steep drop, the

curves in general atten as the number of converters increases. This behavior is consistent

with the results of an earlier work [28] which studied the e�ect of converter density on the

blocking probability. But the results presented here shed new light into the problems of

determining the importance of converters and their location, which have previously been

studied only under uniform tra�c loading.

A striking observation from Figures 4.15 and 4.16 is that the e�ect of converters on

the blocking probability is strongly dependent on the actual tra�c pattern. Let us compare,

for example the curves for the \inverted bowl" (in Figure 4.15) and \ascending" (in Figure

4.16) load pattern. The former curve is essentially at: the blocking probability decreases

from a value of 0.0041 for one converter to a value of 0.0028 for �ve converters. In contrast,

increasing the number of converters has a dramatic e�ect for the \ascending" load pattern,

with the blocking probability dropping from a value of 0.0083 for one converter to 0.0018

for �ve converters, a 78% decrease.

Let us now refer to Table 4.1 which shows the optimal node location of converters

for the di�erent tra�c patterns. We �rst note that the results are in agreement with

intuition. The table indicates, for example, that converters be placed at the middle of the

path for the \inverted bowl" pattern, and towards the end and beginning of the path for

the \ascending" and \descending" patterns, respectively. However, we also observe that the

optimal placement also depends strongly on the load pattern: compare, for instance, the

converter locations for the \ascending" and \descending" patterns. The fact that optimal

location depends on the load suggests that in a dynamic network environment where the

tra�c pattern varies over time, there is no single assignment of converters to nodes that will

work well for all possible loads. Consequently, simple optimization approaches, such as the

one considered here, that seek to minimize the blocking probability under a speci�c tra�c

pattern may lead to poor performance if the pattern changes. Instead, more comprehensive
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Table 4.1: Optimal node location of converters for the various load patterns

Load Number of Converters
Pattern 1 2 3 4 5

bowl 8 18 789 1589 12589

inverted bowl 4 45 457 3456 34567

uniform 7 28 479 1279 12379

ascending 8 79 689 5789 56789

descending 2 12 123 1235 12345

oscillating 7 58 479 4789 24789

approaches to the converter placement problem are needed, such as providing bounds for

the blocking probability over a wide range of load patterns.

4.5 Concluding Remarks

We presented a new analytical framework to accurately and e�ciently evaluate

the call blocking performance in a single path of a wavelength routing network. We derived

exact and approximate Markov process models, and we developed an iterative algorithm

to analyze arbitrarily long paths by decomposing them into shorter segments connected in

tandem which are studied in isolation. We also demonstrate how our analytical techniques

can be used to gain insight into the problem of converter placement in such a network.
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Chapter 5

Blocking in Mesh Topologies

In the previous chapter, we presented an exact Markov process and an approxi-

mate Markov process for a single path. We also developed a decomposition algorithm to

e�ectively compute long paths. Based on the solution to the single path, we now extend

our decomposition algorithm for mesh networks with arbitrary topology.

5.1 Path Decomposition Algorithm for Mesh Networks

5.1.1 Network Model

We consider a circuit-switched wavelength routing network with an arbitrary topol-

ogy. There are N nodes and L (unidirectional) links in the network, with each link sup-

porting W wavelengths. Call requests between a source node s and a destination node d

arrive at the source node according to a Poisson process with a rate of �sd. The call holding

times are exponentially distributed with mean 1=�. We also let �sd = �sd=� be the o�ered

load of these calls.

In wavelength routing networks, there are two parts in the routing problem. When

a call request arrives, a path over which the connection will be established must �rst be

determined. In this work we consider both �xed and alternate routing [10]. In �xed routing,

each source-destination pair is assigned a single path. If there are no wavelength converters

in the path, a call is blocked if no wavelength is free on all links of the path. If some

nodes in the path employ wavelength converters, a call is blocked if no wavelength is free

on all the links of any segment of the path consisting of links between successive nodes with
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converters. In alternate routing, a set of paths (consisting of one primary path and one or

more alternate paths) is assigned to each source-destination pair. This set is searched in a

�xed order to �nd an available path for the call. Once a path is selected, one of the (possibly

many) free wavelengths in the path must then be assigned to the call. As in Chapter 4,

we only consider the random wavelength assignment policy in this work, whereby a call is

allocated one of the available wavelengths in the selected path at random.

We let R denote the set of paths assigned to the various source-destination pairs.

For �xed routing, j R j= N(N � 1). If alternate routing with m paths (one primary and

m� 1 alternates) for each source-destination pair is used, then j R j=mN(N � 1). We also

let P
(n)

sd ; 1 � n � m; denote the probability that a call originating at node s and terminating

at node d will be blocked on the n-th path assigned to this source-destination pair.

5.1.2 Fixed Routing

We analyze a mesh network by decomposing it into a number of sub-systems where

each sub-system is a single path. Each sub-system is analyzed in isolation using the analyt-

ical techniques developed in Chapter 4. Speci�cally, sub-systems consisting of three links or

less are analyzed by solving the corresponding approximate time-reversible Markov process.

Sub-systems longer than three hops are analyzed using the iterative decomposition algo-

rithm to obtain the call blocking probabilities. The individual solutions are appropriately

combined (as explained shortly) by modifying the call arrival rates to each sub-system to

reect the newly computed blocking probabilities. The process is repeated until all blocking

probabilities converge within a prescribed tolerance.

Before we proceed we emphasize that the number of sub-systems into which the

network is decomposed is signi�cantly smaller than the total number j R j of paths. This

is because many of the shorter paths are completely contained within other longer paths

1. Therefore, these shorter paths do not need to be considered as separate sub-systems.

Instead, the blocking probability along these paths can be obtained as a by-product of

computing the solution of a long sub-system. Since a k-hop path, such as the one shown

in Figure 4.1, may contain up to (k + 2)(k � 1)=2 shorter paths as sub-paths, by selecting

long paths as sub-systems we can drastically reduce the number of sub-systems into which

the original network is decomposed.

1We say that a path q is completely contained within another path r if q is a sub-path of r.
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The �rst step in analyzing a given network is to decompose it into a set R0 � R

of paths such that:

� no path r 2 R0 is contained within a path q 2 R; q 6= r, and

� any path q 2 R either belongs to R0 or is completely contained within a path r 2 R0.

These two requirements ensure that a minimal set of sub-systems that includes all possible

paths is used. We can construct such a set R0 by using the following steps. First, the

paths in R are sorted in a list in order of decreasing length. The �rst path r in the list is

removed and inserted in R0. Then, any sub-paths of r that are also in the list are removed

from it. The process continues with the next path in the list and is repeated until the list

becomes empty. It is straightforward to show that this algorithm will construct a set R0

which satis�es the above two properties. Figure 5.1(b) shows the set of sub-systems R0

obtained by applying this algorithm to the network of Figure 5.1(a). As we can see, while

there are 20 source-destination pairs and corresponding paths in the network, only 10 path

sub-systems are used. For instance, the blocking probability on the path from, say, node

1 to node 4, will be obtained through the solution to the sub-system corresponding to the

path from node 1 to node 3.

Once the set R0 of sub-systems has been selected, for each path r 2 R0 we need to

determine the set of paths S(r) � R that intersect (i.e., have at least one link in common)

with path r. As an example, path (1,4,3) in Figure 5.1 intersects with path (4,3,5). The

signi�cance of set S(r) lies in the fact that the blocking probability experienced by calls

using the links of path r may be a�ected by the calls using the links of a path q 2 S(r),

and vice versa. Thus, when we compute the solution to path r, we must appropriately

modify the call arrival rates along this path to account for the e�ect of calls along paths

that intersect with r. Note also that q 2 S(r) implies that r 2 S(q).

We are now ready to present the decomposition algorithm used to analyze a wave-

length routing network with an arbitrary topology. We will illustrate the operation of the

algorithm using the network shown in Figure 5.1. We will show how to update the arrival

rates along each path sub-system after each iteration of the algorithm by considering only

paths (1,4,3) and (4,3,5). The other path sub-systems are handled in a similar way. Without

loss of generality, we assume that shortest paths are used for �xed routing in this network.

Recall that �sd; 1 � s; d � N; are the arrival rates to the original network. We also let �̂sd

denote the arrival rates used to solve the various path sub-systems; these rates are updated
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Figure 5.1: (a) Original network, (b) set R0 of paths into which the network is decomposed

at the beginning of each iteration of the algorithm. As will be explained next, the rate �̂sd

accounts for all calls of the original network that use the links between nodes s and d within

a path r.

Initially, we solve path (1,4,3) in Figure 5.1 in isolation using these arrival rates:

�̂14 = �14 (5.1)

�̂13 = �13 (5.2)

�̂43 = �43 + (1� P45)�45 (5.3)

We note that only calls from node 1 to node 4 use link (1,4) of path (1,4,3), thus, the arrival

rate of calls using this link as seen by the path sub-system (1,4,3) is given in expression (5.1).

Similarly, expression (5.2) can be explained by the fact that only calls from node 1 to node 3

use both links of sub-system (1,4,3). On the other hand, expression (5.3) for �̂43 is slightly

di�erent because, in addition to calls from node 4 to node 3, calls from node 4 to node 5 also

use the second link of path (1,4,3) since paths (1,4,3) and (4,3,5) intersect. Quantity P45

in (5.3) represents the current estimate of the probability that a call from node 4 to node 5

will be blocked on sub-system (4,3,5). For the �rst iteration, we use P45 = 0; how this
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value is updated in subsequent iterations will be discussed shortly. Therefore, the term

(1� P45)�45 represents the e�ective arrival rate of calls from node 4 to node 5 as seen by

sub-system (1,4,3), since a fraction P45�45 of these calls will be blocked in sub-system (4,3,5).

Consequently, the right hand side of expression (5.3) is the e�ective arrival rate of calls that

use the link (4,3) of path (1,4,3) when the latter is considered in isolation.

We also solve path (4,3,5) in isolation by using the following arrival rates (the

other sub-systems in Figure 5.1(b) are solved in a similar manner):

�̂45 = �45 (5.4)

�̂35 = �35 (5.5)

�̂43 = �43 + (1� P13)�13 (5.6)

Expressions (5.4) through (5.6) can be explained using arguments similar to the ones used

for expressions (5.1) to (5.3). In particular, the second term in the right hand side of (5.6)

represents the e�ective arrival rate of calls originating in sub-system (1,4,3) and using the

link (4,3) of sub-system (4,3,5)

The solution to the path sub-systems (1,4,3) and (4,3,5) will yield an initial value

for the probabilities P45 and P13 that a call using links (3,5) and (1,4), respectively, will be

blocked. The new estimates for P45 and P13 are then used in expressions (5.3) and (5.6),

respectively, to update the arrival rates for the two path sub-systems, the sub-systems are

solved again and new estimates for the blocking probabilities are obtained, and so on. We

repeat the process until the blocking probabilities for all calls in the original network con-

verge within a certain tolerance. In all the cases we have studied, we have found that the

algorithm converges in only a few (less than ten) iterations, and that the blocking prob-

abilities obtained closely match simulation results (the performance of the decomposition

algorithm will be discussed in detail in Section 5.2).

A detailed description of our decomposition algorithm is provided in Figure 5.2.

We note that this path decomposition algorithm explicitly accounts not only for the cor-

relation of link loads among the various links of the network, but also for the fact that

link blocking events are not independent. This is in sharp contrast to link decomposi-

tion algorithms for wavelength routing networks that have appeared in the literature (e.g.,

see [18, 3, 12, 31, 15, 20, 29]) which compute the blocking probability along a path by as-

suming that blocking events on each link of the path are independent. Therefore, we expect,
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and numerical results to be presented in Section 5.2 will con�rm, that our algorithm will

provide a good approximation to the blocking probabilities.

5.1.3 Alternate Routing

In order to improve the call blocking performance, a source-destination pair (s; d)

may be assigned m paths (one primary and m � 1 alternates) which are searched in a

�xed order. In common implementations, the m shortest paths from s to d in the physical

topology are used. If a call is blocked on the primary path, the �rst alternate path is

examined. If available wavelengths exist on this path, the call is established. Otherwise,

the next alternate path is examined, and so on. In other words, the tra�c o�ered to

alternate path i; i = 2; � � � ; m; is the overow tra�c from path i� 1. The call is blocked if

no free wavelength can be found on any of the m paths, i.e., if it overows from the last

alternate path.

Although the tra�c o�ered to the primary path for source-destination pair (s; d)

is Poisson with rate �sd, it is clear that the overow tra�c o�ered to the alternate paths is

not Poisson. The overow model is a well-known model that has been studied extensively

in the literature, and moment matching techniques have been used to analyze blocking

probabilities in circuit-switched networks with alternate routing [10]. Overow models

have also been used in the study of blocking probabilities in wavelength routing networks

in [15, 20].

We nevertheless make the assumption that overow tra�c is also Poisson with

an appropriate rate. This assumption makes it possible to use the path decomposition

algorithm developed in the previous subsection to analyze networks with alternate routing.

We will now describe our approach to computing call blocking probabilities in networks

with alternate routing by assuming that there is one primary and one alternate path per

source-destination pair. This approach can be easily extended to handle a larger number of

alternate paths, as well as situations where the various source-destination pairs are assigned

a di�erent number of alternate paths.

Let R denote the set of primary and alternate paths for all node pairs, with

j R j= 2N(N� 1). From R we construct the set of path sub-systems R0 as described in the

previous subsection. In other words, we construct a decomposition of the original network

based on both the primary and alternate paths. We solve decomposition R0 using the
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algorithm of Figure 5.2 to obtain an initial estimate of the call blocking probabilities P
(1)

sd

and P
(2)

sd along the primary and alternate paths, respectively. Because of our approximation,

the arrival rate for the overow tra�c o�ered to alternate paths is simply given by the

product of the arrival rate of the tra�c to the primary path times the blocking probability

along this path. Also, if a primary path r intersects with an alternate path q, the arrival

rate on the alternate path q (primary path r) is taken into account when solving path r

(path q). This approach captures the e�ect that calls established over alternate (primary)

paths have on calls established over primary (alternate) paths.

Once estimates for blocking probabilities P
(1)

sd and P
(2)

sd have been obtained, an

estimate of the blocking probability of calls for the source-destination pair (s; d) can be

computed as

Psd = P
(1)

sd � P
(2)

sd (5.7)

These estimates are used to update the arrival rates of calls to the network, and the de-

composition is solved again. This process is repeated until the blocking probabilities Psd in

(5.7) converge for all s; d.

Numerical results to be presented in Section 5.2 will demonstrate that, despite

the assumption that overow tra�c is Poisson, this iterative path decomposition approach

is quite accurate for both regular and irregular topologies, and for a wide range of tra�c

loads. We believe that the high accuracy of our algorithm is due to the fact that the Poisson

assumption for overow tra�c is a good approximation for

� low to moderate loads (and call blocking probabilities), since then the call arrivals

seen by the alternate paths will approach Poisson arrivals, and

� the second and higher alternate paths.

Although we do expect our decomposition algorithm to yield less accurate results under

high or very high o�ered loads (due to the peakedness of overow tra�c in this case), it is

unlikely that wavelength routing networks will be operated at loads which will result in high

call blocking probabilities. As we will show in the next section, our approximate approach

works well for blocking probability values as high as 0.5, which we feel is signi�cantly higher

than the blocking probabilities that can be tolerated in such an environment.
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5.2 Numerical Results

In this section, we �rst validate our decomposition algorithm by comparing the

analytically derived blocking probabilities to simulation results for two network topologies:

a regular 5� 5 torus network, and the NSFNET irregular topology. We then demonstrate

how our analytical techniques can be applied to the problem of determining a near-optimal

placement of converters within the NSFNET network. In all the �gures, we plot 95%

con�dence intervals along with simulation results. We have also assumed that the mean

holding time 1=� = 1 for all source-destination pairs.

Before we proceed, a discussion on the number of path sub-systems into which

the original network is decomposed is warranted, since the number of these sub-systems

determine the overall running time of the decomposition algorithm. For the 5� 5 torus and

the NSFNET topologies considered here, there is a total of 600 and 240 paths, respectively,

when �xed routing is used. The technique described in Section 5.1.2, however, produces a

decomposition of 100 and 94 sub-systems for the torus and NSFNET networks, respectively.

Both these numbers are signi�cantly smaller than the total number of paths in the respec-

tive topology. When alternate routing with one alternate path is used, our decomposition

consists of 400 (out of 1200) sub-systems for the torus network and 160 (out of 480) for the

NSFNET. Although it is clear that the number of sub-systems in a given decomposition will

depend on the actual topology and routing algorithm used (e.g., shortest path or other),

these results indicate that by selecting longer paths as sub-systems, we can signi�cantly

reduce the size of the decomposition and, consequently, the running time of our algorithm.

5.2.1 The 5� 5 Torus Network

Let us �rst consider the 5 � 5 torus network shown in Figure 5.3 with W =

10 wavelengths per link. Since there are 600 source-destination pairs in this network, it

is impossible to present numerical results for all of them. We have therefore decided to

present the call blocking probabilities (obtained through simulation and analysis) for only

24 di�erent source-destination pairs, and to summarize the results for the remaining pairs.

The source-destination pairs for which detailed results are provided are those with node 1 as

the source, and are listed in Table 5.1 along with the corresponding labels used in Figures 5.4

and 5.5. The table also gives the length of the shortest path from node 1 to node d of the

corresponding source-destination pair (1; d). Note that in the 5�5 torus there are 100 pairs
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with a shortest path length of 1, 200 pairs with a shortest path length of 2, 200 pairs with

shortest path length of 3, and 100 pairs with a shortest path length of 4. Because of the

regular topology, the selected pairs in Table 5.1 are a representative sample of the various

source-destination pairs.

Figure 5.4 plots the blocking probability for the 24 source-destination pairs of

Table 5.1 for the 5� 5 torus network under �xed routing, where the path assigned to each

pair (s; d) is the shortest path from s to d. The call arrival rates were selected such that

�sd =

8>>>>>><
>>>>>>:

0:4; if the length of the shortest path from s to d is 1

0:3; if the length of the shortest path from s to d is 2

0:2; if the length of the shortest path from s to d is 3

0:1; if the length of the shortest path from s to d is 4

(5.8)

This selection of arrival rates was intended to capture the locality of tra�c that has been

observed in many networks. The utilization of each link in the network for these arrival

rates is in the range [3.140, 3.144]. The tight range of link utilization can be explained by

the fact that both the topology and the tra�c load are symmetric.

As we can see in Figure 5.4, the blocking probability increases signi�cantly with

the length of the path that a call uses. In fact, there is a di�erence of almost two orders of

magnitude in the blocking probability experienced by calls using 1-hop paths (i.e., those with

labels 1 through 4) and calls using 4-hop paths (the ones labeled 20 to 24). This increase

in blocking probability with path length is expected, and has been observed in previous

studies. We also note that the blocking probability of calls using the same number of hops

is very similar. This behavior is again due to the symmetry of both the topology and of the

tra�c load. Regarding the accuracy of our decomposition algorithm, we observe that the

analytical results closely match the simulation results for all source-destination pairs shown

(very similar results were obtained for the other pairs as well, and are discussed below).

Although the relative error of our analysis is greater for calls using 1-hop paths, this is only

because of the very low blocking probability values involved. In fact, the absolute error is

always very small, regardless of the length of the path used by a call.

In Figure 5.5, we plot the blocking probability for the same 24 source-destination

pairs under alternate routing. Speci�cally, two paths are assigned to each pair of nodes,

the shortest and second shortest ones, as the primary and alternate path, respectively. The

utilization per link in this case is in the range [3.195, 3.198]. The higher utilization is due
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to the fact that more calls are accepted since the blocking probabilities are lower when

alternate routing is used. Indeed, when alternate routing are used, the blocking probability

drops by about one order of magnitude for all calls, but the general behavior of the curves

in Figure 5.5 is very similar to that in Figure 5.4. The slight di�erences in call blocking

probabilities among calls with a shortest path of length 2 can be explained by the fact

that for some of these calls the length of the alternate path is shorter than for others.

For example, the length of the alternate path from node 1 to node 7 is two (the same

as the primary path), but the alternate path from node 1 to node 3 is of length three.

Consequently, the blocking probability of the former calls (label 7 in Figure 5.5) is lower

than that of the latter (label 5 in Figure 5.5). We also observe that the blocking probability

values obtained analytically under the assumption that the overow tra�c is Poisson, are

very accurate. In fact, the accuracy of our decomposition algorithm is similar to that in

the case of �xed routing, when there is no overow tra�c o�ered to the network.

Since call arrivals to alternate paths in the simulated system are burster that

Poisson tra�c, these call requests experience higher blocking probability. Consequently,

because of our Poisson approximation for overow tra�c, one would expect that our analysis

would underestimate the simulation under alternate routing. However, as we can see from

Figures 5.4 { 5.5, the analytically derived blocking probability values tend to overestimate

the simulation values for both �xed and alternate routing. This result demonstrates that the

Poisson approximation is accurate within this range of loads and for this regular topology.

Similar results have been obtained for irregular topologies and higher load values, and will

be discussed in the next subsection.

In Table 5.2 we present a summary of the results for all 600 source-destination

pairs in the network under �xed routing. Since we have observed very similar blocking

probability values for all calls with a certain path length, we have chosen to present summary

results based on path length. The second, third, and fourth columns of Table 5.2 give the

minimum, average, and maximum absolute di�erences, respectively, between the analytical

and simulation blocking probability values over all calls with a certain path length (e.g.,

over all 100 calls using 1-hop paths). The last three columns are similar, except that

they present the minimum, average, and maximum percentage di�erence (relative error),

respectively, between the analytical and simulation values values among the corresponding

calls. Table 5.3 presents similar results for the same network with alternate routing (one

alternate path per source-destination pair).
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The results shown in the two tables further support the observations made earlier

regarding the accuracy of the decomposition algorithm. Speci�cally, we can see that the

absolute error between analytical and simulation values is very small for all calls, regardless

of the number of hops in the path used. Consequently, the percentage di�erence (i.e., the

relative error) diminishes as the blocking probability values increase. Furthermore, the ana-

lytical results for alternate routing are at least as good as those for �xed routing, indicating

that the assumption that the overow tra�c is Poisson does not a�ect the performance of

our path decomposition approach.

Our model can also calculate a mesh network with more than one alternate paths.

Figure 5.6 and Figure 5.7 show the results for two and three alternate paths. These results

are not as accurate as those with one alternate route, because the assumption that overow

tra�c is Poisson arrival causes larger errors on the second or third alternate route.

5.2.2 The NSFNET Topology

We have applied our iterative decomposition algorithm to a realistic example of a

backbone network, namely, the NSFNET irregular topology shown in Figure 5.8. Since we

will be using tra�c data reported in [6], following that study, we have also augmented the

14-node NSFNET topology by adding two �ctitious nodes, nodes 1 and 16 in Figure 5.8, to

capture the e�ect of NSFNET's connections to Canada's communication network, CA*net.

The resulting topology consists of 16 nodes and a total of 240 source-destination pairs. As

in the previous subsection, we have decided to present detailed results for the call blocking

probabilities of only a small number of pairs, and to summarize the results for the whole

network. Speci�cally, we present detailed results for the blocking probabilities of calls

involving nodes along the path (3,5,6,7,9,12,15,16). (We note, however, that the shortest

path used by some of these calls is not a sub-path of (3,5,6,7,9,12,15,16); for instance, the

shortest path for calls between nodes 3 and 15 is (3,5,11,15).) The 28 source-destination

pairs in this path, along with the corresponding shortest path lengths and the labels used

in Figures 5.9 through 5.12 are shown in Table 5.4.

We have used two di�erent tra�c patterns with the NSFNET topology. The �rst

tra�c pattern is similar to that used with the torus network. Speci�cally, the arrival rate

�sd for a source-destination pair (s; d) is given by (note that no shortest path is longer than
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4 hops):

�sd =

8>>>>>><
>>>>>>:

0:5; if the length of the shortest path from s to d is 1

0:4; if the length of the shortest path from s to d is 2

0:3; if the length of the shortest path from s to d is 3

0:2; if the length of the shortest path from s to d is 4

(5.9)

The second tra�c pattern was designed to reect actual tra�c statistics collected on the

NSFNET backbone network, as reported in the tra�c matrix in [6, Figure 6]. The data

in this tra�c matrix represent the measured number of bytes transferred from a node s

to a node d in the NSFNET backbone within a certain 15-minute interval. Clearly, this

data, collected over a packet-switched network, cannot be directly applied to a circuit-

switched wavelength routing network, such as the one considered in this work. However,

our intention is simply to capture the relative tra�c demands among the di�erent source-

destination pairs. To this end, we �rst divide the entries of the matrix in [6, Figure 6]

by the link capacity (T3 links) to obtain the \o�ered load" �sd per source-destination pair.

Since the resulting values are too small, we multiply them by a constant to obtain reasonable

values for the o�ered load. Then, assuming that all calls have a mean holding time 1=� = 1,

the o�ered load values become the arrival rates �sd used in' the experiments. As a result,

the relative values of these arrival rates reect the relative tra�c requirements among the

di�erent source-destination pairs according to the speci�c tra�c pattern reported in [6].

Figures 5.9 and 5.10 present the call blocking probabilities for the selected pairs

of Table 5.4 and the �rst tra�c pattern. Figure 5.9 shows results for �xed routing, while

Figure 5.10 shows results for alternate routing with one alternate path per call. Because of

the irregular topology, the alternate paths for some of the calls are 6 hops long. The link

utilizations are in the range [1.846, 5.668] with an average of 3.494 under �xed routing, while

for alternate routing they are slightly higher, in the range [1.964, 5.722] with an average of

3.646.

Comparing Figure 5.9 to Figure 5.4 we observe that, in the NSFNET topology, as

in the regular 5 � 5 torus network, calls established over longer paths tend to experience

higher blocking probability than calls using short paths. However, because of the irregular

topology, the blocking probability can be signi�cantly a�ected by the actual load along the

path taken by a call. For instance, we observe in Figure 5.9 that the blocking probabilities of

calls established over, say, 1-hop paths vary widely depending on the number of other calls
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using the same path. Similar observations can be made by comparing Figures 5.10 and 5.5.

Regarding the accuracy of the decomposition algorithm, we note that, despite the wide

range of blocking probability values involved, the curve obtained analytically closely follows

the simulation curve for the 28 source-destination pairs shown in Figures 5.9 and 5.10. As

with the torus network, we also note that the assumption that overow tra�c is Poisson

does not appear to a�ect the performance of our algorithm when alternate routing is used.

Figures 5.11 and 5.12 are similar to Figures 5.9 and 5.10, respectively, except

that they present results for the second tra�c pattern derived from the tra�c statistics

presented in [6]. The utilization under this tra�c pattern is in the range [0.015, 8.059] with

an average of 3.976 for �xed routing, and in the range of [0.014, 9.231] with an average of

4.168 for alternate routing with one alternate path per call. As we can see, the relative

behavior of the two curves (obtained through the analytical techniques and simulation,

respectively) in Figures 5.11 and 5.12 is very similar to that in Figures 5.9 and 5.10, and

all our previous conclusions regarding the accuracy of our decomposition algorithm are still

valid, despite the fact that blocking probability values as high as 0.5 are involved. For these

high values, however, we can see that our analysis starts to underestimate the simulation,

while it overestimates it at lower blocking probability values. Despite this behavior, the

analytical and simulation results are always very close even at high loads.

Another interesting observation from Figures 5.11 and 5.12 is that, with the excep-

tion of a few source-destination pairs, using an alternate path does not have a signi�cant

impact on the call blocking performance. Consider, for instance, the source-destination

pairs (6,7) and (12,16) (labels 3 and 11 in the �gures). The primary path for pair (6,7) is

short (one hop) but the alternate path is quite long (�ve hops), thus, using an alternate

path does not improve the blocking probability experienced by this pair. On the other hand,

both the primary and the alternate paths for pair (12,16) are two hops long, thus, using

an alternate path reduces the overall blocking probability for this pair by about four orders

of magnitude! In general, source-destination pairs for which the alternate paths are longer

than the primary paths experience only a slight drop (if any) in blocking probability under

alternate routing. Since the tra�c load o�ered to the network is high and the blocking

probabilities also high, adding more tra�c to the network through alternate paths does

not improve the performance except for pairs for which the alternate path is short and not

highly utilized, as is the case with pair (12,16).

Finally, Tables 5.5 to 5.8 present a summary comparison of analytical and simu-
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lation results for all 240 source-destination pairs of the NSFNET topology for both �xed

and alternate routing and for both tra�c patterns used. The high maximum relative di�er-

ence values can be explained by the fact that, in a irregular topology such as the NSFNET

in Figure 5.8, some paths are underutilized and the corresponding blocking probabilities

are very low. Although our analysis correctly predicts low probabilities in these cases, the

corresponding simulation results give zero (or very close to zero) values. For instance, the

blocking probability for the second source-destination pair in Figures 5.11 and 5.12 (i.e.,

pair (15,16) in Figure 5.8) obtained by the simulation was zero. Although the analytically

computed probability was less than 10�6 (not plotted in the �gures), the relative error was

100%. Overall, however, we can see that the average absolute and relative di�erence be-

tween analytical and simulation values is very small, indicating that discrepancies between

simulation and analysis are limited to blocking probability values that are very low.
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Decomposition Algorithm for Mesh Networks with Fixed Routing

Input: Network topology, set R of paths for all source-destination pairs, and arrival rates

�sd

Output: Call blocking probabilities Psd for all source-destination pairs in the network

1. begin

2. From R construct the set of path sub-systems R0 into which the network

will be decomposed, as described in Section 5.1.2

3. For each r 2 R0 construct the set S(r) = fq 2 R0 j q intersects with rg

4. h 0 // Initialization step

Psd(h) 0 8 s; d // All blocking probabilities initialized to zero

5. h h + 1 // h-th iteration

For each path r = (r1; r2; � � � ; rk) 2 R0 do

// compute the arrival rates for this iteration

For each path q = (q1; � � � ; ri; � � � ; rj; � � � ; qm) 2 S(r) that intersects with

r from node ri to rj do

// Calls using path q a�ect the blocking probability of calls using path r;

// the call arrival rate seen by path r must be increased appropriately to

// accountf for the e�ect of these calls

�̂ri;rj(h)  �̂ri;rj(h) + (1� Pq1;qm(h� 1))�q1;qm

Solve each path sub-system r 2 R0 to obtain new values for the blocking

probabilities Psd(h)

7. Repeat from Step 5 until the blocking probabilities converge

8. end of the algorithm

Figure 5.2: Path decomposition algorithm



57

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 5.3: A 5� 5 bidirectional mesh torus network

Table 5.1: Selected source-destination pairs for the torus network

Pair (1,2) (1,5) (1,6) (1,21) (1,3) (1,4) (1,7) (1,10)

Label 1 2 3 4 5 6 7 8

Shortest
Path Length 1 1 1 1 2 2 2 2

Pair (1,11) (1,16) (1,22) (1,25) (1,8) (1,9) (1,12) (1,15)

Label 9 10 11 12 13 14 15 16

Shortest
Path Length 2 2 2 2 3 3 3 3

Pair (1,17) (1,20) (1,23) (1,24) (1,13) (1,14) (1,18) (1,19)

Label 17 18 19 20 21 22 23 24

Shortest
Path Length 3 3 3 3 4 4 4 4
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Figure 5.4: Blocking probability for selected source-destination pairs in the 5 � 5 torus
network with W = 10 and �xed routing
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Figure 5.5: Blocking probability for selected source-destination pairs in the 5 � 5 torus
network with W = 10 and alternate routing (one alternate path)
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Table 5.2: Summary of results for the 5� 5 torus network with �xed routing

Length of Absolute Di�erence Relative Di�erence
shortest path minimum average maximum minimum average maximum

1 4.8448e-04 5.1969e-04 5.5454e-04 46.16% 49.13% 52.02%

2 8.9264e-04 1.1658e-03 1.4208e-03 13.99% 17.67% 20.96%

3 2.2500e-03 2.5791e-03 2.8660e-03 8.85% 10.14% 11.27%

4 2.9144e-03 3.7916e-03 4.3548e-03 4.50% 5.85% 6.72%

Table 5.3: Summary of results for the 5 � 5 torus network with alternate routing (one
alternate path)

Length of Absolute Di�erence Relative Di�erence
shortest path minimum average maximum minimum average maximum

1 9.4551e-06 1.6180e-05 2.3559e-05 21.30% 36.53% 53.27%

2 0.0000e+00 1.7607e-05 5.0914e-05 0.00% 12.05% 26.45%

3 0.0000e+00 4.9275e-05 1.2382e-04 0.00% 5.08% 12.76%

4 0.0000e+00 1.7276e-04 3.7408e-04 0.00% 2.94% 6.37%
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Figure 5.6: Blocking probability for selected source-destination pairs in the 5 � 5 torus
network with W = 10 and alternate routing (two alternate paths)
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Figure 5.7: Blocking probability for selected source-destination pairs in the 5 � 5 torus
network with W = 10 and alternate routing (three alternate paths)
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Figure 5.8: The NSFNET topology
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Table 5.4: Selected source-destination pairs for the NSFNET topology

Pair (5,6) (15,16) (6,7) (12,15) (9,12) (7,9) (3,5) (5,15) (5,7) (6,9)

Label 1 2 3 4 5 6 7 8 9 10

Shortest
Path Length 1 1 1 1 1 1 1 2 2 2

Pair (12,16) (9,15) (7,12) (3,6) (3,9) (5,16) (5,12) (5,9) (6,15) (6,12)

Label 11 12 13 14 15 16 17 18 19 20

Shortest
Path Length 2 2 2 2 2 3 3 3 3 3

Pair (9,16) (7,15) (3,15) (3,12) (3,7) (6,16) (7,16) (3,16)

Label 21 22 23 24 25 26 27 28

Shortest
Path Length 3 3 3 3 3 4 4 4
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Figure 5.9: Blocking probability for selected source-destination pairs in the NSFNET with
W = 10 and �xed routing (�rst tra�c pattern)
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Figure 5.10: Blocking probability for selected source-destination pairs in the NSFNET with
W = 10 and one alternate path (�rst tra�c pattern)
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Figure 5.11: Blocking probability for selected source-destination pairs in the NSFNET with
W = 10 and �xed routing (second tra�c pattern)
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Figure 5.12: Blocking probability for selected source-destination pairs in the NSFNET with
W = 10 and one alternate path (second tra�c pattern)
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5.2.3 Converter Placement

We now consider the problem of determining the best placement of K converters

in a N -node network, N > K, that optimizes a given objective function. We emphasize

that our intention is simply to demonstrate how the decomposition algorithm presented

earlier can be used to gain insight into the problem of converter placement in a wavelength

routing network. A comprehensive study of this potentially di�cult problem is outside the

scope of this paper, and will be undertaken in future work.

The issue of converter placement in a single path of a network has been studied

in Chapter 4 and [29]. In Chapter 4, we used the single-path decomposition algorithm

to obtain the location of l converters in a k-hop path so as to minimize the end-to-end

blocking probability (note that the blocking probability of end-to-end calls is always the

highest among all calls in a single path). In [29], a dynamic programming algorithm for

converter placement in a single path was presented. The objective was to minimize either

the average or the end-to-end blocking probability, assuming negligible correlation of link

loads.

In a mesh network, average blocking probability is not an appropriate measure

of performance since it may not be representative of the actual blocking probability ex-

perienced along individual paths in the network. Therefore, our objective in this work is

to show how our techniques can be used to obtain the best placement of K converters so

as to minimize the maximum blocking probability over all source-destination pairs without

reducing the aggregate utilization of the network. One approach to the converter placement

problem would be to enumerate all possible ways of placing K converters in the network

topology and to evaluate each by computing the maximum blocking probability. Since there

are
�

N

K

�
ways of placing K converters at the N nodes of the network, this approach will

be prohibitively time consuming for anything but very small networks. Therefore, we ap-

ply a heuristic consisting of the following straightforward steps 2 to obtain a near-optimal

placement of K converters.

1. Initialize the number of converters k to zero.

2. Solve the network with k converters using the appropriate decomposition algorithm

2We emphasize that other heuristics may be possible for this problem, and may even have better per-

formance than the one considered here. However, as we mentioned earlier, our goal is not to study the

converter placement problem in depth, but rather to illustrate how our decomposition algorithm can be an
important tool in such a study.



65

Table 5.5: Summary of results for the NSFNET topology with �xed routing (�rst tra�c
pattern)

Length of Absolute Di�erence Relative Di�erence
shortest path minimum average maximum minimum average maximum

1 0.0000e+00 1.6249e-03 1.0968e-02 0.00% 50.21% 91.68%

2 0.0000e+00 6.2733e-03 2.5302e-02 0.00% 26.93% 72.96%

3 0.0000e+00 1.5380e-02 8.0166e-02 0.00% 15.54% 53.04%

4 0.0000e+00 2.1954e-02 9.0578e-02 0.00% 13.37% 48.41%

Table 5.6: Summary of results for the NSFNET topology with one alternate path (�rst
tra�c pattern)

Length of Absolute Di�erence Relative Di�erence
shortest path minimum average maximum minimum average maximum

1 0.0000e+00 7.3909e-04 1.1693e-02 0.00% 47.81% 100.00%

2 0.0000e+00 5.3932e-03 5.0883e-02 0.00% 54.96% 99.30%

3 2.3918e-04 1.8906e-02 1.0082e-01 0.52% 62.34% 97.24%

4 1.5798e-03 4.2221e-02 1.4450e-01 3.20% 50.86% 84.31%

Table 5.7: Summary of results for the NSFNET topology with �xed routing (second tra�c
pattern)

Length of Absolute Di�erence Relative Di�erence
shortest path minimum average maximum minimum average maximum

1 0.0000e+00 6.7571e-03 5.8573e-02 0.00% 46.26% 100.00%

2 3.1409e-06 2.2312e-02 1.4344e-01 0.06% 26.47% 100.00%

3 0.0000e+00 4.2773e-02 1.3520e-01 0.00% 16.79% 71.86%

4 9.4132e-03 7.2882e-02 1.3322e-01 3.92% 16.18% 31.31%
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(for �xed or alternate routing) described in Section 5.1.

3. Find the source-destination pair and corresponding path r with the highest blocking

probability such that not all nodes of r have converters.

4. Place a converter on the node of path r with the highest amount of transit tra�c that

does not already have a converter.

5. Repeat from Step 2 with k = k + 1 until all K converters have been placed.

In Figure 5.13 we plot the maximum blocking probability in the NSFNET topology

with the �rst tra�c pattern under the near-optimal placement of k; k = 1; � � � ; 16, converters

determined by the above heuristic. Results for both �xed and alternate (with one alternate

path per source-destination pair) routing are presented. For comparison purposes, we also

plot the maximum blocking probability for a network without converters (the values for zero

converters in the �gure). Figure 5.14 shows similar results for the second tra�c pattern.

The node at which a converter is placed at each step of the heuristic is also shown next to

the various curves in Figures 5.13 and 5.14.

As expected, the blocking probability drops as the number of converters increases.

However, after an initial steep drop, the curves become essentially at as the number of

converters increases (note that the blocking probability values are plotted in logarithmic

scale, therefore, the initial decreases in blocking probability are much more signi�cant, in

absolute value, than later ones). This behavior is consistent with the results of earlier work

[28, 29]. An important observation from Figures 5.13 and 5.14 is that the e�ect of converters

on the blocking probability is strongly dependent on the actual tra�c pattern. For instance,

consider the �rst tra�c pattern with �xed routing. When four converters are employed,

the maximum call blocking probability drops from to a value of 0.121 from a value of 0.187

when there are no converters, a di�erence of 35%. In contrast, increasing the number of

converters has a more dramatic e�ect for the second tra�c pattern. For the latter, the

maximum call blocking probability drops from 0.645 when there are no converters to 0.492

with four converters, a decrease of only 24%.

Let us now consider the location of converters for the two tra�c patterns, as

determined by our heuristic. We observe that the placement depends both on the load

pattern and on whether �xed or alternate routing is used. The fact that the near-optimal

location depends on the load suggests that in a dynamic network environment where the
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tra�c pattern varies over time, there is no single assignment of converters to nodes that will

work well for all possible loads. Consequently, simple optimization approaches, such as the

one considered here, that seek to minimize the maximum call blocking probability under

a speci�c tra�c pattern may lead to poor performance if the pattern changes. Instead,

more comprehensive approaches to the converter placement problem are needed, such as

providing bounds for the call blocking probability over a wide range of load patterns.

5.3 Concluding Remarks

We have presented a new path decomposition algorithm to accurately and e�-

ciently evaluate the call blocking performance of wavelength routing network with an ar-

bitrary topology. Our algorithm is applicable to networks with either �xed or alternate

routing and random wavelength allocation. Our iterative algorithm analyzes the original

network by decomposing it into single path sub-systems. These sub-systems are analyzed

in isolation by using our previous algorithms for a single path of wavelength routing net-

works, and the individual results are appropriately combined to obtain a solution for the

overall network. Our algorithm can also be applied to the problem of converter placement

in wavelength routing networks.
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Table 5.8: Summary of results for the NSFNET topology with one alternate path (second
tra�c pattern)

Length of Absolute Di�erence Relative Di�erence
shortest path minimum average maximum minimum average maximum

1 0.0000e+00 6.5743e-03 8.5910e-02 0.00% 55.16% 100.00%

2 0.0000e+00 3.1628e-02 3.8645e-01 0.00% 36.75% 95.55%

3 0.0000e+00 7.9681e-02 4.2839e-01 0.00% 28.68% 95.74%

4 1.3680e-04 1.1138e-01 3.7035e-01 0.10% 26.33% 59.55%
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Chapter 6

Comparison of Wavelength

Allocation Policies

In the previous two chapters, we only used the random wavelength allocation

policy. In this chapter, we study the blocking performance of several wavelength allocation

policies for various network topologies and tra�c patterns.

6.1 A Single Path of A Wavelength Routing Network

Let us �rst consider a single path of a circuit-switched wavelength routing network,

such as the k-hop path shown in Figure 4.1. A k-hop path consists of k + 1 nodes labeled

0; 1; � � � ; k, and hop i; i = 1; � � � ; k, represents the link between nodes i � 1 and i. (Unless

noted otherwise, the terms \hop" and \link" will be used interchangeably.) Each link in

the path supports exactly W wavelengths, and each node is capable of transmitting and

receiving on any of these W wavelengths. We let �ij ; j � i, denote the Poisson arrival rate

of calls that use hops i through j of the path, i.e., calls that originate at node i � 1 and

terminate at node j. For instance, �22 is the arrival rate of calls that only use hop 2 (that

is, those arriving at node 1 and leaving at node 2), while �12 is the arrival rate of calls

using hops 1 and 2 (refer to Figure 4.1). If the request can be satis�ed, an optical circuit

is established between the source and destination for the duration of the call. Call holding

times are exponentially distributed with mean 1/�. Also, �ij = �ij=� is the o�ered load of

calls using hops i through j.

We de�ne a \segment" of a k-hop path as a sub-path consisting of one or more
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consecutive links of the original path. We let nij , j � i, be a random variable representing

the number of calls using hops i through j that are currently active in the path. We also

let fij ; j � i, be a random variable representing the number of wavelengths that are free on

all hops i through j. As we shall shortly see, random variables nij and fij are part of the

state description for the Markov process corresponding to the k-hop path.

In our model, we allow some of the nodes in the path to employ wavelength convert-

ers. These nodes can switch an incoming wavelength to an arbitrary outgoing wavelength.

If no wavelength converters are employed in the path, a call can only be established if the

same wavelength is free on all the links used by the call. This is known as the wavelength

continuity requirement, and it increases the probability of blocking for calls using multiple

hops. If a call cannot be established due to lack of available wavelengths, the call is blocked.

On the other hand, if a call can be accommodated, it is assigned one of the wavelengths

that are available on the links used by the call. If there multiple available wavelengths, a

wavelength allocation policy must be employed to select a wavelength for the call. Di�erent

selection policies lead to di�erent call blocking probabilities. In this chapter we investigate

the following wavelength allocation policies:

� Random allocation: a call is randomly assigned one of the wavelengths that are avail-

able on the links used by the call. This policy has been extensively studied in the

literature, and we have developed approximate analytical algorithms to evaluate their

performance in Chapter 4 and 5.

� Most-used allocation: the wavelength that is used on the largest number of links in

the path (other, of course, than those used by the call) is assigned to the call; ties are

broken arbitrarily. The objective of the policy is to keep more wavelengths available

on long paths.

� Least-used allocation: the call is assigned the wavelength used in the smallest number

of links in the path, with ties broken arbitrarily. Intuitively, this policy results in

\wavelength fragmentation," and will lead to higher blocking probability for calls

traveling over long paths.

� First-�t allocation: the wavelength are given labels in a �xed order, and the call is

assigned the wavelength with the smallest label that is available on the links it uses.

The objective of this allocation is to minimize wavelength fragmentation. As we shall
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show later, its performance is very close to that of the most-used policy, but it is

easier to implement since there is no need to maintain information about global use

of wavelengths.

In a path with wavelength converters, the corresponding allocation policy is used to assign

a wavelength to the call within each segment of the path whose starting and ending nodes

are equipped with converters. In addition to the above wavelength allocation policies, we

will also study

� Circuit-switched paths: paths in which there are converters at all nodes. In circuit-

switching, a call can be established as long as at least one wavelength (not necessarily

the same one) is free on the links used by the call. Consequently, wavelength allocation

is not an issue under a circuit-switching scenario, and all allocation policies, including

the ones studied here, reduce to random allocation within each link.

In our study, we will use six di�erent tra�c load patterns to compare the wave-

length allocation policies against each other and against circuit-switching. The six patterns

are representative of the wide range of loading situations that one expects to encounter in

practice. Figures 4.13 and 4.14 illustrate the six tra�c patterns for a 10-hop path. Specif-

ically, the �gures plot the load �l of each hop l; l = 1; � � � ; 10; in the path, de�ned as the

sum of the o�ered loads �ij ; i � l � j, for all calls that use hop l, for each load pattern.

In the \uniform" pattern, all hops are equally loaded. The \bowl" (respectively, \inverted

bowl") pattern is such that the load decreases (resp., increases) from hop 1 to hop 5, and

then it increases (resp., decreases) from hop 6 to hop 10. These patterns are shown in

Figure 4.13. The \ascending" and \descending" patterns are such that the load increases

or decreases, respectively, from hop 1 to hop 10. Finally, in the oscillating pattern the load

at each hop alternates between a low and a high value. The last three load patterns are

shown in Figure 4.14. Similar load patterns were used for shorter paths. To ensure that

the results are comparable across the di�erent patterns, the load values were chosen so that

the total load (or, equivalently, the average load per hop) is the same for all patterns.

6.1.1 Policy Comparison for 2-hop Paths

We will �rst study the performance of the various wavelength allocation policies

for 2-hop paths as in Figure 4.2. The state space of these systems is small enough to
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obtain exact numerical solutions for the call blocking probabilities, providing insight into

the relative performance of the di�erent policies.

Exact and Approximate Markov Processes

We have shown in Chapter 4 that a 2-hop path with random wavelength allocation

can be characterized by the four-dimensional Markov process (n11; n12; n22; f12). The �rst

three random variables in the state description provide the number of active calls between

the three source-destination pairs in the path, and the last random variable gives the number

of wavelengths that are free on both links of the path. The state transition diagram of this

Markov process is shown in Figure 4.3 for W = 2 wavelengths, and it is straightforward

to see that the process is not time-reversible in Chapter 4. By modifying a few of the

transition rates of this process, we have been able to derive an approximate time-reversible

Markov process with the same state space, which has a product-form solution. If we let

G(W ) denote the normalizing constant for a 2-hop path with W wavelengths per link,

the solution of the approximate Markov process is given by Equation 4.14 in Chapter 4.

We have demonstrated in Chapter 4 that the blocking probabilities obtained through the

product-form solution to the approximate Markov process are very close to the blocking

probabilities obtained through the numerical solution to the original Markov process for a

wide range of tra�c loads.

Let us now consider the same 2-hop path with the most-used wavelength allocation

policy. This policy can be modeled by a Markov process with the state description as that

for the random policy: (n11; n12; n22; f12). The key di�erence is that, under the most-used

policy, if, say, n11 > n22, we know that there is at least one wavelength that is used on

hop 1 but not used on hop 2. Thus, an incoming call that uses the second hop only will be

assigned a wavelength that is already in use on the �rst hop, and will cause a transition to

state (n11; n12; n22 + 1; f12); similarly for n22 > n11 and incoming calls using only the �rst

hop. (Under the random wavelength allocation policy, the transition could be to either state

(n11; n12; n22+1; f12) or to state (n11; n12; n22+1; f12�1) if the number of free wavelengths

on both hops f12 > 0 and one of these wavelengths is assigned to the call.)

The state transition diagram of the Markov process for the most-used allocation

policy is shown in Figure 6.2 for a 2-hop path with W = 2 wavelengths. Again, it is

straightforward to verify that this Markov process is not time-reversible. Comparing to
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Figure 6.1, we note that despite having the same state space, the two processes di�er in two

ways. First, some of the transition rates are di�erent; for instance the transition rate from

state (0,0,1,1) to state (1,0,1,1) is equal to �11=2 for the random allocation, but �11 for the

most-used allocation. Second, some of the transitions are missing in the new Markov pro-

cess. For example, there is a transition from state (0,0,1,1) to state (1,0,1,0) under random

allocation in Figure 6.1, but there is no such transition in Figure 6.2. Furthermore, since

there is a transition from state (1,0,1,0) to state (0,0,1,1) in Figure 6.2, but no transition in

the reverse direction, it is not possible to obtain an approximate time-reversible process by

simply modifying some of the transition rates, as we were able to do for the random wave-

length allocation policy. Although we do not have an approximate product-form solution

for the most-used allocation policy, the state space for a 2-hop path is small enough that the

solution to the Markov process can be obtained numerically for up to W = 20 wavelengths.

Based on similar arguments, it can be determined that the least-used wavelength

allocation policy can also be modeled by a Markov process with the state description

(n11; n12; n22; f12). The state transition diagram for this process is shown in Figure 6.3,

and it can be easily veri�ed that the process is not time-reversible.

If a converter is placed at node 1 of the 2-hop path in Figure 4.2 (the only interest-

ing possibility in this case), the system becomes equivalent to a 2-hop circuit-switched path,

and it can be described by the three-dimensional Markov process (n11; n12; n22). Random

variable f12 becomes redundant because calls continuing on both hops can now use any of

the (W � n12 � n22) available wavelengths on the second hop. It is well-known that this

Markov process has the closed-form solution:

�cs(n11; n12; n22) =
1

G(W )

�n1111

n11!

�n1212

n12!

�n2222

n22!
(6.1)

It is also interesting to note that the normalizing constant in (6.1) is the same as that in (??).

In Figure 6.4 we show the state space of a 2-hop circuit switched path with two wavelengths.

Although this path is described by the above 3-dimensional Markov process, we include in

the state description of Figure 6.4 the random variable f12 to make it easier to compare

to Figures 6.1{6.3. For instance, the fact that there are no transitions into state (1,0,1,0)

in the �gure can be explained by recalling that f12 = 0 (i.e., that no wavelength is free on

both links of the path) implies that calls traversing both hops are blocked. However, since

exactly one wavelength is free on each hop (even if it is not the same one), calls traversing

both hops cannot be blocked in the circuit-switched path, and the system will never enter
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state (1,0,1,0), but only state (1,0,1,1).

The �rst-�t wavelength allocation policy can be modeled by a Markov process

with W state variables (l1; � � � ; lW ). Each random variable li corresponds to one of the W

wavelengths, and can take one of �ve values representing the status of wavelength i on the

two links of the path: 0, if the wavelength is free on both links, 1, if it is free on the �rst

link and busy on the second, 2, if it is busy on the �rst link and free on the second, 3,

if the wavelength is used by two di�erent calls on each link, and 4, if it is used by a call

traversing both links of the path. The state space of this Markov process is quite di�erent

than that in Figures 6.1{6.4, and no direct comparisons can be made. Furthermore, the

size of the state space is in the order of W 5, too large to obtain a numerical solution even

for relatively small values of W . The main motivation for considering the �rst-�t policy in

this work is that simulation results indicate that its performance is very similar to that of

the most-used policy, while it is easier to implement.

Numerical Comparison

Let us �rst consider the blocking performance of the random, most-used, least-

used, and circuit-switched systems for calls traversing both links of the 2-hop path. In

Figures 6.1{6.4, the blocking states for these calls are those with the last random variable

f12 = 0, i.e., those states in which neither of the two wavelengths is free on both links. We

also observe that, except for state (1,0,1,0) at the bottom of the four �gures, the transitions

(and transition rates) in and out of all other blocking states are exactly the same for all four

wavelength allocation policies. Consequently, we expect that the di�erence in the blocking

probability experienced by calls traversing both links of the path under the di�erent policies

will be mainly due to the steady-state probability of blocking state (1,0,1,0).

Referring to Figure 6.4, we note that the corresponding Markov process never

enters state (1,0,1,0). Thus, we expect that calls traversing both hops will experience

the least blocking probability in a circuit-switched path. In Figure 6.2 (most-used policy)

we note that there are two transitions into state (1,0,1,0), and four transitions out of it.

The blocking probability will be higher under this policy compared to the circuit-switched

case. The Markov process in Figure 6.1 (random policy) has two additional transitions into

state (1,0,1,0) from states (0,0,1,1) and (1,0,0,1) with rates �11=2 and �22=2, respectively.

Therefore, the blocking probability of these calls with the random policy will be higher than
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with the most-used policy. Finally, the Markov process in Figure 6.3 (least-used policy) has

the same transitions as the one in Figure 6.1, but the transition rates into state (1,0,1,0)

from states (0,0,1,1) and (1,0,0,1) are �11 and �22, respectively. Therefore, we expect that

these calls will experience the highest blocking probability under the least-used policy.

We now note that the lower the blocking probability for calls traversing both hops,

the larger the number of such calls accepted, and the larger the number of wavelengths they

occupy, leaving fewer wavelengths available for calls using a single link (either the �rst or

the second) of the path. Hence, we expect that the behavior of the four policies in terms of

the blocking probability of calls using a single link of the path will be exactly the opposite

of what was discussed above. Speci�cally, we expect the least-used policy to provide the

lowest blocking probability for these calls, followed by the random, the most-used, and the

circuit-switched policies, in that order.

The above conclusions, derived by direct comparison of the Markov processes, are

in agreement with intuition. We have con�rmed these conclusions by numerically comparing

the blocking probabilities of the various policies for 128 di�erent load values. Figures 6.5

and 6.6 show results for two cases corresponding to a uniform and descending load pattern,

respectively, similar to the corresponding patterns shown in Figures 4.13 and 4.14, and for

W = 10 wavelengths. More speci�cally, the arrival rates (refer also to Figure 4.2) used

in Figure 6.5 were �11 = 0:2; �12 = 0:2; �22 = 0:1, while for the results in Figure 6.6 we

used �11 = 3:0; �12 = 2:0; �22 = 2:0. The two �gures plot the blocking probability for the

three types of calls, namely, calls using the �rst hop only (label \hop 1" in the x-axis of the

�gures), calls using the second hop only (label \hop 2"), and calls using both hops (label

\both hops"). We �rst note that the results are consistent with the corresponding tra�c

pattern. For instance, under uniform loading (Figure 6.5), calls using the �rst hop only

experience the same blocking probability as hops using the second hop only, while in the

descending pattern (Figure 6.6), due to the lower load o�ered to the second hop, the latter

calls experience much lower blocking probability for all four policies. More importantly, the

relative values of the blocking probabilities for the four policies are also consistent with our

discussion above. Very similar results have been obtained for all 128 di�erent load values

that we have studied.

Finally, in Figure 6.7 we compare the most-used and �rst-�t policies for the same

arrival rates as those used for Figure 6.6. As before, the blocking probabilities of the

most-used policy were obtained through a numerical solution to the corresponding Markov
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process, while the values for the �rst-�t policy were obtained through simulation. We

observe that the blocking probabilities values of the �rst-�t policy are almost identical to

those of the most-used policy for all three types of calls. This result can be explained by

noting that both policies attempt to maximize the number of wavelengths that are available

for calls that use both hops of the 2-hop path by reducing the \fragmentation" of the set of

wavelengths. The most-used policy assigns to an incoming call that uses a single hop of the

path a wavelength that is already used on the other hop, if such a wavelength exists. On

the other hand, the �rst-�t policy attempts to achieve the same goal by searching the set of

wavelengths in a �xed order, thus increasing the chances that a wavelength used on a single

hop will be assigned to an incoming call using the other hop. As we can see from Figure 6.7,

the most-used policy is slightly more successful, but overall the blocking probability values

of the two policies are very close. Similar results have been obtained for all 128 tra�c loads

that we have studied.
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6.1.2 Policy Comparison for Longer Paths

Consider a k-hop path, k > 2, with the random wavelength allocation policy. Paths

consisting of four links or less can be analyzed by solving the corresponding approximate

time-reversible Markov process. For instance, a 3-hop path can be modeled by the 9-

dimensional Markov process (n11; n12; n13; n22; n23; n33; f12; f13; f23) whose solution can be

written down as a straightforward generalization of expression (??). Paths longer than four

hops are analyzed using the iterative decomposition algorithm in Chapter 4 to obtain the call

blocking probabilities. The analytical techniques developed in Chapter 4 are both accurate

and e�cient, and can be used when the path employs converters whose location is �xed but

arbitrary. When all nodes in a k-hop path employ converters (the circuit-switched case), the

call blocking probabilities can also be obtained by solving the corresponding k-dimensional

Markov process through a straightforward generalization of expression (6.1). For very large

k, when the computation of the normalizing constant becomes computationally expensive,

a decomposition algorithm similar to the one in Chapter 4 can be used.

Let us now consider the most-used wavelength allocation policy. It is not di�cult

to derive an exact Markov process to model a k-hop path, k > 2. However, unlike the 2-hop

path case, the state description of this process for a k-hop path, k > 2, contains a number of

random variables that is larger than the k2 random variables in the state description of the

process for the same path with random allocation. For a 3-hop path, for example, the state

of the Markov process for most-used allocation is described by 12 random variables, the nine

used to describe the corresponding process for random allocation plus three additional ones.

The larger state space, combined with the fact that an approximate closed-form solution

is not possible for this process, makes it di�cult to numerically obtain the call blocking

probabilities under this policy for paths longer than two hops by directly solving the exact

Markov process. Furthermore, developing an iterative algorithm for analyzing long paths

by decomposing them into 2-hop path sub-systems which can be solved in isolation, similar

to the algorithm developed for the random policy in Chapter 4, has turned out to be a

di�cult task. For such an algorithm, it is crucial to have an accurate estimate of the

blocking probability due to the wavelength continuity requirement for calls traversing more

than one sub-system. Since the di�erent wavelengths are not equally utilized, as under

random allocation, it is di�cult to derive an approximate expression for blocking due to

the wavelength continuity requirement that is accurate for a wide range of loads.
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Using similar reasoning, it can be seen that developing approximate analytical

techniques for the least-used and �rst-�t policies is also a rather hard task. Instead, we

have used simulation to obtain the call blocking probabilities for paths with the most-used,

least-used, and �rst-�t wavelength allocation policies 1.

Numerical Comparisons

In this section we present results for 6-hop and 10-hop paths, since the length

of these paths (in hops) is representative of future backbone wavelength routing networks.

Figures 6.8-6.11 correspond to a 6-hop path, while Figures 6.12-6.16 are for a 10-hop path.

In Figures 6.8 and 6.9 we compare the blocking probabilities for the four policies

(random, most-used, least-used, and circuit-switched) and for the uniform and bowl tra�c

patterns, respectively. The two �gures plot the blocking probability for the twenty one (21)

di�erent types of calls in a 6-hop path, numbered 1 through 21 in the x-axis. It is im-

portant to emphasize that the calls have been numbered such that numbers 1 through 6

correspond to the calls traversing a single hop in the path (i.e., hops 1 through 6, respec-

tively), numbers 7 to 11 correspond to calls that traverse exactly two hops in the path, and

so on.

From Figures 6.8 and 6.9 we observe that the relative behavior of the four policies is

similar to that shown in Figures 6.5 and 6.6 despite the fact that the tra�c patterns in these

�gures are very di�erent. Speci�cally, for calls using only one or two hop (calls one through

eleven in the �gures), the least-used policy provides the lowest blocking probability, followed

by the random policy, the most-used policy, and the circuit-switched case. However, for calls

traversing multiple hops, the situation is reversed. The same behavior has been observed for

other tra�c patterns and paths of di�erent length. We also note that, under the least-used

policy, the blocking probability of calls using multiple hops increases signi�cantly, and that

the average blocking probability over all calls is higher than other policies. Therefore, we

will not consider the least-used policy any further.

In Figure 6.10 we compare the most-used and �rst-�t policies for a 6-hop path with

an inverted bowl tra�c pattern. Again, as in Figure 6.7, we �nd that the two policies exhibit

almost identical blocking performance, not only for the end-to-end call, but for all calls,

1Approximate analytical techniques based on overow tra�c have been developed for the �rst-�t policy

in [15, 20]. However, these techniques are limited in that link blocking events are taken to be independent,
an assumption that is not accurate over a wide range of tra�c loads.
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Figure 6.8: Policy comparison, 6-hop path, uniform tra�c pattern
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Figure 6.9: Policy comparison, 6-hop path, bowl tra�c pattern
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regardless of the number of hops used by the calls; very similar results have been obtained

for all tra�c patterns studied. Therefore, for the rest of the paper we will concentrate on the

�rst-�t policy, since its implementation does not require that the network nodes maintain

information about the global use of wavelengths. Speci�cally, our objective is two-fold.

First, we will show that the values of the blocking probabilities obtained with this policy

are bounded by the blocking probability values obtained by the random policy without

converters and the circuit-switched case (equivalently, the random policy with converters

at all nodes of a path). Second, we will demonstrate that, for calls traversing multiple

hops, the gain (in terms of a reduction in blocking probability) obtained by employing the

most-used over the random policy is roughly equivalent to using the random policy and

deploying converters in the path or network.

In Figure 6.11 we compare the blocking probabilities of a 6-hop path obtained by

the �rst-�t policy to three other systems: a path with the random policy and no converters,

a path with the random policy and one converter at node 3, and a circuit-switched path

(i.e., a path with the random policy and converters at all nodes). As we can see, the �rst-�t

policy has an e�ect similar to that of using the random policy and employing a converter in

the path. This is a general result that has been observed for a wide range of tra�c loads,

and will be discussed in more detail shortly.

Figures 6.12-6.16 present results for a 10-hop path and various tra�c patterns. In

Figures 6.12-6.14 we compare the �rst-�t policy to the random (no converters) and circuit-

switched cases for the inverter bowl, oscillating, and ascending tra�c patterns, respectively.

Two interesting observations can be made from the three �gures. First, the blocking prob-

ability values of the �rst-�t policy are always between the corresponding values of the

random and circuit-switched cases. In other words, the blocking probability values under

the random and circuit-switched cases provide lower and upper bounds for the blocking

performance of the �rst-�t policy 2. Second, it appears that the �rst-�t policy is quite

e�ective in reducing the blocking probability of calls traveling over multiple hops (which

are the ones experience the highest blocking probability under the random policy) close to

the level of the circuit-switched case.

2Note that the random policy provides a lower bound for calls using a single hop, and an upper bound
for calls traversing multiple hops; the reverse is true for the circuit-switched path.
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Figure 6.10: Most-used vs. �rst-�t allocation, 6-hop path, descending tra�c pattern
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Figure 6.11: First-�t policy vs. random policy with converters, 6-hop path, bowl tra�c
pattern
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Figure 6.12: Policy comparison, 10-hop path, inverted bowl tra�c pattern
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Figure 6.13: Policy comparison, 10-hop path, oscillating tra�c pattern
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Figure 6.14: Policy comparison, 10-hop path, ascending tra�c pattern

In Figure 6.15 we compare the �rst-�t to the most-used policy for the descending

tra�c pattern. As before, the blocking probability values of the two policies match for all

types of calls. Finally, in Figure 6.16 we attempt to quantify the e�ect of the �rst-�t policy

in terms of \number of converters." Speci�cally, we plot the blocking probability values for

the �rst-�t policy as well as those of a random policy with either three or �ve converters.

The converters are placed at nodes in a way that minimizes the blocking probability of

calls traveling over all 10-hops, using the techniques developed in Chapter 4. Note that,

by employing converters at some of the nodes, the blocking probability of calls traversing

multiple hops improves, since converters reduce the requirement that the same wavelength

be used on all hops of the path taken by the call. However, this improvement is at the

expense of calls using a single hop, which now experience higher blocking probability. As

we can see, the e�ect of using the �rst-�t policy in place of the random policy has an e�ect

similar to employing converters.
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Figure 6.15: Most-used vs. �rst-�t allocation, 10-hop path, bowl tra�c pattern
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6.2 Mesh Wavelength Routing Networks

In this section we further investigate the e�ects of the most-used and �rst-�t

policies on the call blocking probabilities compared to the e�ect of converters, by studying

two network topologies: the regular 5 � 5 torus network in Figure 5.3, and the NSFNET

irregular topology in Figure ??.

6.2.1 The 5� 5 Torus Network

Let us �rst consider the 5 � 5 torus network shown in Figure 5.3, with W = 10

wavelengths per link. Since there are 600 source-destination pairs in this network, it is

impossible to present numerical results for all of them. We present, therefore, the call

blocking probabilities for only 24 di�erent source-destination pairs, namely, those with

node 1 as the source. Because of the regular topology, the selected pairs are a representative

sample of the various source-destination pairs. Similar to previous �gures, the source-

destination pairs have been labeled such that numbers 1 through 4 correspond to pairs for

which a 1-hop path is used, numbers 5 to 12 correspond to pairs for which a 2-hop path is

used, and so on.

In our study we have used two tra�c patterns. The �rst pattern is listed in

Equation 5.8. For the second pattern (which we will refer to as the random pattern), each

arrival rate �sd was selected from a uniform distribution in the range (0.1,0.4).

In Figure 6.17 we compare the blocking probabilities obtained through the most-

used and �rst-�t policies for the pattern based on locality of tra�c. From the �gure, we

observe that calls using a single hop (labels 1 to 4 in the �gure) experience the lowest

blocking probability, calls traveling over two hops have the next lowest blocking probability,

and so on. (The fact that the blocking probability values are almost the same for all calls

using the same number of hops is due to the symmetry of both the topology and the tra�c

pattern.) We also see that the two policies result in almost identical blocking probability

values for all calls, further con�rming our claim that the (simpler) �rst-�t policy can be

used as a quite accurate approximation of the most-used policy. Similar results, not shown

here, have been obtained for the random tra�c pattern.

In Figures 6.18 and 6.19, we compare the �rst-�t policy to the random policy

and the circuit-switched case, under the two tra�c patterns. It is clear from both �gures

that the blocking probability values under the �rst-�t policy are between those of the other
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two cases, a behavior which is consistent with our earlier results on single paths. However,

there is also an important di�erence in the two �gures. While the e�ect of the �rst-�t policy

appears to have a signi�cant e�ect for the tra�c pattern based on locality (Figure 6.18), in

that the blocking probability values for calls using multiple hops drops signi�cantly from the

corresponding values under the random policy, this e�ect is less pronounced in Figure 6.19

for the random tra�c pattern. This di�erence can be explained by noting that the values

of the blocking probability for calls 13 and higher in Figure 6.19 are more than 0.1, about

an order of magnitude higher than the values for the corresponding calls in Figure 6.18.

At such high values, not many wavelengths are available for these calls, thus, the actual

wavelength allocation policy used will have little e�ect on the blocking probability. It is at

these high blocking probability values that having converters at all nodes (circuit-switched

case) will help. However, it is unlikely that realistic networks will be designed to operate

in this region.

In Figures 6.20 and 6.21 we compare the �rst-�t policy to the random policy with

4, 8, and 12 converters employed in the torus network (note that these values correspond

to 16%, 32% and 48%, respectively, of the network nodes having converters). As we can

see, using the �rst-�t policy is roughly equivalent to employing a signi�cant number of

converters in the network. Another important observation form these �gures is that em-

ploying converters has a rather uneven e�ect on the blocking probabilities of the various

calls. Speci�cally, calls whose path includes a converter experience a rather dramatic drop

in blocking probability, but the e�ect of converters on the blocking probability of other

calls is considerably smaller. The �rst-�t policy, on the other hand, evenly decreases the

blocking probability for calls traveling over long hops. This result is evident not only in

Figures 6.20 and 6.21 but in the results for the 6-hop and 10-hop paths, as well as for the

NSFNET discussed next.

6.2.2 The NSFNET Topology

We have also considered a realistic example of a backbone network, namely, the

NSFNET irregular topology shown in Figure 5.8. Since we will be using tra�c data reported

in [6], following that study, we have also augmented the 14-node NSFNET topology by

adding two �ctitious nodes, nodes 1 and 16 in Figure 5.8, to capture the e�ect of NSFNET's

connections to Canada's communication network, CA*net. The resulting topology consists
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Figure 6.17: Most-used vs. �rst-�t allocation, 5� 5 torus network, tra�c pattern based on
locality
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Figure 6.18: Policy comparison, 5� 5 torus network, tra�c pattern based on locality
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Figure 6.19: Policy comparison, 5� 5 torus network, random tra�c pattern
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Figure 6.20: First-�t policy vs. random policy with converters, 5�5 torus network, pattern
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of 16 nodes and a total of 240 source-destination pairs. As in the previous subsection, we

only present detailed results for the call blocking probabilities of only a small number of

calls, those involving nodes along the path (3,5,6,7,9,12,15,16). (We note, however, that

the shortest path used by some of these calls is not a sub-path of (3,5,6,7,9,12,15,16); for

instance, the shortest path for calls between nodes 3 and 15 is (3,5,11,15).) There are 28

source-destination pairs in this path, and in Figures 6.22 to 6.26 they have been labeled such

that numbers 1 to 7 refer to pairs for which the shortest path is one hop long, numbers 8

to 15 correspond to pairs with a shortest path of two hops, etc.

We have used the same tra�c patterns as used in Chapter 5 with the NSFNET

topology. The �rst pattern is listed in Equation 5.9. The second tra�c pattern used the real

tra�c data in [6, Figure 6]. All values used here are exactly half of those used in Chapter

5.

Our results are presented in Figures 6.22-6.26. Figure 6.22 compares the �rst-�t

to the most-used policies. Figures 6.23 and 6.24 demonstrate that the random and circuit-

switched cases provide upper and lower bounds on the performance of the �rst-�t policy,

while Figures 6.25 and 6.26 attempt to quantify the e�ect of the �rst-�t policy in terms of

number of converters. The converters were placed in the network using the optimization

techniques in Chapter 5. The overall behavior of the graphs shown in these �gures is very

similar to that discussed earlier for the torus network and the single path cases, indicating

that our observations and conclusions are valid for a wide range of network topologies and

tra�c patterns.

6.3 Concluding Remarks

We have studied the blocking performance of various wavelength allocation policies

for various single path and network topologies and under various tra�c patterns. Our

conclusions can be summarized as follows:

� We have shown that the most-used and �rst-�t policies have very similar performance

for all calls in a network, regardless of the number of hops used by the calls. Speci�-

cally, the two policies tend to favor calls using multiple paths at the expense of calls

using a single path. This is a desirable feature, since calls traversing multiple paths

experience the highest blocking probability. However, the most-used policy requires
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Figure 6.21: First-�t policy vs. random policy with converters, 5�5 torus network, random
tra�c pattern
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Figure 6.22: Most-used vs. �rst-�t allocation, NSFNET, pattern based on actual tra�c
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Figure 6.23: Policy comparison, NSFNET, tra�c pattern based on locality
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Figure 6.24: Policy comparison, NSFNET, pattern based on actual tra�c
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Figure 6.25: First-�t policy vs. random policy with converters, NSFNET, tra�c pattern
based on locality
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Figure 6.26: First-�t policy vs. random policy with converters, NSFNET, random tra�c
pattern
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that the network nodes exchange information about the network-wide usage of wave-

lengths, while the �rst-�t policy only relies on a �xed ordering of wavelengths, making

it signi�cantly easier to implement.

� We have also demonstrated that the random policy and the circuit-switched case,

for which analytical (exact or approximate) solutions exist for systems of large size,

provide lower and upper bounds on the call blocking probability under the �rst-�t

(or most-used) policy. Speci�cally, for calls using one or two hops, the random policy

provides a lower bound and the circuit-switched case provides an upper bound, while

for calls using longer paths the bounds are reversed.

� We have presented results which indicate that the e�ect of using the �rst-�t policy is

\equivalent" to using the random policy but employing a number of converters (be-

tween 15% to 50% of the number of nodes) in the network. More importantly, in most

cases, introducing the �rst-�t policy results in a decrease in the blocking probability

of calls traveling over multiple hops to a level very close to the blocking probability

experienced under the circuit-switched case. Note that, in terms of implementation,

there is no signi�cant di�erence between the �rst-�t and random policies. Conse-

quently, the gains obtained by employing specialized (and expensive) hardware can

be realized by making more intelligent choices in software.

� It also appears that the bene�ts of the �rst-�t policy diminish at high loads (blocking

probability values of 0.1 or more). It is a these situations that employing converters

would bene�t calls traversing a large number of hops. However, the number of con-

verters to be employed in this case must be very large, close to the number of nodes

in the network, and even if all nodes contain converters the blocking probability will

remain at (reduced but) high levels. Since it is unlikely that future wavelength rout-

ing networks will be designed to operate at such high call blocking probability values,

attempting to reduce these values may not be of practical importance.

Overall, our results appear to contradict previous studies which have indicated

that \sparse" wavelength conversion capabilities (i.e., selective placement of converters at a

subset of network nodes) will be bene�cial to wavelength routing networks. Those studies

measured the improvement obtained by employing converters over the random wavelength

allocation policy only, while we have shown that an equivalent improvement can be achieved
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merely by using appropriate allocation policies such as �rst-�t or most-used. While further

investigation of the value of converters is warranted, our results can have a major impact

on the direction of research and development in the area of wavelength converters.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions and Future Work

The analytical framework presented in this thesis can be used evaluate blocking

probabilities of wavelength routing networks accurately and e�ciently. We �rst presented

an exact Markov process for a single path, and constructed an approximate Markov process

which has a closed-form solution. We then developed and evaluated iterative decomposi-

tion algorithms for long path and mesh networks. Moreover, our algorithms can calculate

the blocking probabilities of networks with �xed or alternate routing network with any

number of wavelength converters. We show that the blocking probabilities for the random

wavelength allocation and the circuit-switched case provide upper and lower bounds on the

blocking probabilities for �rst-�t wavelength allocation policies that are most likely to be

used in practice. Compared with simulation, our analytical results are accurate and the

computation time is much improved. The average relative error is around 15% for moderate

blocking probabilities under �xed routing. The computation time is improved from more

than ten hours for simulation to less than one hour for analytical model.

Several interesting issues may be investigated in the future:

� In our models, it was assumed that the arrival rate was Poisson. It may be possible

to extend the analysis to non-Poisson tra�c. This will give a more accurate model

for the overow tra�c when modeling alternate routing. However, the improvement

in accuracy must be weighted against the complexity of the non-Poisson model.

� Dynamic routing is widely adopted in telecommunication networks today, and is likely
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to be adopted in optical network too. Extending the static routing model to dynamic

routing is an interesting research topic.

� Optimal wavelength converter placement for arbitrary network topologies should be

investigated. A quantitative comparison of the performance gains by introducing

wavelength converters against using the �rst-�t wavelength allocation policy should

also carry out.

� Multiservice loss models have been studied extensively in circuit-switched networks.

This work should be extended to optical networks.

� Finally, with the increase of multicast applications on the Internet, multicast protocols

and routing algorithms in optical networks should be studied and developed.
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Appendix A

A.1 Proof of Lemma 3.1

Proof. We will show that the state descriptor in (4.2) provides all the information necessary

to predict the future evolution of a k-hop system. Let us �rst consider the arrival of a call

that uses hops i through j � i, inclusive, and which �nds the system in state n. If i < j,

the number of wavelengths that are free on hops i through j is given by parameter fij . If

i = j, the number fii of wavelengths that are free on hop i, is not included in the state

description of MCMk, but it can be easily derived as

fii = W �
X

1�l�i�m�k

nlm (A.1)

If fij = 0, the call is blocked, and the system remains at state n. If fij > 0, however, the

call will be randomly assigned one of the fij free wavelengths, and the system will make a

transition to state n0 such that:

n0lm =

8<
:

nlm + 1; l = 1 and j = m

nlm; otherwise
; f 0ij = fij � 1 (A.2)

In addition, the values of some other parameters flm may be a�ected, depending on the

particular wavelength assigned to the call. For instance, let us assume that i = j, and

consider a parameter flm; l � i � m, in state n that has a non-zero value. Obviously,

flm � fii, since the set of free wavelengths on hops l through m is a subset of the set of

free wavelengths on hop i alone. Because of the random wavelength assignment policy, with

probability flm
fii

the new state n0 will have f 0lm = flm � 1, while with probability 1 � flm
fii

it

will have f 0lm = flm. Similarly when i < j. Thus, upon the arrival of a call request, the

information in the descriptor of the current state n is su�cient to determine all possible

new states n0, as well as the corresponding transition rates.
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Let us now consider the completion of a call that uses hops i through j � i,

inclusive, when the system is in state n with nij > 0. The system will make a transition to

a new state n0 such that:

n0lm =

8<
:

nlm � 1; l = 1 and j = m

nlm; otherwise
; f 0ij = fij + 1 (A.3)

As with a call arrival, the values of some other parameters flm may be a�ected. For

simplicity, let us again assume that i = j; similar arguments apply when i < j. Because of

the memoryless property, the completed call is equally likely to be any of the nii active calls

on hop i. Consider parameter flm; l � i � m, and parameters fl;i�1 and fi+1;m. Obviously,

flm � fl;i�1 and flm � fi+1;m. If flm = fl;i�1 or flm = fi+1;m, the transition due to the

completion of the call will not a�ect the value of flm. But if flm < fl;i�1 and flm < fi+1;m,

if the newly freed wavelength is the same as one of the free wavelengths on hops l through

i � 1 and on hops i + 1 through m, then the new state will have f 0lm = flm + 1. The

probability of the last event can be computed as follows. Of the fl;i�1 wavelengths, fl;i are

also free on hop i, so fl;i�1� fl;i are not free on hop i. Similarly, of the fi+1;m wavelengths,

fi+1;m � fi;m are not free on hop i. The probability that the newly freed wavelength is

one of fl;i�1 � fl;i is simply
fl;i�1�fl;i

nii
, and the probability that it is one of fi+1;m � fi;m

is
fi+1;m�fi;m

nii
. Therefore, the probability that the newly freed wavelength will increase the

number flm of wavelengths that are free on hops l is
fl;i�1�fl;i

nii

fi+1;m�fi;m
nii

. Again, we have

su�cient information to determine the set of possible new states n0 and the transition rates

upon the termination of an active call. 2


