
ABSTRACT

LIU, ZEYU. On Routing and Wavelength Assignment in WDM Networks. (Under the direction
of Dr. George Rouskas.)

With the help of advanced technology, WDM networks nowadays can support up to more

than 100 wavelength on a single fiber. This feature brings new challenges to routing and

wavelength assignment (RWA) problem, which is a NP-hard problem. There are three existing

categories of integer linear programming (ILP) formulations to solve this problem optimally,

namely, link-based, path-based and maximal independent set (MIS)-based formulations. All of

the these experience bottlenecks of either wavelength symmetry problem or enormous problem

size, which limits their scalability to very small networks. In this dissertation, we study the

RWA problem in depth and greatly improve all three existing ILP formulations.

For ring networks, we propose a new, exact ILP formulation that decomposes the path set

recursively into several partitions and represents the original MIS with smaller MIS calculated

in these partitions. As a result, this MIS decomposition formulation decreases the number of

decision variables to a large extent, without sacrificing the benefit of MIS-based formulation. By

our simulation analysis, compared with the existing formulations, the new MIS decomposition

formulation gains a more-than-3-orders-of-magnitude decrease in running time. Typically, this

new formulation based on MIS ILPs could solve any existing WDM ring networks with any

number of wavelengths in just a few seconds.

In mesh networks, we introduce the concept of a symmetric RWA solution and develop a

new, fast path-based formulation for obtaining such solutions. Experimental study indicates

that the approach improves the performance of the original path-based formulation by 2 orders

of magnitude in terms of running time. With this new proposed formulation, we can solve mesh

topologies representative of backbone and regional networks. The scalability of this approach

makes it possible to characterize the performance of heuristics for the RWA problem and our

experimental study shows that solutions obtained by the proposed approach are 20% − 60%

better than those obtained by heuristics.

As link-based formulation has a natural advantage over path-based and MIS-based formu-

lation in terms of optimality in mesh networks, we propose a new, fast, link-based formulation

with wise link selection algorithms. This new approach reduces the problem size by pruning the

redundant link decision variables. The formulation scales well to mesh topologies representative

of backbone and regional networks. Simulation results show that it decreases the running time

by 2 orders of magnitude while providing better-quality solutions than path-based and MIS-

based formulation. More importantly, this approach is applicable not only to the link-based

formulation for the RWA problem, but also to ILP formulations for any problems formulated



as ILPs that use multicommodity flow equations as their core constraints.

Additionally, we extend our study to traffic grooming, a network design problem that in-

cludes RWA as a subproblem. We present a scalable formulation for the traffic grooming

problem in WDM ring networks, incorporating the fast MIS decomposition formulation to the

RWA subproblem. Our experimental study indicates that the new formulation results in an

improvement of up to 2 orders of magnitude in running time. Consequently, it is now possible

to solve the traffic grooming problem to optimality for 16-node rings in a few seconds, under

our objective function.
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Chapter 1

Introduction

1.1 The Routing and Wavelength Assignment (RWA) Problem

In today’s optical networks, wavelength division multiplexing (WDM) technology is widely

adopted. The technology uses a number of distinct wavelengths to implement separate chan-

nels [53]. With WDM, the enormous low-loss bandwidth of optical medium can be exploited

efficiently by simultaneously carrying up to hundreds of wavelengths in one fiber.

In wavelength routed WDM networks, traffic is carried by logical connections implemented

using lightpaths from sources to destinations space[52]. These lightpaths, also referred to as

λ-channels, are purely in the optical domain, and there is no need for signal processing between

electrical and optical domains. In Figure 1.1, two lightpaths in a small network are shown, each

lightpath represented by a solid line of a different color.

Each lightpath in a WDM network must be assigned a path and wavelength through the

network. This is referred to as the Routing and Wavelength Assignment (RWA) problem. A

feasible assignment for the problem must satisfy two constraints [52]:

• Wavelength continuity constraint. The same wavelength must be assigned to all the links

along the path traversed by a lightpath. In Figure 1.1, this constraint is represented by

using a single color for each lightpath.

• Distinct wavelength constraint. If two or more lightpaths share a common link, each must

be assigned a distinct wavelength. In Figure 1.1, this constraint requires that the two

lightpaths sharing a link be represented by two different colors.

RWA is a fundamental problem in the engineering, control, and design of optical networks,

and arises in most network design applications, including traffic grooming [7, 63, 77], surviv-

ability design [25, 24], and traffic scheduling [19, 30]. Because of the two constraints mentioned

above, there is tight coupling between routing and wavelength assignment. As a result, the
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routing node

access node

Figure 1.1: Lightpaths in wavelength routed WDM network

RWA problem is significantly more difficult than routing problems in electronic networks [57]

where such coupling does not exist.

Formally, the RWA problem can be stated as follows in terms of input, output, constraints,

and objective

• Input: the network topology and a set of connection requests.

• Output: the lightpaths to be established (one per connection request), each lightpath

defined by the path along which it is set up and a wavelength.

• Constraints: wavelength continuity constraint, distinct wavelength constraint, maximum

number of wavelengths on a fiber (only for the maxRWA objective below).

• Objective:

-minRWA: establish all connection requests using the minimum number of wave-

lengths.

-maxRWA: maximize the number of requests that are established given the maximum

number of wavelengths that each fiber can support.

Both the minRWA and maxRWA problems are NP-hard; for a proof, the reader is referred

to [39].

1.2 Related Work

The optimal solution to RWA problem may be obtained by using Integer Linear Programming

(ILP) formulations. Existing ILP formulations may be classified as link-based [46], path-based

[51], or maximal independent set (MIS)-based [51]. The former two have a symmetry problem,

in that the solution is highly symmetric with respect to wavelength permutations, as shown in

2



routing node

access node

Figure 1.2: Symmetry problem in Link & Path formulations

Figure 1.2. Specifically, any permutation of the solution wavelengths represents an equivalent

optimal solution, hence an ILP solver (e.g., ILOG CPLEX) may spend a significant amount

of time examining solutions that do not improve the objective function. Consequently, the

symmetry property represents a crucial bottleneck in solving real-life WDM networks that are

capable of supporting a large number (more than 100, with current technology) of wavelengths.

Moreover, all the three formulations suffer from a severe scalability problem. Specifically, the

number of variables and constraints in all three formulations grows rapidly as the network size

grows. Especially in the MIS-based formulation, the number of MIS’s grows exponentially with

the total number of paths in the network, making this approach impractical as the network size

increases. We will discuss the existing ILP formulations in detail in Chapter 2.

Because of the inherent complexity of the RWA problem, many heuristic algorithms have

been proposed to solve it [42]. Most heuristic approaches divide the problem into two sub-

problems, one for routing lightpaths and one for assigning wavelengths, and solve each sep-

arately [36, 47]. However, it is difficult to characterize the quality of solutions obtained by

such heuristics; importantly, considering each sub-problem separately may fail to find feasible

solutions even if one exists.

1.3 Contributions

RWA is a fundamental problem in optical network design and optimization. However, existing

optimal approaches experience severe scalability issue. As we will demonstrate later, existing

ILP formulations (whether link-, path-, or MIS-based) cannot tackle the RWA problem on

large rings up to the maximum size of SONET/SDH networks (equal to sixteen nodes), not

to mention mesh network topologies representative of backbone or regional networks. In this

dissertation, we improve all three existing formulations greatly and extend the good result to

3



traffic grooming problem, which includes RWA as a subproblem.

The first part of our work is regarding the RWA problem in ring networks. It is based on the

observation that the current optical transport infrastructure is largely based on SONET/SDH

ring networks that may support more than one hundred wavelengths on each fiber link. There-

fore, new approaches for solving the RWA problem optimally on large ring networks are of high

practical value for network operators. Since the link- and path-based formulations have a sym-

metry problem, we focus on the MIS-based formulation. The latter is“future-proof” in that as

we will show in the next chapter, its size is independent of the number of wavelengths, and thus,

it is not affected by advances in WDM technology. The challenge with the MIS formulation is

the exponential increase in the number of MIS decision variables with the size of network. To

overcome this issue, we propose a new, exact ILP formulation that dramatically reduces the

problem size. The key idea is to decompose the path set of the MIS formulation recursively into

several partitions, and represent the MIS formulation recursively into several partitions, and

represent each original MIS by the smaller MISs calculated in each of the partitions. We refer

to this ILP formulation as the MIS decomposition with 2x partitions, or MISD-2x, where x is a

parameter representing the number of times the decomposition has been effected. Experimental

study to be presented indicates that MISD-8 improves the time required to obtain an optimal

solution by three or more orders of magnitude, compared to existing formulations, making it

possible to solve 16-node rings in only a few seconds.

Secondly, we extend our study to mesh networks. As backbone and regional networks evolve

from ring to mesh, optimal RWA solutions for general topologies are becoming important to

network designers and operators. Unfortunately, current optimization methods cannot be used

to solve optimally mesh network instances arising in practice. Even the MIS decomposition

could not scale well in mesh networks due to the greater number of MIS generated in mesh

topologies. We then introduce the concept of a symmetric RWA solution and develop a new,

fast path-based formulation for obtaining such solutions. Experimental study indicates that

the approach improves the performance of the original path-based formulation by 2 orders

of magnitude in terms of running time. With this new proposed formulation, we can solve

mesh topologies representative of backbone and regional networks in a reasonable time. The

scalability of this approach makes it possible to characterize the performance of heuristics on

large network topologies in RWA problem. Specifically, our experimental study shows that

solutions given by the proposed approach are 20% − 60% better than those given by LFAP,

a very well-performed heuristics. This reveals the large solution quality difference between

ILPs and heuristics for the first time, and it gives the network operators choices to select a

much-better-quality solution with little sacrifice of running time.

Thirdly, we continue to seek even better solutions with link-based formulation. As link-

based formulation takes links as entities of interest, it provides the overall optimal solution

4



among the three types of ILPs, but it lacks scalability due to the large number of variables in the

formulation. We successfully reduce the problem size by proposing a new, fast formulation with

wise link selection. This new approach reduces the problem size by pruning the redundant link

decision variables. The formulation scales well to mesh topologies representative of backbone

and regional networks. Simulation results show that it decreases the running time by 2 orders

of magnitude while providing even-better-quality solutions than path-based and MIS-based

formulation. More importantly, this approach applies not only to the link-based formulation

of the RWA problem, but also to ILP formulations for any problems that use multicommodity

flow equations as their core constraints. As a result, a large variety of network design problem

could benefit from this technique.

Additionally, we extend our study to traffic grooming, a network design problem that in-

cludes RWA as a subproblem. We present a scalable formulation for the traffic grooming prob-

lem in WDM ring networks, incorporating the fast MIS decomposition formulation to RWA

problem. Our experimental study indicates that the new formulation results in an improve-

ment of up to 2 orders of magnitude in running time. Consequently, it is now possible to

solve the traffic grooming problem to optimality for 16-node rings in a few seconds, under our

objective function.

The works in this dissertation have several practical benefits:

• They make it possible to solve existing WDM network extremely fast, allowing network

operators to carry out “what-if” analysis practically and efficiently;

• They have the potential to speed up solutions to several optical network design problems

that include RWA as a subproblem, such as traffic grooming [40, 41, 58], survivability

design [50, 49], and traffic scheduling [48, 54]; and

• They make it possible to characterize the performance of heuristics on large networks,

and develop new efficient heuristics.

1.4 Structure of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we discuss the existing ILP

formulations and quantify the size of each in terms of the number of decision variables and

constraints. In Chapter 3, we introduce a new, exact formulation for ring networks based

on decomposition of the MIS set. In Chpater 4, we introduce the concept of a symmetric

RWA solution and develop a new, fast path-based formulation for obtaining such solutions. In

Chapter 5, a fast link-based formulation with link selection algorithm to solve mesh topologies

representative to backbone networks is proposed. Chapter 6 extends our RWA result to the

5



traffic grooming problem and presents a scalable formulation for traffic grooming in WDM ring

networks. Chapter 7 concludes the dissertation and briefly discusses future research directions.
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Chapter 2

Existing ILP Formulations

In this chapter, we present and analyze the path-, link-, and MIS-based ILP formulations for

the minRWA problem. Formulations for the maxRWA problem are similar, and are omitted.

In the formulations, we will use G(V,E) to represent the network topology1, where V is the

set of nodes and E is the set of links in the network. We consider bidirectional networks, hence

a link l ∈ E between two nodes s and d represents two fibers in opposite directions connecting

the two nodes. Let N = |V | be the number network nodes. We also let W denote the number

of wavelengths available at any fiber link. The given traffic demand is represented by an N ×N

matrix T = [tsd], where tsd is a non-negative integer denoting the number of lightpaths to be

set up from node s to node d; matrix T need not be symmetric, i.e., in general we assume that

tsd %= tds.

In the formulations, we will use l as the link index, w as the wavelength index, k as the

path index, and m as the MIS index. Additional notation will be introduced as needed.

2.1 Link Formulation

The link formulation is based on expressing the RWA problem as a multicommodity flow prob-

lem space[46]. Let us define the following sets of decision variables:

• clwij ∈ {0, 1}: binary variable that indicates whether there exists a lightpath from node

i to node j that uses wavelength w on link l (see Figure 2.1)

• uw ∈ {0, 1}: binary variable that indicates whether wavelength w is used anywhere in

the network

• ωtotal: number of wavelengths used in the whole network

With these notations, the link ILP formulation can be expressed as:
1The formulations we present are valid for general topology networks, not just rings.
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Figure 2.1: Illustration on clwij variable

Minimize : ωtotal

Subject to:

∑

links l
outgoing from n

clwij −
∑

links l
incoming to n

clwij =











0, n %= i, j;

tij , n = i;

−tij, n = j.

∀n, i, j ∈ V,∀w (2.1)

∑

i,j

clwij ≤ 1, ∀l ∈ E,∀w (2.2)

∑

i,j

∑

l

clwij ≤ uwN(N − 1)|E|, ∀w (2.3)

Wtotal ≥ wuw, ∀w (2.4)

uw = 0, 1, ∀w; clwij = 0, 1, ∀i, j, l, w (2.5)

Expression (2.1) are the multicommodity flow equations at node n. Specifically, if n is an

intermediate node in the path from some source i to some destination j, the traffic coming in

should be equal to the traffic going out, as such traffic is not dropped at, or originates from, this

node, hence the left hand side of (2.1) is equal to zero. If n is the source node i, the first sum

of the left hand side is equal to the traffic tij to node j and the second sum is zero. Similarly,

if n is the destination node j, the second sum of the left hand side is equal to tij and the first

sum is zero. This set of constraints ensure that all traffic demands are satisfied. Moreover,
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Figure 2.2: Multicommodity flow equation at node n

they also take care of the wavelength continuity constraints, because for any intermediate node

n (neither source nor destination), the right hand side of the equation will be 0, ensures that

if one wavelength comes in, the same wavelength will go out. Expression (2.2) represent the

distinct wavelength constraints of the RWA problem, such that no two connections share the

same wavelength on one link. Expression (2.3) make sure that uw is set to 1 if wavelength w

is used on any link by any connection. Expression (2.4) count the number of used wavelengths

by making Wtotal equal to the index of the highest wavelength used. Expression (2.5) are the

integrality constraints for the decision variables.

Let us now turn our attention to the scalability of the link ILP formulation, which is a

function of the formulation size. This size, in turn, is determined by the number of decision

variables and constraints. The number of the clwij variables is equal to N(N − 1)|E|W for

general topology networks; for ring networks, this reduces to N(N − 1)(2N)W . There are also

W variables uw, and the decision variable ωtotal. Hence, the total number of variables in the

link formulation for ring networks is O(N3W ).

In terms of the number of constraints (ignoring the integrality constraints (2.5)), expression

(2.1) corresponds to N3W constraints, expression (2.2) yields |E|W constraints, expression

(2.3) consists of W constraints, as does expression (2.4). Overall, the formulation consists of

O(N3W ) constraints.

Note also that all the main variables in the formulation are tied to a specific wavelength. As

a result, the optimal solution explicitly specifies the assignment of wavelengths to lightpaths,

and as such it is highly symmetric with respect to wavelength permutations. In other words,

if ωtotal is the number of wavelengths in the optimal solution, there exist ωtotal! alternative

optimal solutions each corresponding to one permutation of the ωtotal wavelengths. Hence, the

ILP solver may explore a large number of solutions that do not improve the objective function,

limiting the scalability of the link ILP formulation to realistic networks with a large number of

wavelengths.
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2.2 Path Formulation

There is another straightforward ILP formulation often discussed in the literature (e.g., [44,

51]), referred to as path-based formulation. In this formulation, the available paths between

node pairs are generated in advance, using an all-pair k-shortest path algorithm [37, 55, 43].

Therefore, the path topology of the network is added to the formulation as a set of additional

inputs. We denote P as the total number of path candidates in the network. Specifically, we

denote the k-th path from node i to node j as pij,k, and use binary variables X l
ij,k to indicate

whether path pij,k uses link l. Note that in ring networks, there are only two available paths

between each node pairs, i.e., clockwise and counterclockwise.

Let us define the following set of decision variables:

• cwij,k ∈ {0, 1}: binary variable that indicates whether there exists a lightpath assigned

wavelength w on path pij,k

• uw ∈ {0, 1}: binary variable that indicates whether wavelength w is used anywhere in

the network

• ωtotal: number of wavelengths used in the whole network

With these notations, the path ILP formulation can be expressed as:

Minimize : Wtotal

Subject to:
∑

k

∑

w

cwij,k = tij , ∀i, j ∈ V (2.6)

∑

i,j

∑

k

cwij,kX
l
ij,k ≤ 1, ∀l ∈ E,∀w (2.7)

∑

i,j

∑

k

cwij,k ≤ uwP, ∀w (2.8)

Wtotal ≥ wuw, ∀w (2.9)

uw = 0, 1, ∀w; cwij,k = 0, 1, ∀i, j, k, w (2.10)

Expression (2.6) ensures that all the traffic demands are satisfied. Specifically, the sum

of all the wavelengths used by all K paths between node i and j, should be equal to the

traffic demand between these two nodes. Expression (2.7) represents the distinct wavelength
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contraints of the RWA problem, such that no two lightpaths share the same wavelength on

one link. Since a path is the smallest unit to assign wavelength, the wavelength continuity

constraints are implicitly satisfied in the path formulation. Expression (2.8) makes sure that

uw is set to 1 if wavelength w is used on any path. Expression (2.9) counts the number of used

wavelengths by making Wtotal equal to the index of highest wavelength used. Expression (2.10)

represents the integrality constraints for the decision variables.

Let’s now turn our attention to the scalability of the path formulation. In terms of the

number of decision variables, the set of variables cwij,k have the largest number, which is equal

to N(N − 1)KW for the general topology; in a ring network, this number is N(N − 1)(2W ) as

there are two paths between each node pair. There are also W uw variables and the decision

variable Wtotal. Hence, the total number of variables in the formulation for ring networks is

O(N2W ).

In terms of the number of constraints (ignoring the integrality constraints (10)), expression

(2.6) corresponds to N(N − 1) constraints, which is 2NW in a ring network; expression (2.7)

yields |E|W constraints, which is 2NW in ring networks; each of expressions (2.8) & (2.9)

consist of W constraints respectively. Overall, the total number of constraints in the path

formulation is O(NW ).

As in the link formulation, all the main variables in the path-based formulation are also

tied to a specific wavelength. Hence, the path formulation suffers from the symmetry problem

as well. As discussed already in the link formulation, this problem will severely decrease the

performance of path formulation when used in modern networks deploying a large number of

wavelengths.

2.3 Maximal Independent Set (MIS) Formulation

An alternative ILP formulation that overcomes the symmetry problem was introduced by Ra-

maswami and Sivarajan [51, 36]. This approach formulates the RWA problem as a graph

coloring problem. Since the concept of maximal independent set (MIS) is used in the approach,

this ILP formulation is referred to as MIS formulation.

To apply this approach, the first step is to transfer the original network graph into a path

graph such that

• the paths in the original network graph are transformed to vertices in the new graph and

• two vertices in the path graph are connected if and only if the corresponding paths in the

network share a common link.

To illustrate this, Figure 2.3 gives an example of a 3-node ring network, in which the network

graph G is converted into path graph Gp. Paths in the network graph, as vertices in the path

11
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Figure 2.3: RWA as graph coloring problem

graph, are denoted by the sequence of nodes they traverse. As shown in the figure, 6 paths

in total are found in the 3-node ring network, i.e., 12, 23, 31,123, 231, 312. If any two paths

share a common link (e.g. 12 and 123), the fact will be represented as an edge between the two

corresponding vertices in the path graph (for instancre, nodes 12 and 123 are connected in Gp).

Now, the RWA problem may be formulated as a graph coloring problem for the path graph

such that multiple colors (each corresponding to a wavelength) are available to assign to the

vertices with the constraint that no two adjacent vertices are assigned the same color. Moreover,

in the minRWA problem, the number of colors used needs to be minimized to satisfy the

traffic demands requested to the corresponding paths. As a well-studied problem, this multiple

coloring problem can be optimally solved with the help of maximal independent sets: all vertices

in the same maximal independent set (MIS) will be assigned the same color, since there are

no connections between any 2 vertices within the same independent set; vertices that fall in

different maximal independent sets will be assigned different colors, according to the definition

of maximal independent set. Figure 2.4 provides an example of all MIS’s in a 3-node ring

network to illustrate this method. As we can see, four MIS’s are enumerated in the path

graph, i.e., MIS (a) - (d) as shown in the figure. If there is a traffic matrix







0 1 0

1 0 1

1 0 0






=







0 1 0

0 0 1

1 0 0






+







0 0 0

1 0 0

0 0 0






, then MIS a & b should be selected to assign two different

wavelengths respectively.

In MIS formulation, the MIS’s of path graph are calculated in advance, and are additional

set of inputs besides the network topology and traffic demands. Specifically, we use binary

variable Y m
ij,k to indicate whether path pij,k belongs to MIS m. Let us also define the set
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Figure 2.4: Maximal independent sets in 3-node ring network
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of decision variables vm as the number of wavelengths assigned to MIS m. We denote the

number of lightpaths on path pij,k as bij,k. With the notations introduced above, the MIS-

based formulation may be written as:

Minimize : Wtotal

Subject to:
∑

k

bij,k = tij, ∀i, j ∈ V (2.11)

∑

vmY m
ij,k ≥ bij,k, ∀i, j ∈ V,∀k (2.12)

Wtotal ≥
∑

m

vm (2.13)

vm : integer, ∀m; bij,k : integer, ∀i, j, k (2.14)

Expression (2.11) ensures that all the traffic demands are satisfied. Specifically, the number

of all the wavelengths used by all K paths between node i and j should be equal to the traffic

demand between these two nodes. Expression (2.12) is used to assign sufficient number of

wavelengths to each path, by ensuring that the sum of numbers of wavelengths assigned to all

MIS including that path is no less than the traffic demands over it. Expression (2.13) counts

the number of used wavelengths by adding up the number of wavelengths assigned to each MIS.

Finally, expression (2.14) represents the integrality constraints for the variables.

Note that there are no constraints in the MIS formulation corresponding to either the

wavelength continuity constraint or the distinct wavelength constraint. The former is implicitly

satisfied by the same reason discussed in path formulation; the latter is taken care of by the

property of an independent set, as any two paths in the same MIS will not share a common

link.

Let us turn our attention to the scalability of the MIS formulation. The three sets of decision

variables are bij,k, vm and Wtotal, among which the set of vm variables has the largest number.

The number of vm variables is the same as the number of MIS, which is upper bounded by

3Np/3. Since in ring networks, Np = 2N(N−1), the number of variables in the MIS formulation

is O(3N
2/3). This will be an extremely large number as the network size grows. In terms of the

number of constraints, among the three sets (excluding the integrality constraints), expression

(2.12) has the largest number, which is N(N−1)K. In ring network, this is equal to 2N(N−1).

Hence, the number of constraints in the MIS-based formulation is in O(N2).

Finally, after reviewing all the decision variables in MIS formulation, we observe that none

14



Table 2.1: Comparison among Link, Path, MIS formulations
# of variables # of constraints symmetric

Link O(N3W ) O(N3W ) YES
Path O(N2W ) O(NW ) YES

MIS O(3N
2/3) O(N2) NO

is tied to a specific wavelength; instead, the focus is on the number of wavelengths assigned

to each MIS. As a result, the MIS formulation overcomes the wavelength symmetry problem.

This feature entitles MIS formulation the ability to solve RWA problems with any number of

wavelengths available in the network, which is very useful in solving modern WDM networks

that have a large number of wavelengths supported on a single fiber.

2.4 Comparison among the three

Having discussed the path-, link-, and MIS-based formulations, we list the important properties

of the three in Table 2.1 as a comparison. First, let us look at the number of constraints.

Considering the number of available wavelengths W is usually much larger than the number of

nodes N in modern optical networks, the MIS formulation has the least number of constraints

among the three. The reason could be revealed by looking at how much network information

is included in the three ILP formulations. The link formulation starts purely from the original

network topology without any additional inputs; The path formulation calculates the paths

between each nodes pairs and includes them as an additional set of inputs to the formulation.

Finally, the MIS formulation not only has all paths calculated but also includes the independent

sets of paths in the formulation. As a result, the MIS-based formulation reduces the complexity

of ILP solving.

Moreover, unlike the link- or path-based formulations, the MIS formulation overcomes wave-

length symmetry problem. As a result, MIS formulation is more capable in solving the RWA

problem in realistic WDM networks with easily up to hundreds of wavelength available.

On the other hand, the performance of the MIS formulation is limited by the bottleneck of

the enormous number of variables. In fact, since the number of MIS decision variables grows

exponentially with the network size, MIS formulation becomes impractical for large networks.
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Chapter 3

RWA in Ring Networks: Exact, Fast

Formulations Based On MIS

Decomposition

As we discussed in the previous chapter, although the MIS formulation overcomes the symmetry

problem, its scalability is limited by the enormous problem size. To decrease the problem size,

we propose a new method of decomposing path sets into three partitions and represent the

MISs by smaller MISs calculated in each partition [56]. In this chapter, we will introduce

the decomposition method and generalize it to dividing the network to 2x partitions. By

implementing this generalized form, we divide the network into partitions recursively, and form

MISs of the path graph using the MISs calculated in different partitions separately. This

maximal independent set decomposition (MISD) method effectively reduces the formulation

size, and does not sacrifice the benefit of MIS formulation. We use MISD-2x to refer to the

algorithm that divides the path set into 2x partitions.

Since vast parts of the current infrastructure are based on SONET/SDH rings, we focus on

the discussion of the MIS decomposition approach in ring networks in this chapter. Experimen-

tal study shows that our approach gains a nearly 4 orders of magnitude decrease in running

time compared to the existing formulations. The approach applies to the RWA problem in mesh

networks but the scalability is limited due to the enormous number of MIS decision variables

in mesh networks. The RWA problem in mesh networks is addressed in the next two chapters.

In the rest of this chapter, the key idea of MISD is introduced in detail. Section 3.1 and

3.2 discuss the MISD-2 and MISD-4 formulations respectively. Section 3.3 provides a general

formulation for MISD formulations with any number of decompositions. Section 3.4 makes a

comparison among the suite of MISD formulations and discusses the trade off between variables

and constraints in the formulations. At the end of this chapter, experimental study in Section
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Figure 3.1: MISD-2

3.5 compares the efficiency of existing ILP formulations and the MISD formulations.

3.1 MIS Decomposition-2

The first decomposition formulation is based on the observation that any clockwise path does

not intersect with any counter-clockwise path. To take advantage of this feature of a ring

network, this method divides the network topology into two parts (i.e., two separate rings

with opposite directions), which partitions the path graph Gp into two completely separate

subgraphs Gcw
p and Gccw

p . Therefore, a maximal independent set m of Gp can be represented

by the union of some MIS mcw in the first subgraph Gcw
p and some MIS mccw in the second

subgraph Gccw
p . To better illustrate this idea, an example is given in Figure 3.1. A three-node

ring network is divided into two components, i.e., the clockwise ring with black color in the

figure and the counter-clockwise ring with red color. As a result, the path graph is partitioned

into two subgraphs, with 6 paths each (in the right side of figure). So we have m = mcw∪mccw.

Also, if we denote the set of all mcw as Mcw, the set of all mccw as Mccw, then the number of

MISs in the original path graph, |M |, could be represented by the product of |Mcw| and |Mccw|,

i.e., |M | = |Mcw| × |Mccw|, and |Mcw| = |Mccw| =
√

|M |. Again as in the example in Figure

3.1, |Mcw| = |Mccw| = 4, while |M | = 16. In other words, the MISD-2 formulation provides a
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great decrease in the number of decision variables compared to the original MIS formulation.

To further express the formulation, we denote Xm
ij,k as binary variables which indicate

whether pij,k belongs to MIS m in ring k (k = cw, ccw). (As shown in Figure 2.3, path 12

belongs to MIS 0, hence X0
12,0 = 1; but it does not belong to MIS 2, therefore X2

12,0 = 0. )

We have the following set of outputs:

• bij,k ∈ {0, 1}: number of wavelengths assigned to pij,k

• vmk ∈ {0, 1}: number of wavelengths assigned to MIS m in ring k (k = cw, ccw)

• ωtotal: number of wavelengths used in the whole network

Then, the MISD-2 formulation may be expressed as follows:

Minimize : Wtotal

Subject to:
∑

k

bij,k = tij, ∀i, j ∈ V (3.1)

∑

m∈Mk

vmk Xm
ij,k ≥ bij,k, ∀i, j ∈ V, k = cw, ccw (3.2)

Wtotal ≥
∑

m∈Mk

vmk , k = cw, ccw (3.3)

vm : integer, ∀m; bij,k : integer, ∀i, j, k (3.4)

Compared with the original MIS formulation in Chapter 2, only two sets of expressions (3.2)

& (3.3) are different in the MIS decomposition-2 formulation. Expressions (3.2) correspond

to expressions (2.12) of the MIS formulation, which represent the relationships between the

numbers of wavelengths assigned on MISs and the numbers of wavelengths needed on each

single path. This set of constraints ensures that each path is assigned a sufficient number of

wavelength. Expressions (3.3) correspond to expressions (2.13) of the MIS formulation, and

ensure that Wtotal represents the least number of wavelengths needed to satisfy all the traffic.

Because both rings have a separate set of MISs, the same wavelengths may be assigned to MISs

in different rings. Wtotal will be equal to the larger number of wavelengths used in either of the

two rings.

By reviewing the scalability of MIS decomposition-2 formulation, it may be observed that

the number of constraints remains the same as in the MIS formulation, i.e., O(N2), but the

number of variables becomes the square root of that in the MIS formulation, as discussed in

the beginning of this chapter. This results in a dramatic decrease of the problem size, therefore
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Figure 3.2: Network parts in MISD-4

a much better performance is gained by MISD-2 over MIS formulation. Further discussion will

be provided in the experimental study in Section 3.5.

3.2 MISD-4

In the former section, we showed how to divide the path graph into two disjoint compositions

so as to make the problem size much smaller. To further reduce the problem size, we now

extend this approach by decomposing the network into more partitions. As shown in Figure

3.2, we divide the network topology into 4 parts, 2 for each directional ring. As a result, each

of the path graphs Gcw
p and Gccw

p is divided into three subgraphs, respectively. Figure 3.3 takes

Gcw
p as an example, using path partitions of the clockwise ring to illustrate this decomposition.

Graph Gccw
p is handled in an identical manner. As shown in the figure, path partition 0 consists

of all the paths containing only links from the left half-ring, corresponding to nodes in path

subgraph Gcw,0
p in Figure 3.4; path partition 1 consists of all the paths containing only links

from the right half-ring, corresponding to nodes in path subgraph Gcw,1
p . These two partitions

are selected in the sense that no path in partition 0 shares a common link with any path in

partition 1, and vice versa, and therefore there are no links between any node in Gcw,0
p and any

node in Gcw,1
p . Afterward, all remaining paths will be included in the third partition, which we

call a core partition. It consists of all the paths containing links from both the left half-ring

and the right half-ring, which are the paths that cross the two halves, corresponding to nodes

in path subgraph G
cw,core
p . (Since there are totally 46 connections between the 12 nodes in Gcw

p ,

for clarity of presentation, we omit these connections in Figure 3.4.)

Unlike the MISD-2 formulation, the three subgraphs in Gcw
p are not completely disjoint, so a

MIS in Gcw
p may not be simply represented by the union of MIS in smaller subgraphs. Instead,

we have to introduce a new set definition, referred to as core set. A core set consists of the

nodes in Gcw,core
p which are the maximal subset of a MIS in Gcw

p , in other words, it includes the
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Figure 3.5: Core Sets & MISs

intersection of a MIS in Gcw
p and G

cw,core
p . Consequently, a MIS mcw in Gcw

p is now represented

by the union of some MIS mcw,0 in Gcw,0
p , some MIS mcw,1 in Gcw,1

p , and some core set q, i.e.,

mcw = mcw,0 ∪ q ∪mcw,1.

Similar to MIS’s of the subgraphs in the MISD-2 formulation, core sets are calculated and

included as variables in the MISD-4 formulation. We denote the set of all core sets as Q. The

algorithm to calculate Q is stated in Table 3.1. Afterwords, for each core set q ∈ Q, the two

sets of corresponding MISs in Gcw,0
p and Gcw,1

p are selected to compose MISs in Gcw
p , and we

name them as M cw,0
q and M cw,1

q respectively. Then any MIS mcw,0 ∈ M cw,0
q and any MIS

mcw,1 ∈ M cw,1
q will form a MIS in Gcw

p with core set q.

Figure 3.5 gives an example of all MIS’s of Gcw
p represented by smaller MIS’s and core sets

in a 4-node ring network. Eight core sets are calculated from Gcw,core
p (including the empty set

Ø). For each of them, M cw,0
q and M cw,1

q are calculated. As a result, 11 MISs of Gcw
p in total

are represented by the smaller MISs and core sets.

To introduce core sets into the MISD-4 formulation, we define Xq
ij,k as the binary variable

indicating whether path pij,k belongs to core set q ∈ Qk. Also, let us define the following sets

of decision variables:

• v
k,core
q : number of wavelengths assigned to core set q in k-th ring, k = cw, ccw

• vk,rq,m: number of wavelengths assigned to MIS m ∈ Mk,r
q , k = cw, ccw, r = 0, 1
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Table 3.1: Algorithm to calculate core sets
Initialize Qk = maximal independent sets in Gcw,k

p , k = 0, 1,
for each core set q ∈ Qk do

for each node p ∈ q do

if p has a link to a node r ∈ G
cw,0
p ∪G

cw,1
p , and

none of the nodes in q \ {p} have a link to that node
then append the set q \ {p} to Qk

end if
end for

end for
append Ø to Qk

With all the notations introduced above, the MIS decomposition-4 formulation may be

written as:
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Minimize : Wtotal

Subject to:
∑

k

bij,k = tij, ∀i, j ∈ V (3.5)

∑

q∈Qk

vk,coreq Xq
ij,k ≥ bij,k, ∀pij,k ∈ Gk,core

p , k = cw, ccw (3.6)

∑

q∈Qk

∑

m∈Mk,r
q

vk,rq,mXm
ij,k ≥ bij,k, ∀pij,k ∈ Gk,r

p , k = cw, ccw, r = 0, 1 (3.7)

vk,coreq =
∑

m∈Mk,r
q

vk,rq,m, ∀q ∈ Qk, k = cw, ccw, r = 0, 1 (3.8)

Wtotal ≥
∑

q∈Qk

vk,coreq , k = cw, ccw (3.9)

bij,k, vk,coreq , vk,rq,m : integer (3.10)

Expression (3.5) is comparable to expression (3.1) in MISD-2 formulation, and ensures that

all the traffic demands are satisfied. Expressions (3.6) and (3.7) are comparable to expression

(3.2), and are used to assign sufficient number of wavelength to each path in such a way that

the sum of numbers of wavelengths assigned on MIS/core sets that includes a certain path is no

less than the number of traffic demands over it. Specifically, (3.6) ensures that traffic demands

on each path included in G
k,core
p satisfied; similarly, (3.7) takes care of every path included in

G
k,0
p & G

k,1
p . Expression (3.8) is used to ensure consistency between wavelength assignment in

different partitions. Since mcw = mcw,1∪q∪mcw,2, the specific mcw,0, q, mcw,1 used to form the

same MIS mcw should have the same number of wavelength assigned. Expressions (3.9) count

the number of used wavelengths by adding up the number of wavelengths assigned to each core

set. Because the two rings have distinct core sets, the same wavelengths may be assigned to

core sets in different rings. Finally, Wtotal will be equal to the larger number of wavelengths

used in the two rings.

Let us now analyze the scalability of the MISD-4 formulation. Since the MISD-4 formulation

is built on the basis of MISD-2 by representing the MIS variables of the MISD-2 formulation as

the union of three smaller sets (one core set and two MIS’s), the number of variables in MISD-4

depends on the number of core sets and corresponding MIS’s in the smaller subgraph. Since we

are calculating MIS in a smaller subgraph containing fewer nodes, the number of MIS variables

will have an exponential decrease compared to that in MISD-2 formulation. On the other
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Figure 3.6: Link divisions of the network in MISD-8

hand, this decrease in variables is possible only at the expense of an increase in the number

of constraints. This is due to the extra set of constraints to ensure consistency on assigned

wavelengths between core sets and corresponding independent sets. The number of these extra

constraints is the same as the number of core sets, which is a small number compared to the large

number of variables that are eliminated. Therefore, the trade-off between decrease of variables

and increase of constraints is very beneficial to the performance of MISD-4 formulation. Section

3.4 provides a detailed discussion along with numerical results further demonstrating this fact.

3.3 Generalized MIS Decomposition Formulation - MISD-2x

We may further extend the MISD-4 formulation,by dividing the path sets into more parti-

tions recursively, generalizing the MIS decomposition formulation with arbitrary number of

partitions.

In a MISD-2x formulation, the ring network is divided into two directional rings, with 2x−1

parts on each ring. According to these 2x−1 parts on each ring, the path sets of each ring are

partitioned into 2x − 1 partitions with x levels as a tree topology. The lowest level of path

partitions consists of paths containing only links within each network part; the second lowest

level of path partitions includes paths containing only links from the adjacent two network

parts, and so on. The highest level of path partitions consists of paths that are across the left

half-ring and right half-ring. An example of MISD-8 is shown in Figure 3.6. There are seven

partitions for the clockwise paths. The lowest level of partitions are labeled 4, 5, 6, 7, and each

consists of paths that only use links within network part 1, 2, 3, 4, respectively. The second

lowest level contains two partitions, where partition 2 consists of paths that use links in (and

only in) both parts 1 & 2, while partition 3 consists of paths that use links in (and only in)

both parts 3 & 4. The top level partition consists of all remaining paths, i.e. paths that use

links in both half-rings.
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When presented as a path graph, shown in Figure 3.8, it is easily seen that all the leaf

subgraphs, Gcw,4
p , Gcw,5

p , Gcw,6
p and Gcw,7

p in MISD-8 are mutually disjoint. The only connections

among the subgraphs are between the child subgraphs and parent subgraphs. Therefore, a

MIS in Gcw
p can be represented by the union of core sets in the parent subgraph and MISs

in the child subgraph respectively. Starting from the root of the subgraph tree, a MIS mcw

in Gcw
p may be represented by the union of a MIS mcw,2 in Gcw,2

p , a core set qcw,1 in Gcw,1
p

and a MIS mcw,3 in Gcw,3
p , i.e., mcw = mcw,2 ∪ qcw,1 ∪ mcw,3. Recursively, MIS mcw,2 may be

further substituted by the union of mcw,4 in Gcw,4
p , core set qcw,2 in Gcw,2

p and mcw,5 in Gcw,5
p ,

i.e., mcw,2 = mcw,4 ∪ qcw,2 ∪ mcw,5. Performing a similar representation for mcw,3, we have

mcw,3 = mcw,6 ∪ qcw,3 ∪ mcw,7. In the generalized MISD-2x, this representation continues to

be performed recursively, until it reaches the leaf subgraph in the subgraph tree. Therefore, a

MIS in Gcw
p may be represented by the union of MIS in leaf subgraphs and core sets in non-leaf

subgraphs, e.g., mcw = (mcw,4 ∪ qcw,2 ∪mcw,5) ∪ qcw,1 ∪ (mcw,6 ∪ qcw,3 ∪mcw,7) in MISD-8 case

as shown in Figure 3.9.

Having discussed the key idea underlying the generalized MISD-2x, now let us turn our

attention to the ILP formulation. Since all core sets and MIS of subgraphs in different levels

need to be calculated out and included as decision variables, the exact MISD-2x formulation

has very complicated expressions. For the sake of simplicity and continuity for readers, only

basic formulation structures are given in this section. The exact mathematical expressions of

this formulation may be found in Appendix A.

Minimize : Wtotal

Subject to:
∑

k

bij,k = tij, ∀i, j ∈ V (3.11)

∑

all m containing pij,k

wavelength assignment on MIS m ≥ bij,k, ∀ leaf subgraph (3.12)

∑

all q containing pij,k

wavelength assignment on core set q ≥ bij,k, ∀ non-leaf subgraph (3.13)

wavelength assignment on core set q =
∑

all m corresponding to q

wavelength assignment on MIS m,

∀ non-leaf subgraph

(3.14)
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Figure 3.8: Clockwise path graph in MISD-8
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Figure 3.10: Problem size in MIS/core set decision variables

Wtotal ≥
∑

all q in root subgraph

wavelength assignment on core set q (3.15)

integrality constraints (3.16)

Expressions (3.12) (3.13) make sure that a sufficient number of wavelengths is assigned to

each path. Expressions (3.3) are used to keep consistency between wavelength assignment in

different partitions. Expression (3.15) counts the number of used wavelengths by adding up the

number of wavelengths assigned to each core set in root subgraph.

3.4 Size and Scalability of MISD Formulations

As discussed in earlier sections, the more partitions the network is divided into, the fewer

decision variables the MISD formulation will include, but the more constraints the formulation

will add. In this section, we present numerical results to compare the number of MIS/core

set decision variables in different MISD formulations, so as to understand how the trade-off

between decreasing variables and increasing constraints influences performances of these ILP

formulations.

Figure 3.10 presents the number of MIS decision variables in the MIS and MISD-2 formu-
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lations, and the total number of MIS/core set decision variables in the MISD-4 and MISD-8

formulations. As we can see, the number of MIS’s in the MISD-2 formulation is the square root

of those in MIS formulations. This is consistent with the discussion in Section 3.1, as the ring

network consists of two disjoint subnetworks of the same size. In the network instance with

10 nodes, the MISD-2 formulation represents a 3 order of magnitude decrease in the number

of MISs. Still, with further decomposition, the number of MIS/core set decision variables in

MISD-4 continues to cut down, with a 2 order of magnitudes decrease compared to that in

MISD-2 at 24 nodes. Finally, the number of MIS/core set decision variables is further reduced

with a MISD-8 decomposition. Although the rate of decrease slows compared to the drop be-

tween MISD-2 and MISD-4 formulations, we observe nearly one order of magnitude decrease at

32 nodes. To sum up, as the number of decompositions grows, the number of decision variables

in MISD formulations keeps decreasing, but this decrease is getting slower and its impact is

evident only as the network size increases.

As we discussed in Section 3.2, the MISD approach trades off the number of variables with

the number of constraints so as to achieve a better scalability in terms of network size. The

decrease in the number of variables does come with the expense of an increase in the number

of constraints, the number of which is equal to the number of core sets. However, this increase

in constraints is comparatively low compared to the great decrease in number of variables.

For example, for a 16-node ring network instance, the number of variables has a large drop

from around 70000 in MISD-2 formulation to 2000 in MISD-4 formulation, while the number

of constraints only increases by 953. As a result, we are eliminating a large amount of variables

with the little expense of adding a small number of constraints.

To further prove the benefits that we obtain in the trade-off between variable and constraints,

consider the problem size in terms of the number of nonzero items in the four MIS-based

formulations, which takes both variables and constraints into account. As shown in Figure 3.11,

compared to the MISD-2 formulation, the MISD-4 formulation has a much smaller problem size

for all network instances. Also, the problem size of the MISD-8 formulation is very close to that

in MISD-4 formulation when the network is smaller than 12 nodes, but becomes clearly smaller

when network grows larger. Therefore, MISD formulations with up to 8 decompositions are all

getting benefits in the trade-off between variables and constraints. This conclusion will also be

proved by the experimental study in next section.

3.5 Experimental Study

In this section, we present experimental results to compare the efficiencies of MISD formulations

and the three kinds of existing formulations (Link, Path, MIS). In all comparisons, results are

obtained through the IBM Ilog CPLEX 11 optimization tool on a cluster of compute nodes
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Figure 3.11: Problem size in nonzero items in formulations

with dual Woodcrest Xeon CPU at 2.33GHz with 1333MHz memory bus and 4MB L2 cache.

For the first comparison, we used 6 formulations (Link, Path, MIS, MISD-2, MISD-4, MISD-

8), to solve the RWA problem in ring networks on identical sets of network instances. In this set

of instances, network size varies from 6 to 24 nodes. Traffic demands tij from node i to node j

are generated randomly in the interval of [0, 3] and the number of wavelengths W is selected as

120, which is representative of today’s WDM technology. The experimental results are shown

in Figure 3.12, which are all obtained as the average of 30 runs with different random traffic

demands. The solution times of minRWA problem using 6 different formulations are plotted

(in logarithmic scale) as a function of network size. Note that the “tLim” sign in time axle

indicates that the solution time has exceeded 2 CPU hours of time limit, and the “mem” sign

indicates that the problem size is too large to fit in the machine memory.

As the experimental result shows, the RWA problem for a network with more than 10 nodes

can not be solved by the link formulation within 2 hours. Also, in the range of its capability,

the link formulation requires the longest time to solve the problem among the 6 formulations.

The path formulation has a comparatively better performance than the link formulation: it can

find the optimal solution for network of up to 16 nodes. This is consistent with the comparison

analysis in Section 2.4 that the path formulation has a good extent of decrease in the number

of both variables and constraints compared to the link formulation. The MIS formulation runs

faster than the former two formulations in small networks with up to 8 nodes. However, as the
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Figure 3.12: RWA solution times vs. N (W=120)

network size gets larger, the exponential increase in the number of variables makes it run out

of memory. The proposed MISD formulations performs much better than the other three. The

MISD-8 formulation, particularly, may optimally solve a network with up to 24 nodes with the

2-hour limit, and obtains the solution for 16 node network within just 3 seconds. As a result, it

gains 8 more nodes than any other existing formulations in solving capability, and three orders

of magnitude decrease in solving times for any network size. Noting the fact that the largest

size of existing SONET ring is 16 nodes, and that the MISD formulations do not suffer from

the wavelength symmetry problem, we conclude that MISD-8 can solve the RWA problem for

any existing ring network with any number of wavelength in a very practical time.

The second comparison results are presented in Figure 3.13, which are the largest problem

sizes in network instances that can be solved within 3000 sec according to different number of

wavelengths. The gray area indicates the problem is infeasible, which means the needed number

of wavelengths is larger than the one provided. Note that the MIS and MISD formulations are

independent of W, so the curves are straight lines as their solving capability does not depend on

W. Even when the provided number of wavelengths is less than sufficient, they still could present

the optimal solutions with needed number of wavelengths. To the contrast, the link and path

formulations suffer from the wavelength symmetry problem, as a result, their solving capability

becomes obviously worse as the provided number of wavelengths grows. Numerically, MISD-8

formulations has the best performance among all six, which could solve network instances with
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up to 24 nodes. MISD-4 and MISD-2 formulations also have good scalability close to MISD-8.

On the other hand, all three of the conventional formulations fall behind MISD formulations.

Within the 3000 sec time limit, the link and MIS formulations provide the ability to solve only

less-than-10-nodes ring networks, and the path formulation’s performance is severely restricted

when the provided number of wavelengths grows larger than 80.

To sum up, the experimental study indicates that the suite of MISD formulations signifi-

cantly overperforms conventional ILP formulations in solving the RWA problem in WDM ring

networks, and dramatically extends the network size that can be solved optimally.

3.6 MIS Decomposition Formulation in Mesh Networks

Now that we have demonstrated that the MIS Decomposition Formulation performs well in

WDM ring networks, it is natural to explore its potential and performance in WDM mesh

networks. In fact, the same idea applies to mesh network and works well. However, the

scalability of MISD formulation is highly limited due to the enormous number of MIS decision

variables in mesh networks.

First of all, the idea of MIS decomposition works in mesh networks well. Links in mesh

networks may be partitioned into two sets easily. Paths that contain links in only one of the
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two sets, will compose the smaller partitions of the MIS decomposition, while the paths that

contain links in both of the two sets will be included in the core partition. By directly utilizing

the same idea used in ring networks, the MIS decomposition can be applied to mesh network

instances.

However, unlike ring networks, general mesh networks are not able to be divided into two

paritions such that no intersections are possible between paths from different partitions. As a

result, the number of MIS decision variables can not achieve the dramatic decrease as in the

ring network instances. Therefore, with the same network size, the number of MIS decision

variables are dramatically larger than that in ring network. As a consequence, although MIS

decomposition works well in large ring networks, it can not tackle even normal-sized mesh

networks, as it requires extraordinarily large memory to run the ILP formulation in CPLEX.

This makes the MIS decomposition limited in its scalability in mesh network application.

On the other hand, the number of decision variables in path-based ILP formulations remains

the same, therefore it remains the same solution time as in ring network. As a result, path-

based formulation shows its advantages over MIS decomposition formulation in mesh network

applications.

From the above observations, rather than MIS decomposition approach, we will further

explore the path-based formulation in mesh networks. In fact, the discussion in the following

chapter will show that it actually succeeds in reducing the problem size.
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Chapter 4

New, Fast Formulations Based on

Path-based ILPs

As backbone and regional networks evolve from ring to mesh, optimal RWA solutions for general

topologies are becoming important to network designers and operators. However, as discussed

in the previous chapter, the MIS decomposition formulation faces scalability issues in mesh

networks, which makes it impractical for mesh topologies representative of backbone networks.

On the other hand, the path-based formulation has the advantage of keeping the problem size

similar to that in ring networks. In this chapter, we present a new path-based ILP formulation

for tackling the RWA efficiently on mesh network topologies encountered in practice. To this

end, we propose a series of techniques to bring down the problem size in path-based formulations,

including:

• introducing the concept of a symmetric RWA solution and developing a new, fast formu-

lation for obtaining such solutions, and

• introducing the output from fast heuristics as part of the input to ILP formulation (i.e.,

limiting the number of wavelengths and introducing cuts in the solution search).

Experimental study in the end of the chapter indicates that the techniques work well and

improve the performance of the original path-based formulation by orders of magnitude in

terms of running time. We also demonstrate that optimal symmetric solutions, in addition to

their practical advantages, often achieve the overall optimal or a value very close to it. With

this new proposed formulation, we can solve mesh topologies representative of backbone and

regional networks efficiently.

The chapter is organized as follows. In Section 4.1 we introduce the concept of a sym-

metric RWA solution and develop a new, fast formulation for obtaining such solutions, while

in Section 4.2 we show how to further improve this formulation. In Section 4.3, we present
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an experimental study that demonstrate the effectiveness of our formulation in solving prob-

lem instances representative of existing backbone networks, and we conclude the chapter in

Section 4.4.

4.1 Optimal Symmetric RWA Solutions

In this section and the next, we present a set of techniques to scale the path ILP formulation to

problem instances encountered in practice. In this work, we assume that routing is symmetric,

i.e., for all source-destination pairs (s, d), path psd,k, k = 1, . . . ,K, from node s to node d

consists of the same physical links as path pds,k from node d to node s, but in the opposite

direction. We now introduce the concept of a symmetric RWA solution.

Definition 4.1.1 (Symmetric RWA solution) Without loss of generality, assume that for

a node pair (s, d) we have that tsd ≤ tds. For RWA problem instances with symmetric routing,

we define a symmetric solution to be such that:

cwsd,k = cwds,k, ∀ w, k, ∀ s, d : tsd ≤ tds. (4.1)

In other words, for each demand between source s and destination d for which there is a sym-

metric demand from d to s, the two demands are assigned the same path (in opposite directions)

and the same wavelength1.

It has long been recognized [3] that symmetric routing offers many advantages, including

better network capacity planning and utilization, faster problem resolution, and more consistent

traffic flow characteristics in terms of delay, cost, and other metrics. Several Internet proto-

cols, including RSVP, NTP, and multicast (e.g., reverse path forwarding) rely upon routing

symmetry, despite the fact that symmetric routing of fine granularity flows is not guaranteed

in today’s multi-provider Internet [17]. On the other hand, optical transport networks are de-

signed, deployed and engineered by a single provider, hence symmetric routing of lightpaths

may be easily achieved within such a backbone or regional network. Our definition of a sym-

metric RWA solution goes one step further, requiring that symmetrically routed lightpaths also

use the same wavelength. This additional requirement simplifies significantly the ILP formu-

lation (and hence, the search for a solution) with little, if any, sacrifice in terms of optimality

compared to general asymmetric solutions, as we explain and quantify in Section 4.3.

It is possible to obtain an optimal symmetric solution by introducing constraints (4.1) into

the ILP formulation (2.6)-(2.10). However, the resulting formulation would be larger, and hence,

less scalable than the original one. In the following, we present a decomposition technique that

1Note that a symmetric solution does not constrain demands that do not have a symmetric counterpart.
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makes it possible to obtain an optimal symmetric RWA solution in times that are orders of

magnitude faster than solving the formulation (2.6)-(2.10).

The key idea of our approach is to decompose the original problem into two smaller sub-

problems such that only one of these needs to be solved using an ILP. The optimal solution

to the second subproblem is determined by symmetry, without the need to solve another ILP.

Combined, the two solutions form an optimal symmetric solution for the original problem. Each

subproblem consists of a different subset of all source-destination pairs, and hence includes only

the corresponding part of the traffic demand matrix and path subset of the original problem.

Consequently, the first subproblem can be solved using a slightly modified path ILP formulation

whose size is significantly smaller than that of the original formulation shown in (2.6)-(2.10).

Next, we describe an intuitive decomposition that is applicable to instances with symmetric

traffic demands; in the following subsection, we present a generalized version of the decompo-

sition for arbitrary traffic matrices.

4.1.1 Symmetric Traffic Demands

In this subsection we make the additional assumption that traffic demands are symmetric, i.e.,

tsd = tds, ∀s, d ∈ V ; we will remove this assumption in the next subsection. Let us define two

new traffic matrices T 1 = [t1sd] and T 2 = [t2sd] as:

t1sd =

{

tsd, s < d

0, otherwise
; t2sd =

{

tsd, s > d

0, otherwise
(4.2)

and the corresponding path sets:

P1 = {psd,k ∈ P|s < d}, P2 = {psd,k ∈ P|s > d} (4.3)

Note that T 1 and T 2 are lower and upper diagonal matrices, respectively, such that T 1+T 2 = T

and (T 1)T = T 2, and that P1 ∪ P2 = P.

Consider the decomposition of the original RWA problem into two subproblems, RWA-1

and RWA-2, such that the input to RWA-1 is traffic matrix T 1 and path set P1, and the input

to RWA-2 is T 2 and P2. With this pair of symmetric subproblems, one is naturally led to the

following two-step decomposition algorithm (SYM-RWA).

Algorithm SYM-RWA

1. Solve optimally subproblem RWA-1.

2. Construct a symmetric solution for subproblem RWA-2, as defined in expression (4.1),

where cwsd,k is the solution from Step 1.
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Figure 4.1: RWA instance for the proof of Lemma 4.1.1: (a) optimal symmetric solution to the
original RWA problem, (b) one optimal solution to the RWA-1 problem, (c) another optimal
solution to the RWA-1 problem

Subproblem RWA-1 may be solved optimally in Step 1 using a reduced version of the ILP

formulation (2.6)-(2.10) after making the following changes:

• the new binary variables are {cwsd,k : s < d};

• the new traffic constraints are those in (2.7) with s < d; and

• the new distinct wavelength constraints are those in (2.7) for links l used by paths in P1.

This ILP formulation for RWA-1 has only one-half the decision variables {cwsd,k} and one-half

the traffic constraints (2.7) of the original formulation, i.e., those corresponding to the paths

and traffic demands, respectively, included in the RWA-1 subproblem. The reduced formulation

may also have fewer distinct wavelength constraints (2.8), if some of the links in the network

are not used by paths of this subproblem. Hence, the decomposition algorithm can be applied

to larger problem instances than is possible by tackling directly the original RWA problem

through the ILP; we quantify the scalability of SYM-RWA in Section 4.3.

The question then arises whether solving only one subproblem optimally and constructing

a symmetric solution for the other subproblem yields an optimal symmetric solution for the

original RWA problem. In Lemma 4.1.1, we show that if the ILP formulation in (2.6)-(2.10)

is used in Step 1 of the SYM-RWA algorithm (after removing the unnecessary variables and

constraints, as we discussed above), then the resulting symmetric solution may not be optimal

(or even feasible) for the original problem. We then show how to modify the ILP formulation

in (2.6)-(2.10) so that the SYM-RWA algorithm will always yield an optimal symmetric solution

for the original problem.

Lemma 4.1.1 Consider an RWA problem instance with symmetric routing and symmetric traf-

fic demands, and the subproblems RWA-1 and RWA-2 as defined above. If, in Step 1 of the
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SYM-RWA algorithm, the ILP formulation in (2.6)-(2.10) is used to solve one of the subprob-

lems, then the symmetric solution obtained by the algorithm may not be an optimal (or feasible)

symmetric solution for the original RWA problem.

Proof. We will construct a simple instance to show that the SYM-RWA algorithm may not

always find an optimal symmetric solution. Consider an RWA instance with N = 3 nodes

arranged in a ring topology, as shown in Figure 4.1, and traffic matrix T =







0 1 0

1 0 1

0 1 0






. The

path set consists of the clockwise and counter-clockwise paths between the node pairs with

non-zero demands. The optimal symmetric solution to this problem is shown in Figure 4.1(a)

and requires only one wavelength.

There exist two optimal solutions, shown in Figures 4.1(b) and 4.1(c), respectively, that re-

quire a single wavelength for subproblem RWA-1 with traffic matrix T 1 =







0 1 0

0 0 1

0 0 0






. If Step 1

of the SYM-RWA algorithm returns the first solution, then in Step 2 the symmetric solution

to the RWA-2 subproblem will yield the overall optimal symmetric solution in Figure 4.1(a).

However, if the solution in Figure 4.1(c) is returned by Step 1 of the algorithm, then Step 2

of the algorithm cannot construct a feasible symmetric solution (e.g., since the lightpath from

node 2 to node 1 in the RWA-2 subproblem will share the link 2 → 1 with the lightpath from

node 2 to node 3 in Figure 4.1(c), and hence it cannot be assigned the same wavelength). In

fact, given the solution to RWA-1 in Figure 4.1(c), a solution to RWA-2 that uses symmet-

ric paths (but not wavelengths) necessarily requires one additional wavelength, such that the

combined symmetric solution to the original problem is suboptimal.

To understand the reason underlying the negative result expressed by Lemma 4.1.1, observe

that in the ILP formulation, subproblems RWA-1 and RWA-2 are coupled only through the

distinct wavelength constraints (2.8). Once the decision variables {cwsd,k} corresponding to

RWA-2 are removed from the formulation used to solve RWA-1, the coupling between the two

subproblems is also removed. Let us return to the solution of RWA-1 shown in Figure 4.1(c) for

the problem instance in the proof of Lemma 4.1.1. While this solution is optimal for the RWA-1

subproblem in isolation, it does not take into account the coupling between path 2 → 1 → 3

that only appears in this subproblem and path 2 → 1 that only appears in subproblem RWA-2.

Fortunately, there is an easy way to account for this coupling by modifying slightly the

distinct wavelength constraints (2.8) in the ILP formulation used to solve subproblem RWA-

1. The key observation is that, although half of the paths (i.e., those that appear only in

RWA-2) and the corresponding decision variables are no longer in the formulation used to solve

RWA-1, due to symmetric routing, these removed paths are symmetric to the paths of RWA-1.
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In Figure 4.1(c), for instance, path 2 → 1 is not part of the formulation for RWA-1, but its

symmetric path 1 → 2 is.

Based on the above observation, we introduce a new set of binary parameters:

• Z l
sd,k ∈ {0, 1}: indicates whether link l is used by either path psd,k or its symmetric path

pds,k.

Similar to the binary parameters X l
sd,k used in (2.8), parameters Z l

sd,k are fixed (constant)

given the path set P1 of RWA-1. We also introduce a new set of distinct wavelength constraints

to replace the ones in (2.8) that are expressed in terms of the X l
sd,k parameters. The new

constraints, as they apply to subproblem RWA-1, are:

• bidirectional distinct wavelength constraints:

∑

s,d∈V :s<d

K
∑

k=1

cwsd,kZ
l
sd,k ≤ 1, ∀l ∈ A,∀w (4.4)

These bidirectional constraints restore the coupling between the two subproblems in the

ILP formulation used to solve subproblem RWA-1. Returning to the problem instance of

Lemma 4.1.1, note that these constraints would prevent the lightpaths 1 → 2 and 2 → 1 → 3,

shown in Figure 4.1(c), from being assigned the same wavelength, as the latter lightpath uses

link 2 → 1 which is the symmetric of the link used by the former lightpath. Consequently, the

solution shown in Figure 4.1(c) would require two wavelengths, making it suboptimal. There-

fore, Step 1 of the SYM-RWA algorithm would return the optimal solution to RWA-1 shown

in Figure 4.1(b), ensuring that the symmetric solution constructed in Step 2 is the optimal

symmetric solution of Figure 4.1(a).

We now have the following result.

Lemma 4.1.2 Consider an RWA problem instance with symmetric routing and symmetric de-

mands, and the subproblems RWA-1 and RWA-2 as defined above. If, in Step 1 of the SYM-

RWA algorithm, subproblem RWA-1 is solved using the ILP formulation in (2.6)-(2.10) after

replacing the distinct wavelength constraints (2.8) with the bidirectional constraints (4.4), then

the solution obtained by the algorithm is an optimal symmetric solution for the original RWA

problem.

Proof. By definition, we have that Z l
sd,k = X l

sd,k + X l
ds,k, for all s, d, k, l. Therefore, we can

rewrite (4.4), for all l and w, as:

∑

s,d∈V :s<d

K
∑

k=1

cwsd,kX
l
sd,k +

∑

s,d∈V :s<d

K
∑

k=1

cwsd,kX
l
ds,k ≤ 1. (4.5)
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Since at most one of X l
sd,k and X l

ds,k may be equal to one, the above set of constraints is

equivalent to the two sets:

∑

s,d∈V :s<d

K
∑

k=1

cwsd,kX
l
sd,k ≤ 1, ∀l ∈ A,∀w (4.6)

∑

s,d∈V :s<d

K
∑

k=1

cwsd,kX
l
ds,k ≤ 1, ∀l ∈ A,∀w (4.7)

The two sets of constraints (4.6) and (4.7) is equivalent to the set of constraints (2.8) after setting

cwsd,k = cwds,k for all s, d, k, w. Therefore, solving subproblem RWA-1 and then constructing a

symmetric solution for RWA-2, as indicated in the statement of the lemma, results in an optimal

symmetric solution for the original RWA problem.

Note that the proof does not depend on the form of the objective function, hence this

decomposition technique is applicable to RWA variants with different objective functions.

4.1.2 Arbitrary Traffic Demands

Now let us assume that traffic demands are arbitrary and not symmetric, i.e., ∃ s, d ∈ V : tsd %=

tds. To accommodate such asymmetric demands, we generalize the decomposition approach such

that each of the two subproblems, RWA-1 and RWA-2, includes only one-half of the source-

destination pairs and paths of the original problem, as before, but one subproblem (say, RWA-1)

contains more traffic demands than the other. The new decomposition is such that algorithm

SYM-RWA can be applied directly, except that it is now necessary that the subproblem solved

optimally in Step 1 of the algorithm be the one (RWA-1) with the larger traffic demands.

Let O1 and O2 be sets of ordered pairs of nodes such that:

(s, d) ∈

{

O1, tsd > tds ∨ (tsd = tds ∧ s < d)

O2, otherwise.
(4.8)

In other words, the traffic demand between an ordered pair (s, d) ∈ O1 is at least as large as the

traffic demand between the corresponding pair (d, s) ∈ O2. In the decomposition, the traffic

matrices T 1 = [t1sd] and T 2 = [t2sd] of the two subproblems RWA-1 and RWA-2, respectively, are

constructed as:

t1sd =

{

tsd, (s, d) ∈ O1

0, otherwise
; t2sd =

{

tsd, (s, d) ∈ O2

0, otherwise
(4.9)

The corresponding path sets are:

P1 = {psd,k ∈ P|(s, d) ∈ O1};P2 = {psd,k ∈ P|(s, d) ∈ O2} (4.10)
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Let tmin
sd = min{tsd, tds}, and t+sd = tsd− tmin

sd . We can rewrite the traffic demands of matrix

T 1 as:

t1sd =

{

tmin
sd + t+sd, (s, d) ∈ O1

0, otherwise
(4.11)

With this notation, traffic matrix T 1 can be written as T 1 = T 1,1 + T 1,2, where T 1,1 is the

transpose of T 2 and T 1,2 contains the additional traffic demands t+sd that are present in T 1.

We solve the original RWA problem using the same decomposition algorithm SYM-RWA

we described in the previous subsection. The main difference is that the ILP formulation is

further modified to account for the fact that subproblem RWA-1 has a “heavier” traffic matrix

than subproblem RWA-2. Specifically, there are two types of demands in RWA-1, those that

have a symmetric demand in RWA-2 and those that do not; the two types are accounted for

differently in the modified formulation:

• for traffic demands in T 1,1 for which a symmetric demand exists in T 2, use the parameter

Z l
sd,k, and

• for traffic demands in T 1,2 for which a symmetric demand does not exist in T 2, use the

parameter X l
sd,k.

To express the new ILP formulation, we define the following two sets of variables that replace

variables {cwsd,k}:

• dwsd,k ∈ {0, 1}: binary variable that indicates whether there exists a lightpath assigned

wavelength w on path psd,k to carry traffic in T 1,1.

• ewsd,k ∈ {0, 1}: binary variable that indicates whether there exists a lightpath assigned

wavelength w on path psd,k to carry traffic in T 1,2.

The following modified formulation is used to solve RWA-1 in Step 1 of the SYM-RWA algo-

rithm:

minimize: Whigh (4.12)

subject to:

• traffic constraints:

K
∑

k=1

W
∑

w=1

dwsd,k = tmin
sd , (s, d) ∈ O1 (4.13)

K
∑

k=1

W
∑

w=1

ewsd,k = t+sd, (s, d) ∈ O1 (4.14)
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• distinct wavelength constraints:

∑

(s,d)∈O1

K
∑

k=1

(dwsd,kZ
l
sd,k + ewsd,kX

l
sd,k) ≤ 1, ∀l ∈ A,∀w (4.15)

• wavelength usage constraints:

∑

(s,d)∈O1

K
∑

k=1

(dwsd,k + ewsd,k) ≤ UwP, ∀w (4.16)

• highest wavelength index constraints:

Whigh ≥ wUw, ∀w (4.17)

• integrality constraints:

Uw = 0, 1, ∀w; dwsd,k = 0, 1, ewsd,k = 0, 1, ∀s, d, k, w (4.18)

Finally, we have the following result.

Lemma 4.1.3 Consider an RWA problem instance with symmetric routing and arbitrary de-

mands, and the subproblems RWA-1 and RWA-2 as defined above. If, in Step 1 of the SYM-

RWA algorithm, subproblem RWA-1 is solved using the ILP formulation in (4.12)-(4.18), then

the solution obtained by the algorithm is an optimal symmetric solution for the original RWA

problem.

Proof. The proof is similar to the proof of Lemma 4.1.2, and is omitted.

4.2 Further Improvements to the ILP Formulation

4.2.1 Incorporating Information from Heuristics

We may further improve the scalability of the new ILP formulation by incorporating information

from fast, high-quality heuristic algorithms for the RWA problem. We adopt the LFAP algo-

rithm [29], a fast and conceptually simple heuristic that we have found to perform consistently

well across a range of topologies [59].

For each problem instance to solve, we first run the LFAP algorithm to obtain a feasible

solution that uses WLFAP distinct wavelengths. The algorithm takes less than one half of a

second even for large networks of forty or more nodes, yet it provides an upper bound (=

WLFAP ) on the optimal solution, that can be used to (1) effect a further reduction in the size

of the ILP formulation, and (2) speed up the optimization procedure. We discuss each of these

aspects next.
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Reducing the Number of Variables in the Formulation

Referring to the general formulation for symmetric RWA solutions in (4.12)-(4.18), we observe

that the number of variables dwsd,k and ewsd,k and the number of wavelength usage and highest

index constraints is a function of the number of wavelengths W . In the absence of any upper

bound on the number of wavelengths required for a particular problem instance, one might

initialize W to a value (e.g., the number supported by DWDM technology) that may be much

larger than necessary. Doing so would have a negative impact on the ILP solver due to: (1) an

increase in the size of the formulation; for instance, for each additional input wavelength, the

number of dwsd,k and ewsd,k variables increases as O(KN2), and (2) the symmetry problem, since

the number of equivalent solutions obtained by wavelength permutations is proportional to W !.

As we explain in the next section, we have found that LFAP in many cases constructs

solutions that use 25% more wavelengths than the optimal one. Therefore, given the output

WLFAP of the LFAP algorithm, we set the number of wavelengths in the formulation (4.12)-

(4.18) to W = .0.8×WLFAP /. (If this value turns out to be too low, CPLEX, the optimization

tool we use, typically determines quickly that the problem is infeasible, and can then be invoked

again with a higher value.)

Include Goal Cut in the Optimization Procedure

In the process of searching for an optimal solution, CPLEX manages a branch-and-cut search

tree in which the root node represents the entire problem and every other node represents a

subproblem to be solved [35]. It initializes the search procedure by processing the root node

and continues until either it finishes processing all the nodes or it breaks some constraints.

In order to process a node, CPLEX first solves the continuous relaxation of the corresponding

subproblem by removing the integrality constraints. If any predefined cuts is violated in the

solution to the relaxed subproblem, CPLEX adds the cuts to the subproblem and re-solves

it, iterating until no cuts are violated. The node will be removed from the search tree, if the

relaxed subproblem is infeasible. After solving the relaxed subproblem, the solution is checked

with the integrality constraints. If they are satisfied, CPLEX updates the current best solution

if necessary. Otherwise, CPLEX splits the node problem into smaller subproblems and add

them to the search tree to be processed.

CPLEX allows users to control the integer feasibility test and the creation of subproblems

by specifying goal cuts in the branch-and-cut tree. A goal cut may force subproblems to become

infeasible, such that the corresponding nodes are removed without examining the solutions in

those subtrees. Therefore, we introduce a goal cut with the output of the heuristic, such that

any nodes that would lead to solutions with objective value higher than W = .0.8 ×WLFAP /

are removed, speeding up the optimization procedure.
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4.2.2 Path Selection Algorithm

Observe that an optimal solution obtained by a path-based ILP formulation is optimal only

among the set of solutions that are feasible with the path set P = {psd,k} provided as input

to the problem. Therefore, the K candidate paths for each source-destination pair must be

selected carefully to ensure that the optimal solution is close to the overall optimal that would

be obtained through a link-based formulation (note, however, that the latter is a type of mul-

ticommodity flow formulation that does not scale to networks with more than a small number

of nodes and wavelengths).

The K paths for each source-destination pair may be obtained as the K shortest paths [11],

the K disjoint shortest paths [10], or using some other criteria [13]. In this work, we adopt the

increasing-cost K-shortest path algorithm that was proposed in [6], and that we have found to

work well in practice. Specifically, the algorithm initializes the cost of all links in the network

to the same value. For each node pair, every time a shortest path is found, the cost of each link

along this path is increased by a fixed factor f ≥ 1, such that the new cost is equal to the old cost

times f . As a result, new paths are likely to select different links, which in turn leads to fewer

collisions with respect to wavelength assignment. Therefore the path candidates constructed

by the algorithm are closer to the overall path solution space. However, the algorithm cannot

altogether avoid sharing some good links among the K paths between one node pair, due to

the fact that it is based on finding shortest paths. Note also that, by varying the cost increase

factor f , this algorithm may produce paths that lie anywhere in the spectrum between the K

shortest paths and the K disjoint shortest paths. For the experiments that we present in the

following section, we have used f = 2, a value that was found in [6] to produce the best results.

4.3 Experimental Study

In this section, we present the results of an experimental study we conducted to investigate

the performance of the optimal symmetric RWA formulation in terms of scalability (running

time) and quality of solution. All results were obtained by running the IBM Ilog CPLEX 11

optimization tool on a cluster of identical compute nodes with dual Woodcrest Xeon CPU at

2.33GHz with 1333MHz memory bus, 4GB of memory and 4MB L2 cache.

Our study involves a large set of problem instances defined on several network topologies

with random traffic matrices. In particular, we consider the following topologies: (1) the

14-node, 42-(directed) link NSFNet [31]; (2) the 17-node, 52-link German network [12]; (3)

the 20-node, 78-link EON network [22]; and (4) a 32-node, 106-link USA topology [59]. These

networks have irregular topologies of increasing size that are representative of existing backbone

networks, and have been used extensively in optical networking research. For each topology, we

44



generate K = 2, 3, or 4 symmetric paths between each source-destination pair in the manner

we discussed in Section 4.2.2.

For each network topology, we consider several problem instances. For each problem in-

stance, the traffic demand matrix T = [tsd] is generated by drawing the (integer) traffic de-

mands (in units of lightpaths) uniformly at random in the interval [0, Tmax]. We generate both

symmetric (i.e., tsd = tds for all s, d) and asymmetric traffic matrices. Each data point in the

figures we present in this section represents the average of 10 random problem instances for the

given topology and value of parameters K and Tmax.

4.3.1 Scalability Comparison

Let us first investigate the scalability of the the new formulation. Figure 4.2 compares the

original formulation (2.6)-(2.10) for the RWA problem to the new formulation (4.12)-(4.18) in

terms of running time, for the four networks. Recall that the original formulation obtains the

overall optimal solution given the input path set, whereas the new formulation obtains the

optimal symmetric solution for the same path set. The figure plots, in logarithmic scale, the

CPU time it takes for CPLEX to find an optimal solution under symmetric and asymmetric

traffic. We imposed a limit of 20 CPU hours for CPLEX to find a solution; if it failed to do

so within the 20-hour limit, we terminated the execution run and plotted the data point in

the light gray area of the figure labeled “tLim.” For the results shown in Figure 4.2, there

are K = 2 paths between each source-destination pair and the traffic matrix (symmetric or

asymmetric) was generated by setting Tmax = 2.

As we can see, the original path ILP formulation can find the optimal solution within

the 20-hour limit for the NSF, German, and EON topologies, but not for the 32-node USA

topology. Also, the running time for a given topology is the same regardless of whether traffic

is symmetric or asymmetric, as the number of variables in the formulation depends on the size

of the network and the traffic load (which depends on Tmax), not on the form of the traffic

matrix. The new formulation, on the other hand, performs much better than the original one.

For symmetric traffic, we observe a reduction of more than two orders of magnitude in running

time compared to the original formulation, and the 32-node topology can be solved in only

about 3 hours. For asymmetric traffic, the new formulation achieves a reduction in running

time of more than one order of magnitude (up to a factor of 25), solving the 32-node network in

about 16 hours. The main reason for the higher running time in the case of asymmetric traffic

is due to the additional variables that need to be included in the formulation, as we explained

in Section 4.1.2. Importantly, symmetric instances on the NSF, Germany, and EON topologies

may be solved in about one minute, while asymmetric instances on the same topologies take

about ten minutes to solve; the large increase in running time for the USA topology is due
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Figure 4.2: CPU time comparison, K = 2, Tmax = 2

not only to the size of the network, but also to the much larger number of wavelengths needed

to accommodate the demands. As a result, the new formulation makes it possible to solve

network sizes of practical size fast enough to allow network designers and operators to perform

extensive “what-if” analysis so as to investigate large numbers of scenarios regarding forecast

demands. We have obtained similar results for several other topologies, including regular (torus)

topologies; these are omitted due to space constraints.

Figure 4.3 plots the running time of the new formulation for the NSF and EON networks as

a function of the value of parameter Tmax. We observe that the running time increases with the

traffic load, as expected, due to the larger number of wavelengths needed to accommodate the

traffic. Note that a value of Tmax = 8, the highest one considered in this experiment, corresponds

to an average of four lightpaths between a source-destination pair (in each direction); for the

NSF and EON networks, the optimal solution for this value would require more than 50 and

70 wavelengths, respectively (refer also to Figure 4.5 for NSFNet). Although such instances

are well beyond what can be realized in deployed networks, the new formulation is capable of

solving them efficiently.

Finally, Figure 4.4 plots the running time of the new formulation as a function of the number

K of candidate paths, for the NSF and EON networks and Tmax = 2. Again, the running time

increases with K due to the larger number of variables in the formulation. Nevertheless, the

46



2 4 6 8
1

10

100

1000

10000

72000

Tmax

So
lu

tio
n 

Ti
m

e 
 (S

ec
)

 

 

EON (20), Asymmetric Traffic
NSF (14), Asymmetric Traffic
EON (20), Symmetric Traffic
NSF (14), Symmetric Traffic

Figure 4.3: CPU time against Tmax, K = 2, NSF and EON networks

2 3 4
1

10

100

1000

10000

72000

Number of Paths,  K

So
lu

tio
n 

Ti
m

e 
 (S

ec
)

 

 

EON (20), Asymmetric Traffic
EON (20), Symmetric Traffic
NSF (14), Asymmetric Traffic
NSF (14), Symmetric Traffic

Figure 4.4: CPU time against K, Tmax = 2, NSF and EON networks

47



2 4 6 8

10

20

30

40

50

60

70

Tmax

So
lu

tio
n 

Va
lu

e,
  W

 

 

LFAP Heuristic, Asymmetric Traffic
LFAP Heuristic, Symmetric Traffic
Original ILP, Asymmetric Traffic
New ILP, Asymmetric Traffic
Original ILP, Symmetric Traffic
New ILP, Symmetric Traffic

Figure 4.5: Optimality comparison for NSFNet, Tmax = 2, K = 2

new formulation makes it possible to solve realistic instances in a short amount of time. We

also note that, of the 80 instances (i.e., ten instances per data point) we run with K > 2, only

one instance resulted in an optimal value better (by a single wavelength) than the one obtained

with K = 2.

4.3.2 Quality of Optimal Symmetric Solution

Let us now turn our attention to the quality of the optimal symmetric solution. Figure 4.5

plots the value of the solution returned by the original formulation, the new formulation, and

the LFAP heuristic [29] for NSFNet, as a function of Tmax. Recall that LFAP and the orig-

inal formulation consider the whole solution space, while the new formulation only considers

symmetric solutions to the RWA problem as defined in (4.1). The new formulation obtained

the same optimal solution as the original formulation for 79 of 80 instances from which the

results in the figure are generated. There was only one instance (Tmax = 8, symmetric traffic)

for which the optimal symmetric solution required two additional wavelengths (52 versus 50

for the overall optimal). We obtained similar results for the EON network (not shown), in

which the new formulation resulted in the same optimal solution as the original one over all 80

instances. These findings confirm the intuitive view that, except in rare cases when the demand

matrix creates severe bottlenecks, optimal symmetric solutions are also optimal overall.
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We also observe that LFAP, one of the best heuristic algorithms for the RWA problem,

constructs solutions that are between 25-60% higher than the optimal one in the NSF network.

Hence, while LFAP is quite fast, relying on such a heuristic algorithm may result in significantly

higher costs in deploying and operating the optical network. Our new formulation, on the other

hand, achieves an excellent tradeoff between running time and optimality.

4.4 Concluding Remarks

We have presented a new ILP formulation to construct optimal symmetric solutions to the RWA

problem, that scales well to network topologies encountered in practice and enables network

designers and operators to carry out extensive what- if analysis. We also demonstrated that

optimal symmetric solutions, in addition to their practical advantages, often achieve the overall

optimal or a value very close to it.
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Chapter 5

New, Fast Link-based ILP

Formulation with Wise Link

Selection

In previous chapters, we improved MIS-based formulation and path-based formulation respec-

tively, which perform reasonably well in practical instances in the RWA problem. However,

both of the two approaches need to pre-calculate a set of path candidates manually as the input

of ILP formulation, which limits the optimality of the solutions. Additionally, for MIS-based

formulation, due to the enormous number of MISs generated in mesh network topologies, its

scalability is limited to a very small size, which makes it hardly applicable to practical networks.

As discussed in Chapter 2, link-based formulation provides the overall optimality due to

the fact that it considers links as entities of interests. However, the scalability of link-based

formulation is also limited due to the great number of links considered in the routes of all source-

destination node pairs. In this chapter, we improve the formulation with a wisely-selected set

of links to consider for each particular node pairs. This new approach reduces the problem size

by pruning the redundant link decision variables, while still practically maintaining solution

optimality. The formulation scales to mesh topologies representative of backbone and regional

networks. Simulation results show that this approach could speed up the running time by

orders of magnitude while providing better-quality solutions than path-based formulation and

MIS-based formulation. What is more important is, this approach is applicable not only to the

link-based formulation for RWA problem, but also to ILP formulations for any problems that

use multicommodity flow equations.

In Section 5.1 we review the complexity of link-based formulation and introduce two link

selection algorithms to reduce the problem size. In Section 5.2 we analyze how the new ap-

proach decreases running time and maintains solution quality. In Section 5.3 we conduct an
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experimental study on the new formulation to show the effectiveness of the approach.

5.1 Speed up Link-based Formulation with Link Selection Al-

gorithms

In this section, we review the complexity of link-based ILP formulation to RWA problem, and

look into how to reduce the number of variables in the formulation.

5.1.1 Complexity of Link-based Formulation

Let us first recall the detail of link-based formulation.

The link formulation is based on expressing the RWA problem as a multicommodity flow

problem[46]. Let us define the following sets of decision variables:

• clwij ∈ {0, 1}: binary variable that indicates whether there exists a lightpath from node

i to node j that uses wavelength w on link l (see Figure 5.1)

• uw ∈ {0, 1}: binary variable that indicates whether wavelength w is used anywhere in

the network

• ωtotal: number of wavelengths used in the whole network

With these notations, the link ILP formulation can be expressed as:
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Minimize : ωtotal

Subject to:

∑

links l
outgoing from n

clwij −
∑

links l
incoming to n

clwij =











0, n %= i, j;

tij , n = i;

−tij, n = j.

∀n, i, j ∈ V,∀w (5.1)

∑

i,j

clwij ≤ 1, ∀l ∈ E,∀w (5.2)

∑

i,j

∑

l

clwij ≤ uwN(N − 1)|E|, ∀w (5.3)

Wtotal ≥ wuw, ∀w (5.4)

uw = 0, 1, ∀w; clwij = 0, 1, ∀i, j, l, w (5.5)

Expressions (5.1) are the multicommodity flow equations at node n. Specifically, if n is an

intermediate node in the path from some source i to some destination j, the traffic coming in

should be equal to the traffic going out, as such traffic is not dropped out, or originates from,

this node, hence the left hand side of (5.1) is equal to zero. If n is the source node i, the first sum

of the left hand side is equal to the traffic tij to node j and the second sum is zero. Similarly,

if n is the destination node j, the second sum of the left hand side is equal to tij and the first

sum is zero. This set of constraints ensures that all traffic demands are satisfied. Moreover,

they also take care of the wavelength continuity constraints, because for any intermediate node

n (neither source nor destination), the right hand side of the equation will be 0, ensures that

if one wavelength comes in, the same wavelength will go out. Expressions (5.2) represent the

distinct wavelength constraint of the RWA problem, such that no two connections share the

same wavelength on one link. Expressions (5.3) make sure that uw is set to 1 if wavelength w

is used on any link by any connection. Expressions (5.4) count the number of used wavelengths

by making Wtotal equal to the index of the highest wavelength used. Expressions (5.5) are the

integrality constraints for the decision variables.

Let us now turn our attention to the scalability of the link ILP formulation, which is a

function of the formulation size. This size, in turn, is determined by the number of decision

variables and constraints. The number of the clwij variables is equal to N(N−1)|E|W for general

topology networks. There are also W variables uw, and the decision variable ωtotal. Hence, the
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Figure 5.2: Multicommodity flow equation at node n

total number of variables in the link formulation for general network topologies is O(N2|E|W ).

In terms of the number of constraints (ignoring the integrality constraints (5.5)), expres-

sions (5.1) correspond to N3W constraints, expressions (5.2) yield |E|W constraints, expres-

sions (5.3) consists of W constraints, as does expression (5.4). Overall, the formulation consists

O(N3W ) constraints.

5.1.2 Link Selection Algorithms - Remove Redundant Variables

After reviewing the complexity of link-based formulation, it is obvious that the problem size of

link-based formulation seriously limits the scalability of the approach. Now we discuss how to

reduce the problem size while maintaining the good solution quality.

Looking into the constraint (5.1), we found that each single link in the network is considered

as a candidate to carry traffic demands between each node pair, which ends up a great amount

of clwij variables. However, this does not make practical sense in real situations. Particularly,

to carry traffic demands between a certain node pair in the middle of the network while saving

network resources, the network operator will not choose a route that goes over the edge of

the network. Instead, we want to select only necessary links as candidates to compose routes

between each specific source-destination node pair, and if we do so, we will gain great benefits

in running time while still practically maintaining optimality.

We then propose the following two approaches to select links wisely.

Select links close to the source and destination nodes

The idea for this selection algorithm is to select those links close to the source and destination,

which could most possibly contribute as parts of the routes between the two nodes.

After calculating the shortest path between each node pairs, we define the distance between

any two nodes as the number of hops over the shortest path between these two nodes. We

denote the distance between node i and j as dist(i, j). Then the candidate links for each

source-destination pair are selected according to the distance of the two end-points of the link.
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Specifically, a link l with two end-points i and j is considered for traffic demand between node

s and d, if and only if the following requirement fulfills:

dist(s, i) + dist(j, d) + 1 ≤ dist(s, d) + thres (5.6)

where thres is a parameter at our choice. A good thres value can limit the number of links to be

considered, so that we could get a good balance between the running time and optimality. The

choice of thres will be discussed in the following section. We call this link selection algorithm

as k-thres algorithm.

Select links on the route of k-shortest paths

One concern to the above link selection algorithm is that simply selecting links close to the

source and destination nodes may not always yield to the best solution in practical. The

importance of the links may depend on the relative positions as well. Hence we introduce the

following selection algorithm with the help of k-shortest path algorithm.

The main idea of this algorithm is to calculate the k-shortest path between each source-

destination node pairs, and select those links on the routes of the k-shortest paths of a node

pair to consider as the link set of that node pair. We call this link selection algorithm as k-path

algorithm. There are basically two advantages on this algorithm.

• The links selected are closer to the best set for practical results. The position of the link,

as well as the distance of the link from the source and destination, is important to take

into account when considering a good link candidate. Using only the distance threshold

as a selection factor, the link set may contain some redundant candiates while losing some

necessary ones. On the other hand, for those links on the routes of k-shortest path of a

node pair, they are the links that are most likely to carry traffic between the specific node

pair.

• The number of total links needed to be considered is smaller than k-thres algorithm. To

get a better solution, k-thres algorithm needs to pick a larger threshold number, and k-

path algorithm needs to adopt a larger k. With the increasing of threshold, the threshold

algorithm will end up with a proportionally increasing number of total links needed to be

considered in a general topology. However, the k-shortest paths may reuse a lot of links

among themselves, therefore the larger k won’t dramatically increase the number of total

links considered.

The performance of these two approaches will be analyzed with experimental study later

on.
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Using either of the two link selection algorithms defined above, we could successfully decrease

the problem size in the following aspects:

• Decrease the number of variables. The dominant set of variables are clwij , and there

are O(N2|E|W ) of them. In other words, the complexity of the formulation depends on

the number of clwij variables. When every link is considered for each node pairs, there

are # of links × # of node pairs possibilities. By taking only the necessary links into

consideration, we cut down the number of links greatly and therefore the number of clwij
variables.

• Decrease the number of constraints. The link selection will decrease the number

of constraint (5.1) - (5.3). For constraint (5.1), the original formulation has to consider

every single node n in the network, with a flow equation. While in the new approach, we

just need to take into consideration the nodes that exist as end points in the selected link

set only.

In the following section, we will have a further discussion on how this new approach will decrease

the time and maintain optimality practically.

5.2 Speed and Quality Analysis of New Link-based Formulation

In this section, we will analyze how the running time and solution quality change in link-based

formulation with link selection algorithm, and study the trade-off between these two.

5.2.1 Number of variables of New Link-based Formulation vs. Parameter k

As we discussed before, the problem size depends on the number of variables and number of

constraints in multicommodity flow equation, especially on the number of clwij variables. We

will analyze and illustrate how the number of clwij variables changes with the parameter k in the

two link selection algorithms.

First of all, the number of cwl
ij variables is determined by the total number of link candidates

for all source-destination node pairs. In k-thres algorithm, when k = 0 the total number of

link candidates are the sum of number of links on the shortest path between every node pair.

When k grows, the number of links increases as the algorithm select more links that are close

to the shortest paths. The increasing speed varies on different topologies, but proportional to

the degree of the networks. Gradually, the increasing will slow down when k is set to a certain

value as almost all links are within k-distance away from the shortest path. Consequently, as a

general rule, the number of variables will increase rapidly as k grows, but begins to slow down

the increasing speed as k grows too large.
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Figure 5.3: Number of cwl
ij variables in German network using two link selection algorithms

On the other hand, the change in the number of variables in the k-path algorithm will follow

the similar pattern but with a few differences. First, the k value starts from 1, instead of 0,

and the link candidate set generated by k-path algorithm when k = 1 is equivalent to that

in k-thres algorithm when k = 0, which includes only links on the routes of the shortest path

between each source-destination node pair. Second, although the number of variables will also

increase as k grows, the increasing speed is slower than that in k-thres algorithm. The reason

is due to the fact that the k shortest paths will reuse a good amount of links and therefore the

number of links in the candidate set is generally smaller than those in k-thres algorithm.

Now let us use the 17-node, 52-link German network as an illustration, to show how the

number of variables changes in both link selection algorithms. Figure 5.3 plots the curves of

number of cwl
ij variables vs. k in k-thres and k-path algorithms, respectively. As we analyzed,

in the figure we could see that the number of variables are the same in k-path algorithm when

k = 1 and k-thres algorithm when k = 0. Moreover, number of variables in both link selection

algorithms increases as k grows, but that in k-thres algorithm have a faster increasing speed.

5.2.2 Trade-off between Solution Quality and Running Time

As we just discussed, the number of cwl
ij variables will decrease as k increases, therefore running

time of the formulation will increase accordingly as the problem size grows and the solution

value will decrease as we include more choices in the routing assignment. As a result, there is a

56



k Value

So
lu

tio
n 

Va
lu

e

 

 

R
un

ni
ng

 T
im

e

Solution Value
Running Time

Figure 5.4: Trade-off between speed and solution quality

trade-off between solution quality and running time when selecting parameter k. Fortunately,

the solution value will stop decreasing after a certain k value, as including more links to consider

will not help with the solution any more, in other words, all the necessary links for each node

pairs are selected already with this k value.

To illustrate this, Figure 5.4 plots the trend of changes of the running time and solution

value against k. As shown in the figure, when k grows the running time curve will go up. On

the other hand, when k grows, the solution value curve will go down and then stay flat. Because

the solution decreases when more information included, until one point it reaches the optimal

value and then will no longer be able to decrease.

Consequently, in order to get a practically optimal result as well as a reasonably fast running

time, we need to look carefully into the k value and find out the point that solution curve starts

to flatten. We will address this issue in the experimental study in the following section.

5.2.3 Solution Quality Advantage over Path Formulation

Having discussed the solution quality of the new link formulation with link selection algorithm,

one may have a direct question that whether link formulation with k-path algorithm performs

better than path-based formulation with k-shortest path pre-calculated, in terms of solution

quality. In fact, the answer is YES.

Admittedly, both formulations adopt k-shortest path algorithm in some way. Especially,
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Figure 5.5: An illustration on the advantage of k-path link selection algorithm

the link formulation with k-path algorithm only selects links on the routes of the k-shortest

paths between each source-destination node pairs. However, the fact that it considers links as

entities of interest makes the link formulation contain much more information when selecting

routes in RWA problem. Let us use a very simple example to illustrate this statement.

Figure 5.5 draws part of the network that includes a source node s, a destination node d

and the related links. When using path-based formulation with k-shortest path pre-calculated

(k = 2), two shortest paths are generated, as the two blue routes marked in the figure. When

the formulation looks for solution, it takes the two routes and only the two routes for possible

condidate routes between node pair s-d to carry traffic demands. However, the link formulation

with k-path algorithm does not limit the route candidates artificially, but selects all the links on

the two routes, and makes any possible combination of the links according to constraints in the

formulation, to carry traffic. Specifically, in this example, not only the two blue routes, but also

the two red dotted routes could be possible combination of the selected links. In other words,

the link formulation with k-path algorithm has much more information when doing the routing

assignment and therefore provide better solution quality over path-based formulation with k-

shortest paths. Experimental study in the following section will also support this conclusion.

5.3 Experimental Study

In this section, we present the results of an experimental study we conducted to investigate the

performance of the new link-based formulation with wise link selection approach in terms of

scalability and quality of solution. All results (obtained using both link-based and path-based

formulations) were obtained by running the IBM Ilog CPLEX 12 optimization tool on a cluster
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of identical compute nodes with dual Woodcrest Xeon CPU at 2.33GHz with 1333MHz memory

bus, 4GB of memory and 4MB L2 cache.

To best illustrate the practical network environment, our study involves a large set of prob-

lem instances defined on several network topologies with random traffic matrices. In particular,

we consider the following topologies: (1) the 11-node, 52-(directed) link Cost-239 network; (2)

the 14-node, 42-(directed) link NSFNet [31]; (3) the 17-node, 52-link German network [12]; and

(4) the 20-node, 78-link EON network [22].

These networks have irregular topologies of increasing size that are representative of existing

backbone networks, and have been used extensively in optical networking research. For each

topology, we generate the traffic demand matrix T = [tsd] by drawing the (integer) traffic

demands (in units of lightpaths) uniformly at random in the interval [0, Tmax].

5.3.1 k-Thres vs. k-Path

Let us first compare the two path selection algorithms. Figure 5.6 and 5.7 present the solution

value and running time against threshold k, using k-thres and k-path algorithm respectively.

The figures plot the curves in German network, with tmax set to 2. The left y axis labels the

solution value, W , while the right y axis labels the running time in CPU seconds. The x axis

labels parameter k, either the threshold in k-thres algorithm, or the number of shortest path

in k-path algorithm. Note that k starts from 0 in k-thres algorithm, while k starts from 1 in

k-path algorithm. Also note that k = 0 in k-thres is equivalent to k = 1 in k-path algorithm,

which both mean that we only consider links on the shortest path.

From the figures, using both link selection algorithms, we could see the solution value

(minimum number of wavelengths needed) dropped rapidly as k grows to 2 and then remains

the same afterwards. Another observation is that with k-thres algorithm, the running time

grows rapidly with the increasing of k, but with k-path algorithm, the running time grows

much slower with the increasing of k. Specifically, at k = 2, the running time of new link

formulation with k-thres algorithm is around 300s, while that of link formulation with k-path

algorithm is around 8000s. When k grows up to 10, the running time with k-thres raises high

up to 64000s, while that with k-path still below 2400s. This difference matches our analysis of

the two link selection algorithm in Section 5.2.

Now let us look at Figure 5.8 and 5.9, which plots the results of similar simulations but with

tmax set to 6. From the figures, the running time of link formulation with k-thres algorithm

quickly reaches out the simulation limit we set (36 hours) after k = 2, and could not provide

any solution when k > 2. To the contrary, link formulation with k-path algorithm only takes

around 3600 seconds to give solution when k = 2, and even when k = 10 the running time is

still below the time limit. These two figures further demonstrate the advantage of k-path link
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Figure 5.6: k-thres algorithm: Running time and solution value vs. k in German Network,
tmax = 2
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Figure 5.7: k-path algorithm: Running time and solution value vs. k in German Network,
tmax = 2
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Figure 5.8: k-thres algorithm: Running time and solution value vs. k in German Network,
tmax = 6

selection algorithm over k-thres algorithm. The runing time difference of these two algorithms

matches with the analysis of number of cwl
ij variables in Section 5.2.

Note the fact that in all figures above, setting k = 2 in both link selection algorithms is

able to provide same solution as original link-based formulation. This is generally true for all

network topologies we have investigated in this chapter. For example, Figure 5.10 and 5.3.1

plot the simluation results in 14-node NSF network using k-path algorithm, with tmax set to 2

and 6 respectively. In both figures, k = 2 is the point where the link selection algorithm begins

to provide the solution same to the optimal solution given by original link-based formulation.

Additionally, the running time at k = 2 is very low, which are 11s for tmax = 2 and 500s for

tmax = 6. In other words, k = 2 is the good choice in the trade off between solution quality

and running speed. Hence, for the following simulation, we will use new link-based formulation

with link selection algorithms where k = 2, to study the effectiveness of the new formulation.

5.3.2 Running Time Comparison

Now let us investigate the speed performance of new link-based formulation with link selection

algorithms. Figure 5.12 presents the running time of the two versions of new link formulation,

compared with the original link and path formulation (MIS-based formulation could not solve

mesh networks due to the huge number of MISs they have, so we do not even take it into

61



1 2 3 4 10
60

70

80

90

100

110

120

k Value

So
lu

tio
n 

Va
lu

e

 

 

1 2 3 4 10
0

2

4

6

8

10

12
x 104

R
un

ni
ng

 T
im

e

Solution Value
Running Time

Figure 5.9: k-path algorithm: Running time and solution value vs. k in German Network,
tmax = 6
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Figure 5.10: k-Path algorithm: Running time and solution value vs. k in NSF Network,
tmax = 2
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Figure 5.11: k-Path algorithm: Running time and solution value vs. k in NSF Network,
tmax = 6

account in comparison). k is set to 2 in both link selection algorithms and tmax = 2.

From the figure, original link-based formulation could solve up to 17-node German network,

but not the 20-node EON network, within the 20-hour time limit we set. Using the k-thres link

selection algorithm, new link formulation could gain more than an order of magnitude decrease

in running time and could solve EON network as well. The new link formulation with k-path

link selection algorithm performs even better, which decrease the running time of original link

formulation by more than 2-and-a-half orders of magnitudes, and could solve all 4 network

topologies within just a few hundred seconds. Particularly, it even outperforms path-based

formulation, which is a totally different technique that takes a much larger unit, path, as entity

of interest.

5.3.3 Solution Quality Comparison

Finally, let us investigate the quality of solutions provided by our newly-proposed link formu-

lation. Figure 5.13 takes NSF network as an example, and plots the solution value given by

original link-based, path-based formulation and new link formulation with k-path algorithm,

given different tmax. In the figure we could see, the new link formulation with link selection

algorithm provides all solution values same to the optimal ones given by original link formu-

lation. Moreover, in one of the cases, new link formulation is able to provide better solution
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Figure 5.12: Running time of new link formulation with two link selection algorithms, compared
with original link-based and path-based formulations

than path formulation (56 vs. 59). In other words, new link formulation with link selection

algorithm could provide practically optimal solution and outperforms path formulation in both

speed and solution quality.

5.3.4 Conclusion

To sum up, the new link formulation with wise link selection algorithm could decrease the

running time of original link formulation for more than two-and-a-half orders of magnitudes,

and provide the same optimal solution in practical scenrios. It also outperforms path and MIS-

based formulations in both running time and solution quality. More importantly, this approach

is applicable to ILP formulations for any problems that use multicommodity flow equation as

their core constraints.
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Chapter 6

Scalable Optimal Traffic Grooming

in WDM Rings Incorporating Fast

RWA Formulation

Traffic grooming problem is a fundamental and important network design problem that includes

routing and wavelength assignment. We present a scalable formulation for the traffic grooming

problem in WDM ring networks. Specifically, we modify the ILP formulation to replace the

constraints related to routing and wavelength assignment (RWA), typically based on a link

approach, with a new set of constraints based on the maximal independent set decomposition

(MISD) that we recently developed to solve optimally the RWA problem in ring networks.

Our experimental study indicates that the new formulation results in an improvement of up

to two orders of magnitude in running time. Consequently, it is now possible to solve the

traffic grooming problem to optimality for 16-node rings in a few seconds, under our objective

function.

The chapter is structure as follows. In Section 6.1 we give the introduction to traffic groom-

ing problem. In Section 6.2, we present the basic but general ILP formulation for the traffic

grooming problem that is the starting point of our work, and we discuss its complexity and

limitations. In Section 6.3, we integrate the MISD RWA algorithm to the formulation to traffic

grooming problem. In Section 6.4, we present an experimental study that demonstrates the

effectiveness of the approach, and we conclude the chapter in Section 6.5.

6.1 Introduction to Traffic Grooming

With the help of wavelength division multiplexing (WDM) technology, it is possible to transmit

traffic on different wavelengths within the same optical fiber simultaneously. The capacity of
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each wavelength can be significantly higher than the magnitude of individual traffic demands.

The concept of traffic grooming was introduced in the mid-1990s to address the gap between

the channel capacity and individual traffic demands in optical networks. The key idea is to

aggregate individual traffic requests onto wavelengths so as to improve bandwidth utilization

across the network and minimize the use of network resources. As a result, traffic grooming

problem includes grooming assignment, as well as routing and wavelength assignment.

Many variants of traffic grooming have been studied in the literature. Online versions of the

problem target network environments in which traffic demands arrive in real time. Since future

demands are not known in advance, the main objective of online problems is to minimize block-

ing probability or maximize throughput. Several heuristics for solving online traffic grooming

problems have been developed [66, 65, 68, 75], and simulation was used to demonstrate the

effectiveness of the proposed methods.

Offline traffic grooming is a fundamental network design problem that has been shown to be

NP-hard [64]. Such network design problems have been formulated as integer linear programs

(ILPs) and assume the existence of a traffic matrix representing the demands between node

pairs. Basic ILP formulations of the problem are available in [63] and [77]. Typically, the

objective is to minimize the total network cost while satisfying all demands (e.g., as in [60, 69]),

or to maximize the total revenue by satisfying as many traffic demands as possible given certain

capacity (wavelength) constraints (e.g., as in [77]). Since electronic equipment, i.e., switch

transceivers or SONET add-drop multiplexers (ADMs), that terminate lightpaths represent a

large fraction of the overall network cost, the number of lightpaths established to carry the

traffic demands is usually taken as the metric to minimize [69]. Other cost functions have

also been considered; for instance, the objective of the study in [62] was to minimize the

electronic switching cost of grooming traffic between lightpaths at intermediate switches, while

a formulation for energy-efficient traffic grooming, i.e., one that minimizes power consumption

in the grooming networks, was presented in [74].

One essential concern about the ILP formulations is that they are solvable only for small

network topologies [74]. For larger topologies representative of realistic networks, the ILP for-

mulation cannot be solved to optimality within reasonable amounts of time (e.g., several hours).

Therefore, the offline problem has generally been addressed using heuristic algorithms [59, 76].

In the following of this chapter, we develop a scalable optimal traffic grooming formulation

incorporating fast RWA formulation.

6.2 ILP Formulation of the Traffic Grooming Problem

Consider a connected graph G = (N,L), where N denotes the set of nodes and L denotes the

set of directed links (arcs) in the network. We define |N | and |L| as the number of nodes and
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links, respectively. Each directed link l consists of an optical fiber that may support W distinct

wavelengths. Let T = [tsd] denote the traffic demand matrix, where tsd is a non-negative integer

representing the traffic demand in terms of a unit capacity to be established from source node

s to destination node d. In general, traffic demands may be asymmetric, i.e., tsd %= tds. We

also make the assumption that tss = 0,∀s. Finally, we denote C as the capacity of a single

wavelength channel in terms of a unit capacity.

In this basic formulation, the entities of interest (i.e., decision variables) are link related.

Hence, let us further denote the links outgoing from (incoming to, respectively) node n as L+
n

(L−
n , respectively).

Let us define the following set of decision variables:

• tsdij : integer variable that indicates amount of traffic, in terms of unit capacity, from node

s to node d carried on lightpaths from node i to node j;

• bij : integer variable that indicates number of lightpaths from node i to node j;

• blij : integer variable that indicates number of lightpaths from node i to node j which

traverse link l; and

• c
l,w
ij : binary variable that indicates whether a lightpath from node i to node j uses wave-

length w on link l.

In the following subsections, we will discuss the objective function and constraints.

6.2.1 Objective Function

In this chapter, we are interested in minimizing the total network cost while satisfying all traffic

demands. There are various minimizing objective functions, two of which receive extensive

discussion, as shown below.

a). minimizing the total number of lightpaths to be established. This is a most commonly

discussed objective in the literature [63], [69]. The corresponding objective function is expressed

as

minimize:
∑

i,j

bij (6.1)

b). minimizing the amount of electronically switched traffic. This objective function is used

in [62]. The corresponding objective function is expressed as

minimize:
∑

i,j

∑

s,d

tsdij −
∑

s,d

tsd (6.2)
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Here in this chapter, we propose a combined objective functions, using a weight parameter,

α, to join the two objectives together.

minimize: α
∑

i,j

bij + (1− α)





∑

i,j

∑

s,d

tsdij −
∑

s,d

tsd



 (6.3)

Using this objective function, one can consider minimizing the number of lightpaths and the

amount of electronically switched traffic at the same time, and control the weight of each

objective in the combined function by adjust the parameter α.

6.2.2 Constraints

With the notations defined before, the basic ILP formulation generally used in literatures [74]

can then be expressed as:

Grooming constraints:
∑

s,d

tsdij ≤ bijC, i, j ∈ N (6.4)

∑

s,d

tsdij ≥ (bij − 1)C, i, j ∈ N (6.5)

∑

j

tsdij −
∑

j

tsdji = 0, i ∈ N \ {s, d}, s, d ∈ N (6.6)

∑

j

tsdij = tsd, s, d ∈ N (6.7)

∑

j

tsdjs = 0, s, d ∈ N (6.8)

∑

j

tsddj = 0, s, d ∈ N (6.9)

∑

j

tsdjd = tsd, s, d ∈ N (6.10)

Routing constraints:

∑

l∈L+
n

blij −
∑

l∈L−

n

blij = 0, n ∈ N \ {i, j}, i, j ∈ N (6.11)

∑

l∈L+
i

blij = bij , i, j ∈ N (6.12)
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∑

l∈L−

i

blij = 0, i, j ∈ N (6.13)

∑

l∈L+
j

blij = 0, i, j ∈ N (6.14)

∑

l∈L−

i

blij = bij, i, j ∈ N (6.15)

Wavelength constraints:

∑

w

cw,l
ij = blij , i, j ∈ N, l ∈ L (6.16)

∑

i,j

cw,l
ij ≤ 1, ∀w, l ∈ L (6.17)

∑

l∈L+
n

cw,l
ij =

∑

l∈L−

n

cw,l
ij , n ∈ N \ {i, j}, i, j ∈ N,∀w (6.18)

∑

l∈L+
i

cw,l
ij ≤ bij , i, j ∈ N,∀w (6.19)

∑

l∈L−

i

cw,l
ij = 0, i, j ∈ N,∀w (6.20)

∑

l∈L+
j

cw,l
ij = 0, i, j ∈ N,∀w (6.21)

∑

l∈L−

j

cw,l
ij ≤ bij , i, j ∈ N,∀w (6.22)

The grooming assignment constraints (6.4) to (6.10) are for grooming traffic into lightpaths

over the virtual topology. Constraint (6.4) is the channel capacity constraint that counts the

number of lightpaths need to be established between each node pair, while (6.5) ensures that

only enough number of lightpaths are to be established. Constraints (6.6) to (6.10) are multi-

commodity flow equations that find the traffic route(s) for each connection request.

The routing constraints (6.11) to (6.15) find the routes for each lightpath, utilizing a multi-

commodity flow equation, where each lightpath between a node pair corresponds to a single

commodity. Constraint (6.11) ensures the number of incoming lightpaths is equal to the number

of outgoing lightpaths at any intermediate node. Constraint (6.12) and (6.13) are the lightpath

constraints at origin nodes of each lightpath, while constraints and (6.14) and (6.15) are the

corresponding constraints for the termination nodes of each lightpath.

The wavelength assignment constraints (6.16) to (6.22) ensures the two wavelength con-
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straints in the problem: a). distinct wavelength constraint: (6.17) guarantees that each wave-

length can only be used once on any link, i.e., no two lightpaths that share a common link will

use the same wavelength; b). wavelength continuity constraint: multi-commodity flow equa-

tion (6.18) to (6.22) guarantee that each link on the same lightpath will be assigned the same

wavelength. Finally, constraint (6.16) ensures that each lightpath will only use one wavelength.

The scalability of an ILP formulation depends directly on its size, which, in turn, is deter-

mined by the number of variables and constraints. The above formulation consists of N2(N−1)2

integer variables {tsdij }, N(N−1) variables {bij}, N(N−1)|L| variables {blij}, and N(N−1)|L|W

binary variables {cl,wij }, for a total of O(N2|L|W ) variables. For the number of constraints, there

are N(N − 1)(N + 2) routing constraints, O(N(N − 1)(N + 2)W ) wavelength constraints, and

N(N − 1)(N + 4) grooming constraints. Hence there are in total O(N3W ) constraints in the

formulation.

This existing ILP formulation has two main limitations: (1) its size increases rapidly with

the size of the network; and (2) they have a symmetry problem in that multiple solutions

with the same objective value can be obtained by simply changing the order of wavelengths.

Since the ILP solver has to evaluate all W ! distinct optimal solutions, the running time can

be unnecessarily long. Hence, these formulations do not scale to networks with 100 or more

wavelengths per link that can be realized with current technology.

In the following section, we will present a scalable optimal approach that incorporates our

recently developed fast MISD RWA formulation, which response well to the two big challenges

above.

6.3 RWA in Traffic Grooming

The routing and wavelength assignment problem is a substantial subproblem of traffic grooming,

and it takes a large portion of efforts in the optimization procedure of traffic grooming. In fact,

RWA problem is a NP-hard problem by itself. Especially when it is combined with the grooming

assignment, it adds up the complexity to the whole problem dramatically. In previous chapters

of this thesis, we discussed in depth the performance of existing approaches to RWA algorithm

and developed an exact decomposition approach for an ILP formulation based on maximal

independent sets that makes it possible to obtain optimal solutions to the RWA problem for

maximum size (i.e., 16-node) SONET rings in only a few seconds using commodity CPUs.

Looking back at the existing ILP formulation to traffic grooming problem above, we find that

it utilizes the most complicated RWA ILP formulation, i.e., the link-based formulation, to solve

the routing and wavelength assignment subproblem. Altough it ensures overall optimality to

arbitary network topologies, the link-based formulation results in an enormous complexity to

the approach. Since the recently-developed MISD approach is totally equivalent to link-based

71



RWA formulation in ring networks, we present the new scalable traffic grooming approach

incorporating MISD RWA formulation, so as to greatly increase the efficiency of traffic grooming

solution in rings.

Before we introduce the equation substitution, a quick overview of MISD approach could be

as follows. MISD is a decomposition approach based on MIS-based formulation. Taking MISD-

2 as an example, this approach decomposes the network into two non-intersection paritions. It

can perfectly fit in the ILP for traffic grooming problem by substituting Equation (6.11)-(6.22)

with (6.23)-(6.25). For more details for the MISD approach and understanding the equations

below, reader may refer to Chapter 3.

Cl
∑

k=cw,ccw

bij,k = bij i, j ∈ N (6.23)

bij,k ≤
∑

m∈Mk

vkmXm
ij,k i, j ∈ N, k = cw, ccw (6.24)

∑

m∈Mk

vkm ≤ W k = cw, ccw (6.25)

We could see that the whole set of constraints (6.11)-(6.22) regarding routing and wavelength

assignment in traffic grooming problem can be substituted by only three constraints shown

above. Consequently, the formulation is greatly simplified. Further, using MIS-based approach

in RWA, the variables in the formulation is not coupled with a specific wavelength, as a result,

one can successfully avoid wavelength symmetry problem.

Moreover, MISD-4 and the general MISD approach MISD-2x formulation can be substituted

in the traffic grooming ILPs in a similar manner. In this chapter, we will use both MISD-2 and

MISD-4 in the new formulation and have a performance evaluation in the following section.

6.4 Experimental Study

In this section, we present the results of an experimental study we conducted to investigate the

performance of the traffic grooming with MISD, compared to the original approach. All results

were obtained by running the IBM Ilog CPLEX 12 optimization tool on a cluster of identical

compute nodes with dual Woodcrest Xeon CPU at 2.33GHz with 1333MHz memory bus, 4GB

of memory and 4MB L2 cache.

Our study involves a large set of problem instances on ring networks with size up to 16

nodes (the largest SONET Ring). For each network size, we consider several problem instances.

For each problem instance, the traffic demand matrix T = [tsd] is generated by drawing the

(integer) traffic demands (in units of lightpaths) uniformly at random in the interval [0, Tmax].
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Figure 6.1: CPU time comparison vs. N, α = 0.2

Each data point in the figures we present in this section represents the average of 10 random

problem instances for the given topology and value of parameters Tmax.

In Figure 6.1, 6.2 and 6.3 we plot the running time comparison among the original traffic

grooming ILP, ILP with MISD-2 RWA approach and ILP with MISD-4 RWA approach, with

the increasing size of ring networks. We choose α value as 0.2 in Figure 6.1, to represent

considering minimizing power electronically switched traffic as the main objective, α = 0.8 in

Figure 6.3 as to represent considering minimizing the number of lightpaths established as the

main objective, and α = 0.5 as to represent considering the two objectives equally weighted.

As we can see, in all three situations, ILP with MISD approaches achieve around two orders

of magnitude decrease in running time. Particularly, ILP with MISD-4 approach performs well

in large networks, which it can solve the largest SONET ring (16 nodes) network within 2 CPU

seconds in all cases. As a result, the new formulation makes it possible to solve network sizes

of practical size fast enough to allow network designers and operators to perform extensive

“what-if” analysis so as to investigate large numbers of scenarios regarding forecast demands.

Figure 6.4 compares running times of the original ILP, ILP with MISD approaches, with

different traffic load, using the 16 node ring network. We assign the random different traffic

instances by setting Tmax As we can see in the figure, again, the new approaches achieve two

orders of magnitude decrease in running time, consistently with various traffic loads.
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Figure 6.2: CPU time comparison vs. N, α = 0.5
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Figure 6.3: CPU time comparison vs. N, α = 0.8
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Figure 6.4: CPU time comparison vs. Tmax at N = 16

60 80 100 120 140 160 180
0.1

1

10

100

1000

W

R
un

ni
ng

 ti
m

e 
(s

ec
)

 

 
Original
TG with MISD−2
TG with MISD−4
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In the other hand, Figure 6.5 compares running times of the original ILP, ILP with MISD

approaches, with different number of wavelengths available. In this figure, we select again the

16 node ring network and fix Tmax = 20. Similar result as the above figure, the new approaches

still achieve two orders of magnitude decrease in running time, consistently with various number

of wavelengths available.

From a practical perspective, new approach with MISD-4 make it possible to solve traffic

grooming optimally for maximum-size (16-node) SONET rings with the combined objective in

only 2 seconds; importantly, the running times are not sensitive to the traffic load and number

of wavelength available.

6.5 Concluding Remarks

We have presented a new approach to solve the traffic grooming problem with MIS decompo-

sition in ring networks optimally, that scales well and enables network designers and operators

to carry out extensive “what-if” analysis.
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Chapter 7

Conclusion and Future Work

As a core problem in optical network, RWA problem is extensively studied with many existing

approaches. However, conventional formulations are challenged with scalability issue due to

the large network size and large number of wavelengths supported on a single fiber nowadays.

We have developed three new, fast ILP formulations that improved the performance of all

three existing formulations greatly, and extended our result to traffic grooming problem. The

contributions include 1) speeding up the running time of all existing approaches by 2-3 orders

of magnitude and make it possible to solve mesh network topologies representative of backbone

and regional networks in a very reasonable time; 2) making it possible to speed up several

optical network design problems that includes RWA as a subproblem, such as traffic grooming,

survivability design and traffic scheduling; 3) characterizing the performance of heuristics on

large networks and develop new efficient heuristics.

We now consider the following possible directions in the future work.

• Advanced Technique in Speeding up Traffic Grooming in Mesh In the previous

chapter, we incorporate MISD formulation for RWA with traffic grooming ILPs, and speed

up the traffic grooming solving in ring networks. We may further study on how to improve

optimal traffic grooming in mesh networks. One possible direction is using technique

similar to the link selection algorithm introduced in Chapter 5. As we mentioned earlier,

the efficient link selection algorithm is applicable not only to the link-based formulation

of the RWA problem, but also to ILPs for any problems that use multicommodity flow

equations as their core constraints. In fact, the general ILPs of the traffic grooming

problem are indeed based on multicommodity flow equation, so we can extend the link

selection algorithm technique to traffic grooming in mesh networks.

• Further Improve MIS-based and Path-based Formulation to RWA We believe

that we still have room to push MIS-based and path-based formulation to solve the RWA
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problem. First, since path-based formulation is mathematically equivalent to MIS-based

formulation and we received a lot of benefits by decomposing the graph and MIS, it is

attractive to study the decomposition approach for path formulation to see if we can get

the similar benefits as those in MIS decomposition. Second, MIS decomposition works

well in ring networks, but not in mesh networks due to the enormous number of MIS

generated by the mesh topologies. Hence, we are interested in assigning weight to MIS

and select only those with top weights as variables in the formulation, so as to reduce the

problem size. Our preliminary work for this direction uses path importance and traffic

demands as criteria to assign weights and simulation results is encouraging, but we need

to further study how to select the MIS with high weights effeciently.

• Impairment-aware RWA Problem. In the practical case, the incorporation of physi-

cal layer impairment in translucent and transparent network design and operations makes

the previously well-studied (RWA) problem less practical. ILP formulations is an optimal

approach to solve impairment-aware RWA problem, by modeling the physical impairment

factors as parameters and including them in the formulation. The impairment-aware con-

straints introduced one more factor to consider in the optimization of the RWA problem,

which makes the ILP formulation even harder to solve. Hence, the existing approaches

have a big scalability issue. This problem has strong practical urge to solve and it is

also intellectually interesting. We plan to study the problem as a longer term goal and

extend the successful experience in our previous work on reducing the problem size of ILP

formulations to the impairment-aware RWA problem. The characteristics and influence

of impairment factors in the formulation need to be further studied, but at least both the

symmetric solution technique stated in Chapter 4 and link selection technique introduced

in Chapter 5 should be able to extended well to impairment-aware RWA problems.
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Appendix A

Exact MISD-2x formulation

To discuss the exact MISD-2x formulation, we have following notations. We define qk,r as core

sets in non-leaf subgraph Gk,r
p (k = ccw, ccw, r = 0, 1, .., 2x−1 − 1), and define mk,r as MISs in

leaf subgraph Gk,r
p (k = ccw, ccw, r = 2x−1, ..., 2x − 1). To include the network topology in the

formulation, we define X
qk,r
ij,k as binary variable that indicates whether pij,k ∈ qk,r, and define

X
mk,r

ij,k as binary variable that indicates whether pij,k ∈ mk,r. We also let M
qk,r
k,r′ be the set of

MISs in leaf subgraph Gk,r′
p that corresponds to core set qk,r, and let Q

qk,r
k,r′ be the set of core

sets in non-leaf subgraph Gk,r′
p that corresponds to core set qk,r.

Then, let us define the following sets of decision variables:

• Vqk,r : number of wavelengths assigned to core set qk,r

• Vmk,r
: number of wavelengths assigned to MIS mk,r

With notations above, MISD-2x formulation is written as:

Minimize : Wtotal

Subject to:
∑

k

bij,k = tij, ∀i, j ∈ V (A.1)

bij,k ≤
∑

qk,1∈Qk,1

Vqk,1X
qk,1
ij,k ∀pij ∈ Gk,1

p , k = 0, 1 (A.2)

bij,k ≤
∑

qk,1∈Qk,1

∑

qk,r∈Q
qk,1
k,r

Vqk,rX
qk,r
ij,k ∀pij ∈ Gk,r

p , k = 0, 1 r = 2, 3 (A.3)

... ...
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bij,k ≤
∑

qk,1∈Qk,r1

∑

qk,r2∈Q
qk,1
k,r2

...
∑

qk,rs−1∈Q
qk,rs−2
k,rs−1

∑

mk,rs∈M
qk,rs−1
k,rs

Vmk,rs
X

mk,rs

ij,k

∀pij,k ∈ Gk,rs
p , s = x, 2x−1 ≤ rs ≤ 2x−1, rs−1 = 0

rs
2
1, rs−2 = 0

rk−1

2
1, ..., r1 = 0

r2
2
1 = 1, k = 0, 1

(A.4)

∑

qk,r∈Q
qk,1
k,r

Vqk,r = Vqk,1 k = 0, 1 r = 2, 3 (A.5)

... ...

∑

mk,rs∈M
qk,rs−1
k,rs

Vmk,rs
= Vqk,rs−1

s = x, 2x−1 ≤ rs ≤ 2x−1, rs−1 = 0
rs
2
1 k = 0, 1 (A.6)

Wtotal ≥
∑

q∈Qk

vk,0q , k = 0, 1 (A.7)

bij,k, vk,0q , vk,rq,m : integer (A.8)

Expression (A.2)-(A.4) are represented as expression (3.12) (3.13) in Section 3.3, making

sure that sufficient number of wavelengths are assigned to each path. Specifically, (A.2) takes

care of paths in top level subgraph, (A.3) takes care of paths in second level subgraphs, ..., (A.4)

takes care of paths in leaf subgraphs. Expression (A.5) (A.6) are represented as expression (3.3)

in Section 3.3, used to keep consistency between wavelength assignment in different subgraphs.
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