
ABSTRACT

KRISHNAMURTHY, RAMESH . A Framework for Evaluating Server Performance:
Application to SIP Proxy Servers. (Under the direction of Dr. George N. Rouskas.)

The growing number of applications that use the Session Initiation Protocol (SIP) to manage
media sessions over IP is placing increasing demands on the SIP proxy servers (SPS) that make
up the core of the SIP network. In this work we investigated the performance of OpenSIPS,
an open source SIP proxy server. We collected a large set of experimental data to characterize
the performance of the SPS under various call arrival rates and inter-arrival time distributions.
Based on these measurements, in the first part, we studied a single SPS server thread on a
single-core CPU hardware and modeled the SIP proxy server as an M/G/1 queue. A key
component of the model is a parameter that captures the interrupt overhead, i.e., the impact
of interrupts and the resulting cache-misses on socket queue service times.

For the second part, we studied the performance of multiple SPS server threads on a single-
core CPU hardware. We measured the call rate where the SPS server starts experiencing losses
greater than 1% and developed a prediction model for the drop probability as a function of
call rate and number of server threads. We also introduced a new parameter to capture the
overhead of multiple server threads, in addition to the interrupt overhead.

For the third part, we investigated the impact of the Linux scheduler settings on the perfor-
mance of single-core, multi-threaded SIP proxy servers, in terms of packet service time, waiting
time, and packet drop rate (PDR) to capture the impact on end-user experience. Based on
the results of a large set of experiments across a wide range of traffic loads and number of
server threads, we developed a methodology to configure the scheduler parameters such that it
resulted in significant gains in SPS performance compared to industry-recommended “server”
mode operation. Importantly, the gains in performance were the result of setting the scheduler
parameters to appropriate values, without the need for adding server capacity or other capital
expenditures.

For the final phase of our research, we investigated the impact of the Linux scheduler’s
load-balancing algorithm on the performance of multi-threaded SIP proxy server running on a
multi-core processor system. We conducted extensive experiments and developed a practical
guidelines for tuning the scheduler to a “enhanced multi-core server mode” that results in
significant gains in performance, thus addressing one of the most crucial needs in today’s data
center: to extract performance gains from the existing computing infrastructures. We further
developed a capacity planning model that provides a good first-order approximation of the total
capacity of the SPS system in terms of the call arrival rate that may be supported without
affecting user experience in terms of dropped call.

Our measurement and modeling methodology is general, and can be applied to characterize
the performance of a wide range of network application protocols.

c© Copyright 2016 by Ramesh Krishnamurthy

All Rights Reserved

A Framework for Evaluating Server Performance:
Application to SIP Proxy Servers

by
Ramesh Krishnamurthy

A dissertation submitted to the Graduate Faculty of
North Carolina State University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Computer Science

Raleigh, North Carolina

2016

APPROVED BY:

Dr. Rudra Dutta Dr. Khaled Harfoush

Dr. David Thuente Dr. George N. Rouskas
Chair of Advisory Committee

DEDICATION

To my parents, for their support and instilling in me the value of education and hard work.
To my wonderful wife, Sujatha for her patience, love and encouragement.

To my sons, Prem and Raj for the joy and happiness they bring to our lives.

ii

BIOGRAPHY

Ramesh Krishnamurthy grew up in the central Indian city of Nagpur. He received his Bachelor’s
degree in Computer Science from Visvesvaraya National Institute of Technology (formerly called
Visvesvaraya Regional College of Engineering), Nagpur, India. He was awarded the graduate
merit fellowship from University of Maryland Baltimore County, Baltimore, where he pursued
his Master’s in Computer Science.

Ramesh joined Cisco at Research Triangle Park, North Carolina as a Software Engineer and
has since worked on several software development projects at Cisco. Ramesh’s primary role
is centered around design, development and architecture of software. Ramesh has also been
awarded two patents from the U.S. Patent office for developing novel methods in the area of
network protocols.

Ramesh pursued his Ph.D in Computer Science at North Carolina State University, Raleigh,
while working full time at Cisco. He was selected for the Preparing for Professoriate (PTP)
fellowship at NC State. As part of PTP he underwent extensive training to improve his skills
and effectiveness as a teacher. He worked with Dr. Rouskas in updating the course content,
projects and lecturing for Data Structures and Algorithms course (CSC 316).

Ramesh’s extra-curricular activities include, helping coach his sons recreational soccer and
basketball teams. Ramesh is an active volunteer in the community. Ramesh enjoys gardening
and spending time with family and friends. Ramesh is married and lives in Raleigh with his
wife and twin sons.

iii

ACKNOWLEDGEMENTS

I consider myself very fortunate to have Dr. George Rouskas as my advisor. Throughout
my research Dr. Rouskas was very supportive, encouraging, treated me with respect and made
himself available whenever I needed him. I especially admire his ability to identify key technical
points and help prioritize items so as to maintain focus on tasks that mattered most. Open
and candid communication with Dr.Rouskas created an environment of trust and empowerment
and brought out the best in me. For this I am very grateful to him. This dissertation would
not have been possible without his constant support.

I would like to thank committee members Dr. Rudra Dutta, Dr. Khaled Harfoush and
Dr. David Thuente for their time in the research advisory committee. Trying to find answers
to their challenging question made me more diligent and prepared. Their insightful comments
have significantly raised the quality of my research.

This work is dedicated to my parents for their support and instilling in me the value of
hard work and education. I am grateful to my wonderful wife Sujatha for her patience, love
and encouragement and to my sons, Prem and Raj for the joy and happiness they bring to
our lives. I want to thank my in-laws, especially my father-in-law for helping with the editing
of the thesis. I want to thank my sisters, brother-in-law and their families and my nieces and
nephews for their support and encouragement.

Finally, I want to thank Cisco for providing financial support for my graduate study at NC
State in the form of tuition reimbursement.

iv

TABLE OF CONTENTS

List of Tables . viii

List of Figures . x

Chapter 1 Introduction . 1
1.1 Thesis Organization . 3

Chapter 2 SIP Architecture . 5
2.1 Main Components . 6
2.2 Call Setup and Teardown . 7
2.3 SIP Protocol Family . 9
2.4 Related Work . 9

Chapter 3 Linux Kernel Modifications and Measurement Methodology 13
3.1 Kernel Overview . 13

3.1.1 Kernel Design . 15
3.2 Packet Processing within the Linux Kernel . 15

3.2.1 Linux Kernel Network Stack – Packet Receiving 17
3.2.2 Application Layer Packet Processing . 17
3.2.3 Linux Kernel Network Stack – Packet Sending 17

3.3 Packet Service and Waiting Time Components 18
3.4 Impact of Interrupts and Cache Misses . 19
3.5 Measurement Methodology . 20

3.5.1 Measuring the Time Components: Kernel and OpenSIPS Modifications . 21

Chapter 4 Evaluation of SIP Proxy Server Performance: Packet-Level Mea-
surements and Queuing Model . 25

4.1 Experimental Setup . 26
4.1.1 OpenSIPS as SPS . 27
4.1.2 SIPp as UAC . 27
4.1.3 SIPp as UAS . 29

4.2 Experiments and Performance Measurements . 29
4.2.1 Experimental Results: Measurement Data for Krcv, Kstack, and Ksockq . . 30
4.2.2 Experimental Results: Measurement Data for Tsip 34
4.2.3 Experimental Results: Measurement Data for Ksnd 36
4.2.4 Experimental Results: Overall mean for Ksockq and Tsip 36

4.3 M/G/1 Queuing Model for the SPS . 36
4.3.1 Estimating the Ks

sockq Component of the Service Time X 40
4.4 Conclusions . 43

v

Chapter 5 Performance Evaluation of Single-Core, Multi-Threaded SIP Servers 45
5.1 Related Work . 46
5.2 Experiments and Performance Measurements . 46

5.2.1 Experimental Results: Measurement Data for Krcv, Kstack, and Ksockq . . 47
5.2.2 Experimental Results: Measurement Data for Tsip 49
5.2.3 Experimental Results: Measurement Data for Ksnd 49

5.3 Drop-Probability Model for the SPS . 50
5.3.1 Modeling the Interrupt Overhead: . 52
5.3.2 Modeling the Server-Thread Overhead: 52
5.3.3 Modeling Results . 54

5.4 Conclusions . 58

Chapter 6 Performance of Multi-threaded SIP Servers: The Impact of Sched-
uler Parameters . 59

6.1 Related Work . 60
6.2 Experiments and Performance Measurements . 60
6.3 Impact of Process Scheduler on SPS Performance 61

6.3.1 Baseline Server Mode . 62
6.3.2 Enhanced Server Mode . 63

6.4 Experimental Results . 64
6.4.1 Average Service and Waiting Times . 64
6.4.2 Packet Drop Rate . 65

6.5 Concluding Remarks . 73

Chapter 7 Performance Evaluation of Multi-Core, Multi-Threaded SIP Servers 74
7.1 Related Work . 75
7.2 Testbed and Experimental Setup . 76
7.3 Measurement Methodology and Experiments . 76
7.4 Impact of Process Scheduler on Multi-core SPS Performance 77

7.4.1 Baseline Multi-Core Server Mode . 78
7.4.2 Enhanced Multi-Core Server Mode . 78

7.5 Experimental Results . 79
7.5.1 Impact of sched migration cost . 79
7.5.2 SPS Performance . 80

7.6 Capacity Planning Model . 83
7.7 Concluding Remarks . 85

Chapter 8 Summary and Future Work . 87
8.1 Future Work . 89

References . 91

Appendices . 95

vi

Appendix A Kernel, OpenSIPS and SIPp Modification 96
A.1 Kernel Modification . 96

A.1.1 Diffs . 97
A.2 OpenSIPS Modification . 100
A.3 SIPp Modification . 108

Appendix B Call Arrival Rate and Number of Interrupts 112

vii

LIST OF TABLES

Table 4.1 Measured Mean Values and Confidence Intervals for Krcv, and Poisson
Inter-Arrivals (µS) . 30

Table 4.2 Measured Mean Values and Confidence Intervals for Krcv, Deterministic
Inter-Arrivals (µs) . 31

Table 4.3 Measured Mean Values (in µs) at 1 cps . 41
Table 4.4 Waiting Times (in µs): Measured vs. Analytical, Poisson Inter-Arrivals . 42
Table 4.5 Waiting Times (in µs): Measured vs. Analytical, Deterministic Inter-

Arrivals . 42

Table 5.1 Waiting Time(µs): Measured vs Analytical, Exponential Inter-Arrival
Times SPS on 1 core 1-Server, K=200 . 54

Table 5.2 Drop probability Analytical vs. Drop Rate Measured, SPS with 2-Server,
K=200 . 56

Table 5.3 Drop probability Analytical vs. Drop Rate Measured, SPS with 4-
Server, K=200 . 56

Table 5.4 Drop probability Analytical vs. Drop Rate Measured, SPS with 6-
Server, K=200 . 56

Table 5.5 Drop probability Analytical vs. Drop Rate Measured, SPS with 8-
Server, K=200 . 57

Table 5.6 Drop probability Analytical vs. Drop Rate Measured, SPS with 16-
Server, K=200 . 57

Table 6.1 Measured SPS Performance, 1% PDR, Baseline Server Mode 69
Table 6.2 Measured SPS Performance, 1% PDR, Enhanced Server Mode 69
Table 6.3 PDR at 1% And Kernel Time (Krcv) Comparison 70
Table 6.4 Measured SPS Performance, 2% PDR, Baseline Server Mode 71
Table 6.5 Measured SPS Performance, 2% PDR, Enhanced Server Mode 71
Table 6.6 PDR at 2% And Kernel Time (Krcv) Comparison 71
Table 6.7 Measured SPS Performance, 5% PDR, Baseline Server Mode 72
Table 6.8 Measured SPS Performance, 5% Drop-Rate, Enhanced Server Mode . . . 72
Table 6.9 PDR at 5% And Kernel Time (Krcv) Comparison 72

Table 7.1 Measured SPS Performance, Baseline Multi-core Server Mode, SPS on
2-Core . 82

Table 7.2 Measured SPS Performance, Enhanced Multi-core Server Mode, SPS on
2-Core . 82

Table 7.3 Drop rate And Kernel Time (Krcv) Comparison, SPS on 2-Core 83
Table 7.4 Measured SPS Performance, Baseline Multi-core Server Mode, SPS on

4-Core . 83
Table 7.5 Measured SPS Performance, Enhanced Multi-core Server Mode, SPS on

4-Core . 84
Table 7.6 Drop rate And Kernel Time (Krcv) Comparison, SPS on 4-Core 84

viii

Table 7.7 Measured SPS Performance, Baseline Multi-core Server Mode, SPS on
6-Core . 85

Table 7.8 Measured SPS Performance, Enhanced Multi-core Server Mode, SPS on
6-Core . 86

Table 7.9 Drop rate And Kernel Time (Krcv) Comparison, SPS on 6-Core 86

ix

LIST OF FIGURES

Figure 2.1 SIP call setup within the same domain 8
Figure 2.2 SIP message exchange for call setup and teardown 10

Figure 3.1 Kernel: An abstraction layer for available resources in a system 14
Figure 3.2 Linux network stack:UDP packet receiving/sending operations 16
Figure 3.3 Time-stamps recorded at the instances shown in the Kernel and SIP layer 22

Figure 4.1 Testbed for performance measurements of OpenSIPS SPS 26
Figure 4.2 Mean value of Ksockq in the stable region, Poisson Arrivals 32
Figure 4.3 Mean value of Ksockq in the stable region, Deterministic Arrivals 32
Figure 4.4 Mean value of Kstack, Poisson Arrivals 33
Figure 4.5 Mean value of Kstack, Deterministic Arrivals 33
Figure 4.6 Mean value for Tsip, Poisson Arrivals . 35
Figure 4.7 Mean value for Tsip, Deterministic Arrivals 35
Figure 4.8 Mean value of Ksnd, Poisson Arrivals . 37
Figure 4.9 Mean value of Ksnd, Deterministic Arrivals 37
Figure 4.10 Overall Mean value of Ksockq and Confidence Interval 38
Figure 4.11 Overall Mean value of Tsip and Confidence Interval 38
Figure 4.12 M/G/1 queuing model of the SPS . 39
Figure 4.13 Server utilization: CPU% vs. ρ (as %), exponential inter-arrival times . . 43

Figure 5.1 Krcv value for SPS as a function of the number of server threads 48
Figure 5.2 Tsip value for SPS as a function of the number of server thread 48
Figure 5.3 M/G/c/K queuing model of the SPS . 55
Figure 5.4 Drop probability(Model) vs. Drop-Rate(Measured), Point where Drop

rate starts exceeding 1%; 2D-map view as Function of Number of Server
threads and Call-Arrival rate . 55

Figure 6.1 Mean Krcv values vs. load, baseline “server” mode 66
Figure 6.2 Mean Tsip values vs. load, baseline “server” mode 66
Figure 6.3 Mean Krcv values vs. load, enhanced “server” mode 67
Figure 6.4 Mean Tsip values, enhanced “server” mode 67
Figure 6.5 Mean Krcv values, Comparison, Base vs enhanced Mode 68
Figure 6.6 Mean Tsip values, Comparison, Base vs enhanced Mode 68

Figure 7.1 Dual quad-core processor hosting the OpenSIPS server for the experiments 76
Figure 7.2 Impact of sched migration cost on Krcv (waiting time) 81
Figure 7.3 Impact of sched migration cost on PDR 81

x

Chapter 1

Introduction

The Session Initiation Protocol (SIP) [1] is widely used as a signaling protocol for managing
media sessions over IP. The ubiquitous presence of IP over the past decade has spawned a new
set of non-traditional service providers, including Vonage, Skype, and Lingo, that offer voice
over IP (VoIP) services with advanced features (e.g, PC-to-phone calling, enhanced voice-mail,
multi-ring capability, etc.) at lower cost to users. Established providers, including both telcos
and cable companies, are increasingly providing VoIP service so as to remain competitive and
to take advantage of the resulting increased efficiencies. Furthermore, with the advent of smart
phones, there has been a proliferation of applications that enable users to make voice and video
calls using any available WiFi hot-spot, thus avoiding the more expensive 3G/4G data networks.
Most of these providers and their applications use SIP as the underlying signaling protocol for
setting up and managing the voice and video calls.

The growing number of customers and devices that make use of SIP is placing an increased
demand on the SIP proxy servers (SPS) that make up the core of the SIP network. For service
providers to deal effectively with the demand growth, they must develop a good understanding
of current usage patterns, forecast and plan upgrade needs, and be able to configure a robust
service capability for new users. In [2] the requirements for management of overload in SIP is
discussed and poor capacity planning was cited as one of the leading causes of overload in SIP.
Ultimately, all these considerations require accurate estimates of the performance capability of
the SPS.

Hence, we have the following main objectives for our research:

1. Develop tools and techniques that can be easily adapted to carry out similar experimental
studies for other SPS configurations as well as different protocol suites.

2. Conduct a comprehensive set of experiments to understand how individual SIP packets
are processed and measure their processing and waiting times (within the kernel and the

1

SIP protocol)

3. Develop a guideline for extracting performance gains from existing computing infrastruc-
tures without additional capital expenditures.

4. Develop a parametrized model that can be used to estimate the performance and the
capacity of the SPS over a range of offered loads, and a range of SPS hardware and
software configurations.

In this work we investigate the performance of OpenSIPS [3], an open source SIP proxy
server, and make several contributions.

1. We have modified the Linux kernel and the OpenSIPS source code to obtain packet-level
measurements for each SIP message, from which the service and waiting times within the
kernel and the SIP layer can be easily obtained. In particular, the kernel modifications
can be used for collecting such measurements for any protocol, while the OpenSIPS
modifications may be easily adapted to other application servers.

2. We also enhanced SIPp [4], a SIP traffic generator tool, to generate calls with inter-
arrival times that follow any user-specified distribution. The modified versions of the
kernel, OpenSIPS, and SIPp are made available in the Appendix and also as media files
as part of this thesis.

3. We have collected a large set of experimental data to characterize the performance of the
SPS under various call arrival rates and inter-arrival time distributions.

4. Based on these measurements, in the first part, we study a single SPS server thread on a
single-core CPU hardware and model the SIP proxy server as an M/G/1 queue. A key
component of the model is a parameter that captures the Interrupt overhead, i.e., the
impact of Interurpts and the resulting cache misses on socket queue service times. Our
measurement and modeling methodology is general, and can be applied to characterize
the performance of a wide range of network application protocols.

5. For the second part, we study the performance of multiple SPS server threads on a single-
core CPU hardware. We measure the call rate where the SPS server starts experiencing
losses greater than 1% and develop a prediction model for the drop probability as a
function of call rate and number of server threads. We also introduce a new parameter
to capture the overhead of multiple server threads, in addition to the interrupt overhead.

6. For the third part, we investigated the impact of the Linux scheduler settings on the per-
formance of single-core, multi-threaded SIP proxy servers, in terms of packet service time,

2

waiting time, and packet drop rate (PDR) to capture the impact on user performance. We
identify the key scheduler parameters of the Linux scheduler and provide concrete guide-
lines for tuning these parameters that we identify as ’enhanced server mode’ to achieve
significant performance improvement.

7. For the final phase of our research, we investigated the impact of the Linux scheduler’s
load-balancing algorithm on the performance of multi-threaded SIP proxy server run-
ning on a multi-core processor system. We conducted extensive experiments and develop
practical guidelines for tuning the scheduler to a ’enhanced multi-core server mode’ that
results in significant gains in performance, thus addressing one of the most crucial needs in
today’s data center: to extract performance gains from the existing computing infrastruc-
tures without additional capital expenses. We further develop a capacity planning model
that provides a good first-order approximation of the total capacity of the SPS system in
terms of the call arrival rate that may be supported without affecting user experience in
terms of dropped call.

1.1 Thesis Organization

The remainder of this thesis is organized as follows.
In Chapter 2, we present an introduction to the SIP architecture and its main components:

the SIP user agent (UA), the SIP proxy server (SPS), the SIP Registrar server and the SIP
Re-direct server. We provide an example of the SIP call setup and tear-down processes, and
explain the message flow for a typical call. We also discuss related research.

In Chapter 3, we provide the details of the kernel modifications that we made as part of
the research, starting with an overview of the kernel and the packet processing within Linux
kernel. We then provide a description of service time and waiting time components and then
describe measurement methodology for obtaining these components.We end this chapter with
a discussion of work that studied the impact of increased packet arrivals.

In Chapter 4, we present the experimental testbed that we used for obtaining the mea-
surements. We present the details of the SPS server and the SIPp tool that is used in the
experiments. We then present a large set of data collected and from which we develop a queu-
ing model for the SPS proxy server.

In Chapter 5, we investigate the performance of SPS server in a multi-threaded environment.
We measure the performance of SPS as a function of number of server threads and call arrival
rates. We expand our earlier finding and introduce a new parameter to capture the overhead
due to resource contention among multiple server threads, and develop a drop-probability model
for the multi-threaded system.

3

In Chapter 6, we investigate the impact of the Linux Completely Fair Scheduler (CFS) on
the performance of SPS, as a function of the number of threads and the call arrival rate. We
characterize the impact of the scheduler on the performance of a multi-threaded SPS, in terms
of waiting time and packet drop rate. Further, we identified key scheduler parameters of CFS
scheduler and developed concrete guidelines on tuning these parameters to achieve significant
performance improvement.

We present the impact of the Linux scheduler’s load-balancing algorithm on the performance
of multi-threaded SIP proxy server running on a multi-core processor system in Chapter 7. We
conducted extensive experiments, developed practical guidelines for tuning the scheduler to
an ’enhanced multi-core server mode’ and were able to obtain significant performance gains
in the SPS. We further develop a capacity planning model that provides a good first-order
approximation of the total capacity of the SPS system in terms of the call arrival rate that may
be supported without affecting user experience in terms of dropped call.

We conclude in Chapter 8 by summarizing our motivation, goals of our research and list the
various contributions we have made. We also identify possible areas where the research can be
expanded further.

4

Chapter 2

SIP Architecture

SIP is an application layer signaling protocol that can establish, modify, and terminate mul-
timedia sessions such as Internet telephony calls [1, 5]. SIP is independent of the transport
layer and can work over any transport protocol including UDP, TCP, stream control transmis-
sion protocol (SCTP), and transmission layer security (TLS). SIP is based on an HTTP-like
request/response transaction model. Each transaction consists of a request that invokes a par-
ticular method, or function, on the server and at least one response for the request. The most
common SIP requests are as follows:

• INVITE: Used by a client to initiate or update a media session.

• ACK: Indicates the client has received a final response for an INVITE and is ready for
media exchange.

• BYE: This message is used to terminate a session.

• CANCEL: Cancels any pending requests. For instance, if an INVITE has been sent but the
user has not received a final response, CANCEL is sent to terminate the pending INVITE.

• REGISTER: This message is used by the client to indicate its contact address, so that it
can receive calls.

The response to a SIP request can be of one of the following types:

• 1xx: Provisional – request received, continuing to process the request; e.g., 100 Trying,
180 Ringing.

• 2xx: Success – the action was successfully received, understood, and accepted; e.g., 200
OK, 202 Accepted.

5

• 3xx: Redirection – further action needs to be taken in order to complete the request; e.g.,
301 Moved Permanently, 302 Moved Temporarily.

• 4xx: Client Error – the request contains bad syntax or cannot be fulfilled at this server;
e.g., 403 Forbidden, 404 Not Found.

• 5xx: Server Error – the server failed to fulfill an apparently valid request; e.g., 500

Internal Server Error, 503 Service Unavailable.

• 6xx: Global Failure – the request cannot be fulfilled at any server; e.g., 600 Busy

Everywhere, 604 Does Not Exist Anywhere.

2.1 Main Components

The SIP infrastructure consists of four key components: the SIP user agent (UA), the SIP
proxy server (SPS), the SIP Registrar server, and the SIP Re-direct server. We now briefly
describe the main functions of these components.

• SIP User Agent (UA). A SIP UA is an end-point device such as a VoIP phone, a cell
phone, a PC, etc. The UA initiating a SIP request becomes the user agent client (UAC)
for this particular session, while the end-point device which responds to the request is
referred to as the user agent server (UAS) of the SIP session. A UAC is capable of
generating a request based on some external stimulus (e.g., a user clicking a button) and
processing a response. A UAS is capable of receiving a request and generating a response
based on user input (or some other external stimulus).

• SIP Proxy Server (SPS). The main function of an SPS is to route SIP messages
between the UAC and UAS. A SIP request from the UAC may traverse through several
proxies on its way to a UAS, with each proxy making routing decisions and possibly
modifying the request before forwarding it to the next. A response is forwarded through
the same set of proxies traversed by the corresponding request, but in the reverse order.
When a SIP request arrives, the SPS may respond on its own as well.

An SPS can operate in either a stateful or stateless mode. In stateless mode, a proxy
acts as a simple forwarding element. A stateless proxy does not maintain any information
about a SIP message after the message has been forwarded. A stateful proxy, on the other
hand, remembers transaction state about each incoming request. For example, when a
proxy receives an INVITE, it will maintain the transaction state until a final response is
received or the transaction is canceled. Another feature present only in stateful proxies
is the ability to fork a request to a number of locations at the same time. When using

6

TCP as the transport protocol, an SPS has to operate in stateful mode, as the UA relies
on the proxy to perform retransmissions for any UDP hops in the signaling path.

• SIP Registrar Server. Before a SIP UA can receive a call, it needs to make its reach-
ability information available so that an SPS can forward SIP requests to the UA. A SIP
UA makes itself discoverable by registering with (i.e., submitting a REGISTER message
to) a special UAS known as the SIP Registrar server. The Registrar acts as the front
end to the location service for a given domain. The SPS queries the Registrar to deter-
mine how to forward a request for that domain. Note that the Registrar and SPS are
logical roles; typically, both functionalies are implemented in the same physical device.
The REGISTER message contains the address-of-record (AOR) whose registration is to be
created or modified, and the corresponding contact binding to a device.

• SIP Re-direct Server. This is a special class of UAS that generates a response of type
3xx (e.g., 302 Moved Temporarily) to a request it receives. The server populates the
3xx response with a list of alternative locations and provides the time during which the
new contact data is valid. The Re-direct server allows the SPS to direct SIP requests to
external domains.

As we can see, the SPS is the key component of the SIP infrastructure: it handles all SIP
messages generated by the UAC and UAS during setup, modification or termination of media
session; hence, in case of overload, the SPS may become a performance bottleneck that limits
the ability of users to establish SIP sessions. Consequently, we only focus on the SPS in this
thesis.

2.2 Call Setup and Teardown

Recall that SIP is mainly used to signal the establishment and termination of multimedia
sessions between user agents. Once a call has been established, no SIP messages are exchanged
until either party decides to modify or terminate the session. Therefore, understanding the flow
of messages during call setup and teardown is crucial in evaluating the performance of the SPS.

Figure 2.1 illustrates the basic call setup process and the resulting media session between
two users within the same domain. In the figure, Alice and Bob are two users in the domain
XYZ.com with phone numbers 1111 and 2222, respectively.

Suppose that Bob has a soft-phone on his laptop. When the soft-phone application is
started, it sends a REGISTER message to the SIP Registrar server in the XYZ.com domain (the
Registrar’s IP address is usually available via configuration). The REGISTER message includes
two important fields:

7

Figure 2.1: SIP call setup within the same domain

• the To: field contains the value sip:2222@XYZ.com, which corresponds to Bob’s address-
of-record (AOR), and

• the Contact: field is set to the value sip:bob@<IP Address of Bob’s laptop>, binding the
AOR to the current IP address of the device where Bob may be reached.

Upon successful registration, the Registrar responds with a 200 OK message.
When Alice (having the role of a UAC) wishes to call Bob (who, in this case, acts as a UAS),

Alice sends an INVITE message to the SPS in the XYZ.com domain; this message provides Bob’s
AOR (i.e., sip:2222@XYZ.com) in the value of its To: field. Upon receipt of this message, the

8

SPS queries the Registrar to obtain the corresponding contact address, and the latter replies
with the contact address that Bob provided in its earlier REGISTER message. The SPS then
forwards the INVITE message to this contact address. Once Bob (the UAS) answers the call,
the SPS forwards the 200 OK response message from Bob back to Alice. Alice (the UAC)
acknowledges Bob’s acceptance of the call with an ACK message. Once Bob receives this last
message, the media session between the two parties is established.

To terminate the session, either the UAC or the UAS sends a BYE request, and the other
party responds with a 200 OK message.

Figure 2.2 shows the exchange of SIP messages between the UAC and UAS through an SPS,
for both the call setup and teardown operations. This is the message flow that we use in our
experimental data collection and in modeling the SPS performance.

2.3 SIP Protocol Family

SIP is one part of the IETF protocol suite that makes up the complete multimedia architecture.
For the sake of completeness, we briefly discuss two other protocols that are commonly used
with SIP, namely, the Real-time Transport Protocol (RTP, defined in RFC 1889) and the Session
Description Protocol (SDP, defined in RFC 2327).

SDP is used with SIP for describing the multimedia session. When setting up a voice
or video session, SDP information is included in the INVITE request by the UAC and the
200 OK response from the UAS. The SDP media session information typically includes: an
IP address and port number, the media type (e.g., audio, video, interactive whiteboard, etc.),
and the media encoding scheme (e.g., G711 audio, H264 video, etc.). Once the SIP session is
established, the UAC and UAS use the SDP information to encode the media, and use RTP
for transporting real-time voice and/or video data.

SIP must be used in conjunction with SDP and RTP in order to provide complete services
to the users. However, the basic functionality and operation of SIP, as well as the performance
of the SPS, does not depend on any of these protocols.

2.4 Related Work

RFC 6076 [6] defines metrics and parameters used to evaluate the end-to-end performance of
SIP for telephony service. Call related metrics discussed in this RFC include the session request
delay (SRD), the session disconnect delay (SDD), and the session duration time (SDT). While
the latter only depends on the users’ behavior and characteristics (e.g., how long they wish to
stay connected), the performance of the system in terms of the former two metrics is clearly

9

Figure 2.2: SIP message exchange for call setup and teardown

determined by the processing capacity and load of the SPS. There have been several attempts
in the literature to characterize the queuing behavior of the SPS.

An analytical model to estimate the mean response time for call setup, as measured from

10

the UAC perspective, was developed in [7]. In this study, the mean response time consists of
the processing and queuing delays at the SPS and UAS. Specifically, the mean response time
is defined as the difference between the instant an INVITE request from the UAC arrives at the
SPS until the instant the corresponding final response is forwarded by the SPS to the same
UAC , excluding the call duration and the propagation delays between the SPS and the UAC
and UAS. The SPS and UAS are modeled as a queuing network with six M/M/1 queues, each
queue corresponding to the processing of one message type at either the SPS or UAS, including
failure messages not shown in Figure 2.2.

Based on the observation that the processing of messages of a specific type does not follow
an exponential distribution but, rather, it is close to a constant, the queuing network of [7] was
analyzed in [8] under the assumption that each of the six queues are of the M/D/1 type.

While these studies provide some insight into the mean response time, the six-node queuing
network is not an accurate model of the way the SPS and UAS operate in practice. In [9],
the SPS is modeled as a single M/M/c queue, and the analytical results are compared to
experimental data collected from an SPS with three threads. This study was further extended
in [10]. Specifically, the experiments were modified to incorporate a call holding time for each
call, and the CPU and memory utilization and queue size were measured to investigate the
scalability of the SPS model.

An experimental evaluation of the OpenSER [11] proxy server under various configurations
was carried out in [12] using the SIPp tool [4] (we also utilize the SIPp tool and discuss it
in the next chapter). It was observed that, depending on the configuration (authentication
enabled/disabled, UDP or TCP, stateful or stateless), the measured throughput may vary from
hundreds to thousands of operations per second, and that more complex configurations result
in a lower throughput, as expected.

The impact of UDP versus TCP transport on the performance of OpenSER was investigated
in [13]. The main conclusion of this study was that the lower performance observed when using
TCP is mainly due to the design of the OpenSER server (which is better suited to handle
a connectionless protocol), while the overhead of TCP compared to UDP is not a significant
factor affecting the performance.

The objective of the work in [14] was to improve the performance of a cluster of SIP proxy
servers. A number of load balancing algorithms were developed that exploit the properties of
SIP, namely, the session-oriented nature of the protocol which mandates that all SIP messages of
a given session be handled by the same SPS. The proposed algorithms have the load-balancing
server employ session-aware policies to assign requests so as to improve throughput and response
times.

An algorithm that uses the type of incoming SIP request, the CPU usage and the retrans-
mit count to dynamically decide if the incoming message needs to be handled in a stateful or

11

stateless manner by the SPS was proposed in [15]. It was shown via IP multimedia system
(IMS) simulation that this hybrid approach that combines the performance advantage of state-
less functionality with the higher reliability of a stateful server may lead to better scalability
properties for the SPS.

In [16] the authors studed multi-core scalability of the OpenSER SIP server, not only on a
Linux on Intel platform, but also using Solaris system (developed by Sun Microsystems). They
additionally consider TCP as a transport protocol. They encountered scalability bottlenecks in
both the Linux and Solaris operating systems, such as those caused by a single lock protecting
access to a socket, and proposed using multiple sockets (and port numbers) in response to
avoid the problem. They also noticed a problem involving contention in the shared memory
segment used by OpenSER. Their response is to hash a shared state by call ID and use multiple
shared memory segments to partition the global state and have a lock per segment, reducing
the contention. They improved scalability by up to a factor of four, depending on the scenario.

In [17] the authors evaluated the performance and scalability of an open-source SIP proxy on
three different multi-core platforms: AMD Santa Rosa, Intel Harpertown, and IBM POWER6.
Two performance and scalability bottlenecks were identified using whole-system profiling: One
was the OpenSER use of hash table for user location lookup. By increasing the width of hash
table the performance was improved by a factor of four. The workload used in the study was
user based and required Database lookup, storing the data in memory improved performance.
The scalability was reduced when using eight cores.

In [18] the impact of TLS on SIP server performance is studied and a measurement-driven
cost model is developed to predict the incremental cost of using TLS over TCP for SIP signaling
compared to SIP-over-UDP. In the experiments conducted, the authors found that SIP over
TLS/TCP can reduce the performance by a factor of 17 compared to SIP-over-UDP.

12

Chapter 3

Linux Kernel Modifications and

Measurement Methodology

The kernel forms the core part of an operating system and provides an abstraction layer between
the applications and the hardware present in the system. In this chapter, we first provide an
overview of the kernel function, then we present the steps a packet takes as it moves from
the device layer through the Linux kernel to the application layer and back to the device
layer; Note that these steps are common for any application layer service. We describe the
kernel modifications we have implemented and the measurement methodology that we used
for collecting the data. We also discuss the impact of interrupts and cache misses on system
performance as a function of load, and survey related research.

In our research, we carry out a large set of experiments with the objective of obtaining a
precise measurement of the time a packet spends within the SIP Proxy Server (SPS) System.
The total time is defined as the length of time from the arrival instant (i.e., the time it is
received by the device layer) to the departure instant (i.e., the time it is transmitted by the
device layer after it has undergone processing at the application layer (SIP in this instance)).
Therefore, to measure the total time the packet spent in the system, it is necessary to first
understand the processing that a packet undergoes in the kernel.

3.1 Kernel Overview

The kernel provides an abstraction layer for the hardware present in the system. The main
function of the kernel is to perform resource management of the available resources (including
CPU, memory and devices). Kernel allows other user processes to utilise these resources. Some
of the functions that a kernel can perform are:

1. Process Management and Scheduling.

13

Figure 3.1: Kernel: An abstraction layer for available resources in a system

To run any process, the kernel has to setup address space for the process and load the
code for the process into memory and allocate the process, CPU time, so that the process
can execute. All modern systems use multi-tasking, i.e, the kernel gives each process a
slice of CPU time before switching to another process so as to give an illusion of running
multiple processes simultaneously.

2. Memory Management.

The kernel is responsible for managing all the memory in the system that is currently in
use by various processes. The kernel needs to ensure that each process uses only its own
memory space and does not interfere with memory dedicated to other processes.

3. Interrupt Handling.

14

When a hardware devices triggers an interrupt, it is handled by the kernel. The kernel
will typically handles interrupts by suspending the currently executing process, saving
its context, and then running the code to service the interrupt. Once the interrupt is
serviced, the kernel will restore the interrupted process’s context and allow it to continue
execution. System calls made by a process also result in interrupts and the control coming
back to kernel. The kernel will handle the request and return the results and control back
to the process.

3.1.1 Kernel Design

There are two main kernel design approaches: monolithic kernel and the other is the micro
Kernel. Each type is briefly described here.

In monolithic kernel all the OS services reside in the same memory space and use the same
shared memory. All the services run along with the main kernel thread. This allows all the
services easier access to data from other services with less overhead. The implementation is also
simpler. However, monolithic kernel has some drawbacks. First, a lack of protection between
services can result in the crash of the entire system, when a bug is encountered in one service.
Second, as the size of kernel becomes larger, the lack of modularization makes maintenance of
the kernel difficult. Examples of monolithic kernel implementations include Linux, BSD (and
its flavors), AIX, HP-UX, Windows 9x series, etc.

The approach taken in micro-kernel design is to provide the most fundamental and primitives
functions including process scheduling, inter-process communication and low-level address space
management. All other services like network protocol stack, device drivers, file systems etc. run
in user space. Micro kernel design addresses the drawbacks of monolithic kernel, by providing
address space protection between services and making it easier to maintain the kernel due to
its smaller size. However, the benefits come at the expense of performance due to the large
number of context switches and additional overhead in sharing data between services. Examples
of micro kernel implementations are: QNX, Symbian, L4Linx, etc.

All the experiments that were conducted as part of this thesis, used the Linux kernel, which
is a monolithic kernel. For the remainder of this thesis, any reference to the Linux kernel or
Operating System in the context of our experiments should be considered as referring to version
2.6 of the Linux kernel, unless stated otherwise.

3.2 Packet Processing within the Linux Kernel

Let us refer to Figure 3.2 which illustrates the packet receiving and sending operations within
the Linux kernel network stack. Based on this figure, there are two distinct entities involved in
processing a packet at the Linux kernel, as discussed next.

15

Figure 3.2: Linux network stack:UDP packet receiving/sending operations

16

3.2.1 Linux Kernel Network Stack – Packet Receiving

As soon as a packet is received at the Network Interface Card (NIC) it is transferred to a ring
buffer that is in kernel space. The packet then undergoes the following operations within the
Linux kernel stack before it is handed to the application layer [19, 20, 21, 22, 23]:

1. Kernel Device Layer. The kernel device driver interface receives the packet via in-
terrupt from the NIC. The netif receive skb() is the main receive data processing
function of the kernel. This function is called from softirq (an interruptible kernel event)
context and with interrupts enabled. In this function, the kernel time-stamps the packet,
checks the payload type and calls any registered handler for that type. For IP traffic the
registered handler is ip rcv().

2. IP Layer. ip rcv() handles the packet from the netif receive skb(). The IP layer com-
putes the check-sum and carries out a number of other checks, it performs route look-up,
and delivers the packet to the transport layer.

3. Transport Layer. The transport layer receives the packet, performs certain checks, and
finds the socket to which it must be delivered. It then passes the packet to the kernel
socket.

4. Socket Layer. The socket queue rcv skb() call inserts the packet at the tail of the
socket’s receive queue; once the packet reaches the head of the queue, it is made available
to the application layer socket.

3.2.2 Application Layer Packet Processing

The application layer process waits for packets to arrive on the socket. Once a packet is received
from the socket, application specific processing is performed on the packet. If the application
needs to forward the packet to a different network node, the socket function to send the packet
to the transport layer is called.

3.2.3 Linux Kernel Network Stack – Packet Sending

Once a packet completes processing at the application layer, it is passed on to the kernel for
forwarding and undergoes the following operations [19, 20, 21, 22]: (refer also to Figure 3.2):

1. Socket Layer. The application writes the data to the kernel socket via the send()

and/or write() socket calls. The kernel socket layer then sends the data to the transport
layer

17

2. Transport Layer. The transport layer creates the packet buffer and adds the transport
header.

3. IP Layer. The IP layer receives the packet and adds the IP header in the ip build -

xmit() call. Since the packet is destined for external delivery, the IP layer calls ip -

queue xmit() to pass the packet to the device driver.

4. Device Layer. The device driver receives the packet and inserts it in its transmit queue;
when the device driver is scheduled to send the packet, it transmits the packet on the
physical medium.

3.3 Packet Service and Waiting Time Components

Based on the previous discussion, three main components are identified that make up the total
time a packet spends within the System for an application-layer protocol:

1. Krcv: This component represents the time spent within the kernel from the instant the
packet is received at the kernel device layer until the instant it is handed off to the
Application layer. Note that this component consists of four distinct sub-components:

(a) Kstack: The time it takes for the kernel network stack to process the packet, i.e., to
perform various checks and look up the forwarding table. This part involves network
and transport layer processing time, hence this component is not part of the service
time of the packet for application layer but part of the time the packet spends in the
system.

(b) Kw
sockq: The time the packet spends waiting at the socket queue before it can be

delivered to the application layer.

(c) Ks
sockq: The time it takes the kernel to process the packet while the packet is in the

queue. This includes the time to wake the receiving user level process to indicate the
availability of data and handling the dequeue request from the user process. This
component is part of the service time for the packet within application layer.

(d) Kcopy: The time needed to copy the data from the kernel space to user space.

Clearly, Krcv = Kstack + Kw
sockq + Ks

sockq + Kcopy.

2. Tapp: This component represents the time that the packet undergoes processing within
the application layer. The application layer typically receives one packet at a time from
the socket, processes it, and passes it to the kernel for forwarding before it receives the
next packet from the socket. Therefore, Tapp reflects the service time of the packet within
the application layer, and does not include any waiting time.

18

3. Ksnd: This component represents the time it takes the packet to traverse the kernel on
the sending side, until it is transmitted to the physical medium. The application layer
passes one packet at a time to the kernel and then is blocked till the kernel has processed
the packet and sent it to the device layer. Hence, Ksnd is considered to be part of the
packet service time within the application layer.

3.4 Impact of Interrupts and Cache Misses

As the packet arrival rate increases, there is an impact on the Linux kernel because of increased
interrupts, context-switching and the resulting cache misses. We now present a literature survey
of some of the research that investigated the impact of these factors.

In [24] the author describes the condition of ”receive livelock” which results when the
interrupt rate is high enough to cause the system to spend all of its time responding to interrupts.
In this case the system does not have any time to perform any other task, and as a result the
throughput drops to zero. Under such conditions the system is not deadlocked, but it makes
no progress on any of its tasks. The author suggests some techniques to overcome this problem
including: using interrupts only to initiate polling, using round-robin polling to fairly allocate
resource among different event sources and temporarily disable interrupts and dropping packets
early rather than later to avoid wasted work.

The performance of TCP/IP network stack in Linux kernel 2.4 and 2.5 was studied in [25].
It was observed that the Linux kernel (version 2.4 and 2.5) TCP/IP stack was not efficient in
handling high bandwidth network traffic of a gigabit network interface. The Linux TCP/IP
stack needed to mimic the interrupt mitigation techniques that network interfaces adopt. The
techniques that would accomplish this effect in the TCP/IP stack was explored.

To address the issue raised in [24] and studied in [25] and to handle the increased traffic
introduced by Gigabit networks, a modification to the device driver packet processing framework
was done for Linux called New API (NAPI) [26]. NAPI works through interrupt mitigation,
NAPI allows drivers to run with (some) interrupts disabled during times of high traffic with a
corresponding decrease in system load. Another technique used is packet throttling, where the
system is overwhelmed, it was found to be better to dispose these packets before much effort
goes into processing them. NAPI-compliant drivers can often cause packets to be dropped in
the network adaptor itself even before the kernel sees them. NAPI is present in version 2.6 of
the Linux kernel.

In [27] the authors looked at the performance handling of the Linux kernel using the
NAPI framework and modified NAPI configurable parameters Budget B and MAX SOFTIRQ -
RESTART to determine values that would give better performance than the default setting for
the Snort application. The authors further try to model the performance of Snort as an open

19

tandem queuing network comprised of two M/G/1/B queues in series.
In [28] a performance study of memory reference behavior in network protocol processing

was carried out. Some of the statistics derived were cache miss rates and percentage of time
spent waiting for memory. The interesting finding for the cold cache case i.e. no instruction
or data referenced, is cache resident, was that latencies were roughly six times longer for UDP
and four times longer for TCP without check-summing.

Context switching introduces high overheads directly and indirectly. Direct context switch
overheads include saving and restoring processor registers, flushing the processor pipeline, and
executing the OS scheduler. Indirect context switch overheads include the perturbation of the
cache and transaction look-ahead buffers (TLB) states. When a process/thread is switched out,
another process/thread runs and brings its own working set to the cache. When the switched-
out process/thread resumes execution, it has to refill the cache and TLB to restore the state
lost due to the context switch. Prior research has shown that indirect context switch overheads,
mainly the cache perturbation effect, are significantly larger than direct overheads. In [29], the
goal was to understand how cache parameters and application behavior influence the number of
context switch misses from which the application suffers. The main findings were that context
switch misses can contribute to a significant increase in the total (Level 2) L2 cache misses, and
they tend to increase along with the cache size up until the cache size is large enough to hold the
entire combined working sets. Re-ordered misses tend to contribute to an increasing fraction
of context switch misses as the cache size increases. The maximum number of reordered misses
occurs when cache perturbation displaces roughly a half of the total cache blocks.

In [30], the relationship between cache misses and software performance was investigated. It
was pointed out that one of the missing pieces in the existing models is the relationship between
cache misses and timing penalties. Potential causes for the weak relationship between cache
misses and timing penalties included (a)competition for hardware prefetch, (b)competition for
request handling capacity of the shared cache, and (c)competition for request handling capacity
of the memory bus was investigated. It was shown that workloads differ significantly in their
sensitivity to cache misses.Besides cache misses, workloads can also be sensitive to other aspects
of cache sharing. This is seen especially when the ability of the cache to handle multiple requests,
or the ability of the cache to initiate prefetch requests, is stressed.

3.5 Measurement Methodology

The main objective of our experimental study is to obtain precise measurements of the time
a SIP packet spends within the SPS, from the arrival instant (i.e., the time it is received by
the device driver) to the departure instant (i.e., the time it is transmitted by the device driver
after it has undergone processing at the SIP layer). In Section 3.2 we presented an overview

20

of the steps a packet takes as it moves from the device driver through the Linux kernel to the
SIP layer and back to the device driver. Here we describe the modification we introduced to
the kernel and the methodology we used to measure all the components of the packet service
and waiting times.

3.5.1 Measuring the Time Components: Kernel and OpenSIPS Modifica-

tions

In order to capture all the time components, we modified the OpenSIPS and the Linux kernel
source code to obtain and log certain information about each packet as it moves through
the system. Each log entry contains a time-stamp along with the source IP address, call id,
command sequence, and method type [1] of the packet, i.e., all the information necessary to
uniquely identify the message type and related call. Time-stamps are recorded with microsecond
precision. As we explain shortly, multiple log entries are recorded for each packet, e.g., when a
packet crosses the kernel-user boundary. At the end of the experiment, the log file is parsed and
the times-tamps associated with a given packet are processed to determine the time components.
Time-stamps are recorded at the various instances as shown in Figure 3.3.

The Krcv Component

We log three time values for each packet in the kernel and a fourth one as soon as it enters the
SIP layer:

• tarr: the arrival time of the packet to the SPS, i.e., the time it was received at the kernel
device layer. We obtain this value by making a system call with the SIOCGSTAMP flag on
the socket that returns the time-stamp attached to the packet by the kernel at the time
it arrived.

• tstack: A new field was added to the kernel packet structure to record the time of com-
pletion of processing by the kernel network stack for that packet. The time-stamp was
recorded just before the packet is added to the socket queue i.e just before (Figure 3.3).
socket queue receive skb() , the time-stamp is then stored in this new field. To ob-
tain this value in the user space, a new ioctl command SIOCGSTAMPUDP was defined on
the same lines as SIOCGSTAMP.

• tsockq: Another time-stamp field was added to the socket structure, to get a precise
measurement of the time at which the application is ready to dequeue the packet via
the socket recvmsg() call. The stored time-stamp is then accessed via another new ioctl
command SIOCGSTAMPRECV.

21

Figure 3.3: Time-stamps recorded at the instances shown in the Kernel and SIP layer
22

• tsip−in: this is the current time, i.e., the time that the packet enters the SIP layer for
processing.

Given these time values, we may calculate Krcv and its various components as:

Kstack = tstack − tarr,

Ksockq = Ks
sockq + Kw

sockq = tsockq − tstack,

Kcopy = tsip−in − tsockq,

Krcv = tsip−in − tarr. (3.1)

The Tsip Component

The Tsip component is the time that the packet undergoes processing at the SIP layer. Tsip

corresponds to the Tapp component of Section 3.2, when the Application layer protocol is SIP.
For each packet, we log two additional time values within the SIP layer:

• tsip−c: this is the instant at which the packet processing part that is common to all packet
types is complete.

• tsip−out: this is the instant at which the SIP layer has completed the processing of the
packet and is ready to pass the packet back to the kernel (i.e., just before the msg send()

call that send the packet to the transport layer returns).

From these values, the SIP service time and its sub-components can be calculated as:

T 1
sip = tsip−c − tsip−in,

T 2
sip = tsip−out − tsip−c,

Tsip = T 1
sip + T 2

sip. (3.2)

The Ksnd Component

Here we describe the steps taken to determine the time Ksnd, a packet spent traversing the
kernel after being processed at the SIP layer. The socket sendto() call completes only when
the kernel layer has completed processing and transferred the packet to the device driver for
transmission. We record another time-stamp at the SIP layer as soon as this call returns (at
which time the SIP layer is ready to fetch the next packet from the socket for processing).

23

• Tdep: the instant at which the packet departs the kernel layer and control is transferred
back to SIP layer. Although the time-stamp is taken at the SIP layer, logically, it corre-
sponds to the time shown in Figure 3.3.

Using this value and the Tsip−out value, the Ksnd value is calculated as:

Ksnd = Tdep − Tsip−out (3.3)

These equations and measurements points are referenced in later chapters when we describe
the experiments and the performance measurements that were collected. The research related
to the impact of increased packet load on the kernel is referenced in later chapters as well,
where the service and waiting times of SPS server modeling are described.

24

Chapter 4

Evaluation of SIP Proxy Server

Performance: Packet-Level

Measurements and Queuing Model

In this chapter, we present the findings of our investigation of the performance of OpenSIPS [3],
an open source SIP proxy server. Our work makes several contributions.

• As described in Chapter 3, we modified both the Linux kernel and the OpenSIPS server
source code to obtain packet-level measurements for each SIP message, from which the
service and waiting times within the kernel and the SIP layer can be easily obtained. In
particular, the kernel modifications can be used for collecting such measurements for any
protocol, while the OpenSIPS modifications may be easily adapted to other application
servers.

• We enhanced SIPp [4] a SIP traffic generator tool, to generate calls with inter-arrival
times that follow any user-specified distribution. The modified versions of the kernel,
OpenSIPS, and SIPp are attached as Appendix.

• We have collected a large set of experimental data to characterize the performance of the
SPS under various call arrival rates and inter-arrival time distributions.

• Based on these measurements, we model the SIP proxy server as an M/G/1 queue. A
key component of the model is a parameter that captures the interrupt overhead, i.e., the
impact of interrupts on socket queue service times.

Our measurement and modeling methodology is general, and can be applied to characterize the
performance of a wide range of network application protocols.

25

4.1 Experimental Setup

Figure 4.1: Testbed for performance measurements of OpenSIPS SPS

Figure 4.1 shows the network testbed that we used to generate SIP calls and collect mea-
surement data so as to characterize the performance of the SPS as a function of traffic load.
The hardware setup consists of:

• OpenSIPS SPS. OpenSIPS [3] is an open source implementation of a SIP proxy server,
and a continuation of the OpenSER [11] project. In our testbed, the OpenSIPS SPS was
installed on an HP workstation with dual-core processors and 4 GB RAM, running on a
Debian 5.0.6 Linux distribution (2.6.26 Linux operating system). Each of the processors
is an Intel R© Core

TM
i3 CPU 530 @2.93GHz with 4096 KB cache size. All the experiments

we report in this chapter were conducted after setting the number of cores to one (i.e.,
disabling three cores of the workstation) so as to emulate a single processor environment.

26

• SIPp UAC. This is an HP workstation with dual Intel R© Xeon R© CPU 3050 @2.13GHz
processors, running Redhat Linux 4.1.2-44 (Linux kernel version 2.6.18) OS. The SIPp [4]
tool was run on this machine configured as a UAC, as we describe shortly.

• SIPp UAS. This is an HP workstation with quad Intel R© Xeon R© CPU E5540 @2.53GHz
processors, running Redhat Linux 4.1.2-44 (Linux kernel version 2.6.18) OS. The SIPp

tool was run on this machine configured as a UAS.

• Router. Each of the three workstations above (SPS, UAC, and UAS) is attached to a
different port of a Cisco 7206 VXR series router through 1 GigE interfaces. The router sim-
ply forwards SIP messages between the three workstations, and due to its high switching
capacity, it does not introduce any material delay for any of the traffic loads we generated.

4.1.1 OpenSIPS as SPS

We installed the Debian 5.0.6 Linux Distribution and the OpenSIPS server (specifically, the
opensips-1.6.2-notls version of the source code) on the workstation acting as the SPS,
following the instructions in [31]. All the experiments were carried out by configuring the server
in stateful mode such that the state of the transaction is maintained until a final response is
received.

We configured UDP as the transport layer protocol, and we modified the default configu-
ration file (i.e., opensips.cfg) to set the number of child processes to one, so as to have a
single SIP layer process handling all incoming messages. The configuration was also modified
to disable authentication and loose routing for SIP packets.

We start the OpenSIPS SPS using the command

opensips -f /etc/opensips/opensips.cfg -m 2048

where the “-m” option increases the shared memory to 2048 MB when OpenSIPS runs.

4.1.2 SIPp as UAC

SIPp is a free open source test tool and traffic generator for the SIP protocol. It includes a few
basic user agent scenarios (including UAC and UAS). SIPp can be used to establishe and release
multiple calls with the INVITE and BYE methods, respectively. It may also import custom XML
scenario files describing call flows of various levels of complexity.

A major limitation of the SIPp tool is that it does not provide a mechanism to generate call
inter-arrival times that follow general distributions. Specifically, the tool only provides users
the option to specify either the call arrival rate, in calls per second (cps), or a fixed call rate
period (with a 1 ms granularity). Consequently, calls are generated at fixed intervals, i.e., in a

27

deterministic fashion, making it impossible to test the performance of the SPS under various
distributions of call inter-arrival times.

To address this limitation, we enhanced the source code of the SIPp tool to generate arrivals
based on a user specified input file. Specifically, we added a new option “iat file <filename>”
to the latest stable release (version 3.1) of the tool available from the source repository [4] at
the time of this writing. The user-specified file is expected to contain a single number per
line, representing the inter-arrival time between consecutive calls. When invoked with this new
option, the modified version of the tool processes this input file one line at a time, generating
one call and waiting for the specified amount of time before proceeding to the next line. As
a sanity check, we tested the modified version of the tool on a input file having deterministic
inter-arrival times (i.e., the same number in each line), and verified that its functionality was
not affected (i.e., the results were identical to those produced by the original, unmodified tool
invoked with the corresponding call arrival rate).

We implemented another enhancement to overcome the 1 ms limitation in the granularity
of call inter-arrival times imposed by the original SIPp tool. To this end, we reduced the polling
period of the tool to 200 µs. This new feature allows the input file specified with the new “iat -
file” option to contain inter-arrival times expressed at this finer granularity, making it possible
to generate values that accurately represent general time distributions.

For the experiments, we start the modified SIPp tool to act as the UAC using the following
command:

./sipp -sf <uac.xml> <SPS IP addr>:5060
-s <username> -m <#calls> -iat file <filename>

The command specifies the IP address of the SPS workstation and the standard SIP port (i.e.,
5060) to send the generated traffic, and includes four options:

• -sf: Run the specified XML file as the scenario, acting as a UAC to originate SIP calls.
The uac.xml file we used was modified slightly from the one embedded in the sipp

executable. Specifically, we disabled the retransmission of SIP messages so as to avoid
processing the same call again.

• -s: Set the username part of the request URI (required so that the SPS can forward the
call).

• -m: Specify the total number of calls to generate.

• -iat file: Specify the file of inter-arrival times.

28

4.1.3 SIPp as UAS

The latest available stable release of the SIPp tool available at the time of this writing (version
3.1) has a software bug that prevents the processing of call rates above 300 calls per second
(cps). Therefore, for the UAS, we use the most recent unstable release dated 2009-07-09 for
which this error was not observed.

We start the SIPp tool to act as the UAS using the command

./sipp -sf <uas.xml> -rsa <SPS IP address>

with the two options:

• -sf: Run the specified XML file as the scenario. The uas.xml we used was modified from
the built-in UAS scenario to (1) remove the pause after the BYE message is sent and (2)
disable the retransmission of SIP messages (as with the UAC).

• -rsa: Provide the remote sending address where the message needs to be sent.

4.2 Experiments and Performance Measurements

We conducted a large set of experiments to measure the components Krcv, Kstack, Ksockq, Ksnd

and Tsip, that we described in Chapter 3.5, of the time each SIP packet spends at the SPS.
For each experiment, the UAC initiates 1M (million) calls to the UAS. Each call is accepted
by the UAS, resulting in the message exchange shown in Figure 2.2. Therefore, for each call,
six different messages are generated by either the UAC or the UAS and are forwarded to the
other party via the SPS. In other words, for each experiment, the SPS may process up to 6M
SIP messages, i.e., up to 1M messages of each type seen in Figure 2.2. Each experiment is
characterized by two parameters:

• Call arrival rate. We varied the call arrival rate from 100 cps to 1200 cps. At a rate of
1200 cps, the SPS crashes frequently as it cannot handle the message volume, indicating
that the server is severely overloaded.

• Call inter-arrival time distribution. The call inter-arrival time is the time between two
consecutive INVITE messages generated by the UAC. For each call arrival rate, we gen-
erated inter-arrival times using exponential and deterministic distributions. Note that,
since the router in Figure 4.1 is not a bottleneck, INVITE message arrivals at the SPS
follow the distribution from which these message are generated by the UAC. However,
the overall packet inter-arrival time distribution at the SPS (i.e., across all packet types)
depends on the processing and waiting times at the UAC, SPS, and UAS, and, in general,
is unknown and different from the distribution the generates INVITE messages.

29

Table 4.1: Measured Mean Values and Confidence Intervals for Krcv, and Poisson Inter-Arrivals
(µS)

Message Type Call Arrival Rate
100cps 200cps 400cps 600cps 700cps 800cps 900cps 1000cps 1200cps

INVITE 24.5 38.74 82.35 201.4 340.3 672.61 9747.0 29092.5 40207.7
180 Ringing 33.0 53.46 114.7 266.55 428.22 788.19 6228.9 23851.6 29868.36
200 OK
(INVITE)

36.2 64.62 131.15 262.99 398.8 717.72 13183 34085.47 44259.25

ACK 21.7 38.96 100.45 240.15 382.28 712.72 6567.6 24315.56 32157.11
BYE 54.1 92.08 162.02 284.06 411.21 725.27 12545 33088.71 38225.25
200 OK (BYE) 29.5 55.43 134.13 294.85 444.74 775.41 6431.23 23810.67 31375.82
Overall Mean 33.17 57.2 120.80 258.33 400.93 731.99 9116.5 28065.01 36262.29
Conf. Int.
(Half-Width)

0.304 .649 1.71 3.48 5.595 19.39 3332.16 3164.98 6129.90

Messages to
SIP layer

5,999,931 5,999,940 5,999,943 5,999,931 5,999,943 5,999,940 5,823,173 5,359,200 3,457,644

For each packet processed by the SPS, we log the seven time values tarr, tstack, tsockq,
tsip−in, tsip−c, tsip−out and tdep. We then process the log files to obtain the mean values for
quantities Krcv, Kstack, Ksockq Tsip, and Ksnd; we record both the overall mean (i.e., across all
packets) and the mean per packet type. We also use the method of batch means to estimate
95% confidence intervals around the overall mean.

The call holding time in all experiments was set to 250 ms. Referring to Figure 2.2, the call
holding time is defined as the interval between the instant the UAC acknowledges the 200 OK

message until it closes the session by sending a BYE. Note that the SPS is not involved after a
session has been established, as no SIP messages are exchanged during the call until the time
the session is closed with a BYE. A short call holding time (1) ensures that the experiments do
not take an extraordinarily long time, and (2) provides a worst-case scenario in that the SPS is
observed under higher than normal packet arrival rates. This is because, with longer holding
times the same number of response messages would arrive at the SPS but over a longer time
period.

4.2.1 Experimental Results: Measurement Data for Krcv, Kstack, and Ksockq

Tables 4.1 and 4.2 list the measured values for quantity Krcv, under exponentially and deter-
ministically distributed inter-arrival times and for various call rates. These tables present the
mean value for each message type and the overall mean value, as well as the half-width of the
confidence interval around the overall mean; all values are expressed in µs. Tables 4.1 and 4.2
also list the number of messages (out of 6M generated) that the kernel passes to the SIP layer
at each call rate; the remaining messages are lost due to congestion or server crashes (at higher
call rates).

30

Table 4.2: Measured Mean Values and Confidence Intervals for Krcv, Deterministic Inter-
Arrivals (µs)

Message Type Call Arrival Rate
100cps 200cps 400cps 600cps 700cps 800cps 900cps 1000cps 1200cps

INVITE 13.4 98.1 141.5 256.4 337.3 466.1 751.8 25500.9 27021
180 Ringing 14.3 19.22 46.6 133.7 212.9 342.98 623.42 24139 25335
200 OK
(INVITE)

17.0 19.05 71.4 176.27 209.9 363.99 590.85 25965 28293

ACK 13.4 19.04 62.3 197.29 187.13 434.52 604.44 24358 25997
BYE 24.8 31.07 86.1 159.48 211.16 293.54 548.35 26198 28542
200 OK (BYE) 14.3 21.2 59.97 210.2 262.17 418.4 656.77 24656.9 25662
Overall Mean 16.2 34.6 78.0 188.9 236.76 386.6 629.27 25137 26813
Conf. Int.
(Half-Width)

0.294 0.48 1.59 5.28 6.38 8.17 24.7 628.13 639

Messages to
SIP layer

5,999,940 5,999,940 5,999,939 5,999,940 5,999,940 5,999,940 5,999,940 4,984,808 4,046,503

Figures 4.2 and 4.3 present the Ksockq values we have obtained for various messages and
exponential and deterministic distribution inter-arrivals in the stable region (for call rate up-to
800cps). From the figures 4.2 and 4.3 we can observe that as the arrival rate increases, there
is a corresponding increase in the Ksockq. As described in Chapter 3, Ksockq comprises of the
time the packet spends waiting at the socket queue before it can be delivered to the application
layer and the time it takes the kernel to process the packet while the packet is in the queue.

Figures 4.4 and 4.5 present the Kstack values we have obtained. Kstack is the time taken
by kernel network stack to process the packet, from the point the packet is received from the
device, till the point the packet is placed in the socket queue. From these figures we can
observe that kernel stack processing time Kstack is mostly constant, with the average value of
2 µs, independent of message type and call arrival rate.

The values of Kcopy, obtained from the these data as (Krcv − Kstack − Ksockq), are also
constant at around 2 µs.

We observe that all mean values of Krcv and Ksockq increase rapidly with the call arrival
rate up to 1000 cps, but level off beyond that rate. The contributing factor to the increase in
these values are:

• Queuing delay. As the call arrival rate increases, packets arriving at the SPS are buffered
at the socket queue and experience increasing waiting times Kw

sockq before being delivered
to the SIP layer.

• Interrupt overhead. Recall that in Chapter 3 we discussed the impact of increased packet
arrival on the kernel. The number of interrupts increases in direct proportion to the packet
arrival rate. Interrupts introduce overhead in the form of the time needed to handle each
interrupt, the context-switching operations, and the increase in processing time as a result

31

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
(m

icr
os

ec
)

Calls per second

Ksockq time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.2: Mean value of Ksockq in the stable region, Poisson Arrivals

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

Ti
m

e
(m

icr
os

ec
)

Calls per second

Ksockq time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.3: Mean value of Ksockq in the stable region, Deterministic Arrivals

32

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Kstack time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.4: Mean value of Kstack, Poisson Arrivals

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Kstack time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.5: Mean value of Kstack, Deterministic Arrivals

33

of cache misses due to these interrupts. A cache miss causes the number of CPU cycles
consumed by the network stack receiving process to increase, as the memory access cycles
of main memory are several times that of L2 caches.

We also observe that, up to a rate of 800 cps for exponentially distributed inter-arrivals, the
number of packets dropped at the kernel is extremely small (about 0.001% of the 6M packets
generated) and does not vary much with the arrival rate, for deterministic inter-arrival this is
valid till 900 cps.

However, at 900 cps for exponential distribution and at 1000 cps for deterministic distri-
bution, packet losses increase substantially, and at 1200 cps the loss rate is about 42%. The
leveling off of the measured Krcv values at 1200 cps is due to the fact that the dropped packets
are not observed at the SIP layer where statistics are logged, hence they are not taken into
account in the average values shown in the tables.

Finally, while the trends seen in the data in the tables are similar for both distribution,
there are some differences. Specifically, with the exception of the INVITE message, the mean
values (including the overall mean) under deterministic inter-arrivals are lower than under
exponential inter-arrival times in the stable region (i.e., up to 900 cps). On the other hand,
INVITE message experience higher times in the kernel for arrival rates between 200 and 800 cps
under deterministic inter-arrivals. We believe that this relative behavior is due to the fact
that, with exponential inter-arrival times, the system experiences bursts of call (i.e., INVITE
message) arrivals, that, in turn, lead to higher waiting times overall. With deterministic arrivals,
calls are spaced apart evenly, hence most messages experience lower delays in the stable region.
However, due to the fact that call holding times were fixed to 250 ms, for medium (deterministic)
arrival rates, new INVITE messages may consistently arrive at the SPS while the previous call’s
tear down messages are being processed, leading to higher waiting times for the former.

4.2.2 Experimental Results: Measurement Data for Tsip

Figures 4.6 and 4.7 present the SIP layer processing times Tsip under exponential and deter-
ministic distributed call inter-arrival times and for various call rates. These figures present the
mean value for each message type, the overall mean value, and the half-width of the confidence
interval around the overall mean; all values are expressed in µs. As we can see, the mean SIP
service time varies with the message type across all call arrival rates. As we described earlier,
SIP processing consists of a common component and a message-specific component, and the
differences in the latter component account for the difference in service times among the various
message types. For instance, processing an INVITE message that initiates a new session requires
more operations than other messages (e.g., to verify that this is a new transaction and create
a new table entry), and this fact is reflected in the data.

34

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Tsip time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.6: Mean value for Tsip, Poisson Arrivals

 50

 100

 150

 200

 250

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Tsip time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.7: Mean value for Tsip, Deterministic Arrivals

35

Another important observation is that mean SIP service times for all message types increase
almost linearly with the call rate. Recall that an SPS operating in stateful mode needs to
perform table look-ups for each incoming message, so as to match an existing transaction or
create a new one. As the call rate increases, the number of transactions in the system also
increases, resulting in larger tables at the SIP layer and, hence, longer look-up and overall
service times. Part of the service time increase may also be attributed to the higher logging
rate at higher call rates; this overhead cannot be avoided, but we believe that it is not a
significant factor.

4.2.3 Experimental Results: Measurement Data for Ksnd

Figures 4.8 and 4.9 present values of the kernel service time Ksnd incurred for sending a packet
received from the SIP layer down to the device driver for exponential and deterministic inter-
arrivals respectively. We observe that this service time varies only slightly for each message
type. However, across various call arrival rates, the value remains fairly constant for a given
message type.

4.2.4 Experimental Results: Overall mean for Ksockq and Tsip

Figure 4.10 shows the overall average and the confidence interval over all the message types for
Ksockq for both exponential and deterministic inter-arrivals. In the earlier figures for Ksockq we
showed the data in the stable region. This figure shows the point where the waiting time vastly
increases as the call rate continues to increase and the SPS reaches a point, where the system
is not stable (call rates above 900cps).

Figure 4.11 presents the overall mean and confidence interval over Tsip over all six message
types, for both exponential and deterministic inter-arrivals. An important observation is that
mean SIP service times for both inter-arrival types increase almost linearly with the call rate.
Also, the service times for both types are almost equal for various call rates.

4.3 M/G/1 Queuing Model for the SPS

We now develop an analytical model for predicting the packet-level performance of the SPS,
and specifically, the packet waiting time. The experimental data we presented in the previous
section indicate that the SPS packet service time distribution exhibits six modes, corresponding
to the six SIP message types. Therefore, we model the SPS as an M/G/1 queue [32] as shown
in Figure 4.12. Specifically, this single queue models the performance of the SPS from the time
the packets arrive at the socket queue until they depart from the kernel after undergoing SIP

36

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Ksnd time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.8: Mean value of Ksnd, Poisson Arrivals

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Ksnd time for 6 message types vs. CPS

INVITE
180 Ringing

200 OK (INVITE)
ACK
BYE

200 OK (BYE)

Figure 4.9: Mean value of Ksnd, Deterministic Arrivals

37

 0

 10000

 20000

 30000

 40000

 50000

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Overall Mean Ksockq time vs. CPS

Poisson Arrivals
Deterministic Arrivals

Figure 4.10: Overall Mean value of Ksockq and Confidence Interval

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

Ti
m

e
(m

icr
os

ec
)

Calls per second

Mean Tsip time vs. CPS

Poisson Arrivals
Deterministic Arrivals

Figure 4.11: Overall Mean value of Tsip and Confidence Interval

38

Figure 4.12: M/G/1 queuing model of the SPS

processing. From our earlier discussion, the service time X of a packet may be expressed as:

X = Ks
sockq + Kcopy + Tsip + Ksnd, (4.1)

where Ks
sockq, Kcopy and Ksnd are the socket, copy and send service times, respectively, in the

kernel, and Tsip is the service time at the SIP layer.
Despite its simplicity, this model is sufficiently accurate for capturing the performance of the

SPS. First, recall that the kernel stack processing times Kstack on the receive side are constant
around 2 µs across the various arrival rates. Therefore, queuing times at the ring buffer of the
device driver are negligible compared to the queuing times at the socket queue and the SIP
service time, as shown in Figures 4.2 and 4.6, respectively. Hence, we believe that a single
queue model accounting for the socket queue is sufficient. Second, it is clear that a model that
assumes an infinite queue (such as the one in Figure 4.12) will not be valid at loads that result
in substantial packet losses. Nevertheless, service providers are highly unlikely to operate the
SPS at the loads at which material losses occur. Therefore, it is sufficient for the M/G/1 model
to predict accurately the load at which such losses will start to occur through the estimation
of average waiting times.

The waiting time for the M/G/1 queue is calculated using the well-known Pollaczek-
Khinchin formula [32]:

W =
λE[X2]
2(1− ρ)

. (4.2)

In this expression:

• λ is the packet arrival rate, expressed in packets per unit time;

• ρ = λE[X] is the server utilization;

• E[X] is the packet service time at the SPS; and

• E[X2] is the second moment of the packet service time. Let E[Xi], i = 1, 2, . . . , 6, denote
the mean service time of the six SIP message types. Since each call generates exactly six

39

messages, one of each type, the second moment of the service time may be obtained as:

E[X2] =
1
6

6∑
i=1

(E[X2
i]). (4.3)

Therefore, we use the estimates of E[X] and E[X2
i] from the measurement data to obtain the

mean packet waiting time using expression (4.2).

4.3.1 Estimating the Ks
sockq Component of the Service Time X

The service time of a packet consists of the four components in expression (4.1). In our ex-
periments, we have measured directly three of the components, Kcopy, Tsip, and Ksnd. The
fourth component, Ks

sockq, represents the processing time that is incurred by the packet from
the instant, tstack, it is added to the socket queue until the instant, tsockq, it is removed from
the queue (refer to Figure 3.2). Ks

sockq is one of the two components of Ksockq, as seen in
expression (3.1); the other component, Kw

sockq, represents the waiting time of the packet at the
socket queue. Although we have directly measured Ksockq, it is important to have a accurate
measurement of Ks

sockq (and, consequently, Kw
sockq) to apply the M/G/1 model. To this end,

we first obtain a baseline measurement of Ksockq under conditions of no queuing, and then we
adjust this baseline value for higher call rates by accounting for the interrupt overhead.

The Ksockq Component Under No Queuing

We conducted a separate experiment to obtain the time values tarr, tstack, tsockq and tsip−in

under conditions that ensured no queuing at the kernel socket as the packets move through the
network stack on the way to the SIP layer. Let us denote this quantity as Ksockq−noq. We use
this quantity as the baseline value Ks,base

sockq , i.e., Ks,base
sockq = Ksockq−noq.

To measure the Ksockq−noq, we conducted an experiment in which we (1) generated SIP
calls at a rate of 1 cps, since at this rate packets belonging to different calls do not interfere
with each other; (2) modified the UAS configuration to add a 250 ms pause between sending
the 180 Ringing and 200 OK messages (for the same call), so as to avoid having the latter
message queued behind the former one at the SPS; and (3) modified the UAC configuration
to add a 250 ms pause between sending the ACK and BYE messages to end the call, again to
avoid queuing of the latter message at the SPS. In this experiment, we generated 10,000 calls
and computed the average value of Ksockq−noq for each packet type. The results are shown in
Table 4.3. We observe that there is little difference in the kernel processing time across the six
message types. This result is expected as (1) all message types undergo identical processing
inside the kernel, and (2) the packet size does not vary significantly across messages for the

40

Table 4.3: Measured Mean Values (in µs) at 1 cps

Message Type Packet Size (B) Kstack Ks,base
sockq Ksnd

INVITE 624 2.6 8.3 6.15
180 Ringing 375 2.2 7.6 5.2
200 OK (INVITE) 542 2.5 8.5 5.5
ACK 466 2.2 7.4 5.6
BYE 466 2.5 8.1 5.9
200 OK (BYE) 367 2.2 7.5 5.2
Overall Mean 2.4 7.9 5.6
Conf. Interval (Half-Width) 0.014 0.196 0.013

data copying operations to make a difference in the processing time.
However, it is not reasonable to set the value of Ks

sockq in expression (4.1) equal to the
baseline value Ks,base

sockq shown in Table 4.3, as doing so would result in an underestimation of the
actual Ks

sockq values under higher call arrival rates. Specifically, at 1 cps there is no overhead
due to interrupts, whereas as the call arrival rate increases, this overhead becomes substantial,
as we discussed earlier. The interrupt overhead effectively increases the service time of each
packet within the socket queue, and this factor must be taken into account explicitly in order
to provide a robust estimate of the overall packet service time to be used in the waiting time
formula (4.2).

Modeling the Interrupt Overhead

From the basic computer architecture principles [33], the execution time of an operation is
given as the product of (number of instructions) × (cycles per instruction) × (time per cycle).
Interrupts pollute the cache, increasing cache misses, and in turn increasing the number of
cycles per instruction; the other two values in the product are constants for a given operation.
We model this interrupt overhead by expressing the Ks

sockq service times as a function of the
baseline value Ks,base

sockq and the server utilization ρ, as follows:

Ks
sockq(λ) = α(λ) Ks,base

sockq . (4.4)

In the above expression, parameter α, given as a function of λ, adjusts the service time Ks,base
sockq

under no queuing delay (i.e., under minimal interrupt overhead) to account for the cache misses
due to interrupts under a given packet arrival rate λ.

Based on our experimental results, we model parameter α(λ) as a piece-wise linear function
of the arrival rate λ, expressed in units of packets/sec, such that: α(0) = 1, α(600) = 3,
α(1200) = 5, and α(λ) = 8 for λ ≥ 2400 for exponentially distributed inter-arrivals. This

41

Table 4.4: Waiting Times (in µs): Measured vs. Analytical, Poisson Inter-Arrivals
Model Parameters Call Arrival Rate

100cps 200cps 400cps 600cps 700cps 800cps 900cps 1000cps 1200cps
λ (packets/sec) 600 1200 2400 3600 4200 4800 5400 6000 7200
α(λ) 3.0 5.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0
E[X] = Ks

sockq(λ) +
Ksnd + Kcopy + Tsip

133.4 149.88 174.53 179.98 181.09 181.185 183.49 185.23 189.5

ρ = λE[X] 0.080 0.1798 0.4188 0.6479 0.7606 0.8698 0.9908 1.111 1.3644
W (model) 6.0 16.89 64.21 169.19 293.98 617.77 10171.9 N/A N/A
W (measured) = Kw

sockq 5.485 13.59 53.27 190.92 333.52 664.57 9049.07 27997 36194

Table 4.5: Waiting Times (in µs): Measured vs. Analytical, Deterministic Inter-Arrivals
Model Parameters Call Arrival Rate

100cps 200cps 400cps 600cps 700cps 800cps 900cps 1000cps 1200cps
λ (packets/sec) 600 1200 2400 3600 4200 4800 5400 6000 7200
α(λ) 1.5 3.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
E[X] = Ks

sockq(λ) +
Ksnd + Kcopy + Tsip

121.03 130.22 152.97 159.89 163.54 164.77 166.59 168.2 171.29

ρ = λE[X] 0.0726 0.156 0.3671 0.5756 0.686 0.7909 0.8995 1.009 1.233
W (model) 4.93 12.45 45.39 111.12 183.89 319.68 765.55 N/A N/A
W (measured) = Kw

sockq 0.31 6.87 26.4 137.35 185.39 335.17 577.93 25085.8 26761

function reflects our observations that (1) as the packet arrival rate increases, the cache becomes
more polluted resulting in higher memory access times, (2) the marginal rate at which cache
pollution increases diminishes with increasing packet arrival rates, and (3) after a point, the
cache will always be polluted, hence there would be no further deterioration due to further
increases in the packet arrival rate. For deterministic inter-arrivals the value of alpha are
α(0) = 1, α(600) = 1.5, α(1200) = 3, and α(λ) = 6 for λ ≥ 2400. For deterministic inter-
arrivals it is possible that there is a bigger percentage of remnants of data in the cache that
are re-usable and this results in a lower value of alpha compared to exponentially distributed
inter-arrivals

Using the values for α from this function, Tables 4.4 and 4.5 compare the measured waiting
times to the ones obtained through the M/G/1 model for exponential and deterministic distri-
bution respectively. We observe that there is a good match between analytical and measured
values in the stable region, i.e., up to 800 cps for exponential distribution. At arrival rates
of 900 cps or higher, the system becomes unstable, losses increase sharply; hence the M/G/1
model is not valid. In fact, in this overload region, the estimated value of ρ is higher than 1;
hence the Pollaczek-Khinchin formula (4.2) cannot be applied.

Despite their simplicity, the M/G/1 and interrupt overhead models are sufficiently accurate
in two aspects that are important to service providers: jointly they (1) correctly predict the

42

 0

 20

 40

 60

 80

 100

 120

 140

 200 400 600 800 1000 1200

C
P

U
 U

til
iz

at
io

n
(%

)

Call arrival rate (cps)

Model (rho as %)
Measured CPU%

Figure 4.13: Server utilization: CPU% vs. ρ (as %), exponential inter-arrival times

measured packet waiting times at the socket queue within the stable region, and (2) accurately
predict the transition to the overload region through the value of ρ. Using this model, service
providers only need to monitor the packet arrival rate λ at the SPS to be able to estimate
the packet waiting times, as well as detect whether congestion is imminent; In the latter case,
providers could take actions to mitigate the incipient congestion, e.g., by activating another
SPS and by applying load balancing techniques.

As a further validation of the M/G/1 model, Figure 4.13 compares the experimental and
analytical values of server utilization for exponential inter-arrival times. The experimental val-
ues were measured using the mpstat command for about 80% of the duration of the experiment,
while the analytical value corresponds to the offered load ρ predicted by the M/G/1 model.

We observe a good agreement between analytical and measured values up to full load,
beyond which the infinite-queue M/G/1 model is not valid.

4.4 Conclusions

We have presented a measurement methodology and carried out a large set of experiments to
characterize the performance of the OpenSIPS SPS as a function of call arrival rate. We have

43

also presented an M/G/1 model of the SPS that takes into account the interrupt overhead.
The tools and methodology we have developed can be adapted to investigate the performance
of a range of application servers. In the next chapter, we investigate the impact of multiple
threads on the performance of the SPS.

44

Chapter 5

Performance Evaluation of

Single-Core, Multi-Threaded SIP

Servers

Multi-threading is a widely used program execution model, where each thread executes inde-
pendently, while sharing some of the process resources. Multi-threaded processes are used for
a range of network application servers including web-servers, mail-servers, and for SIP proxy
servers (SPS) for voice over IP (VoIP). In this chapter, we investigate the performance of
OpenSIPS, an open source SIP proxy server, in a multi-threaded environment.

In Chapter 4, we used waiting time as the metric for evaluating the performance of the SPS
in a single-server, single-core system. We observed that the waiting time increases several orders
of magnitude from few microseconds to about 35 milliseconds, as a function of the call-arrival
rate. Though there is a significant change in waiting time with call-arrival rate, the values are
low and end-users may not notice any delay. To provide a better performance measure of SPS
for service providers, we focus on packet drop-probability as the key performance metric, in
this chapter. The reasons for focusing on drop-probability are:

• Using drop-probability service providers can derive a single point where the SPS starts
experiencing packet loss, for a given number server threads and call-arrival rates. Service
providers can adjust the threshold that represents an acceptable loss-rate.

• Since we are focusing on the control-plane performance measure of SPS, packet-loss of
control packets translates to call-establishment problems that will be experienced by end-
users.

The contributions we have made in this chapter are enumerated here:

45

1. We have collected a large set of experimental data, in a methodical fashion to characterize
the performance of SPS under increasing server threads and under increasing call arrival
rates.

2. We develop a queuing model to predict the drop probability of the multi-threaded system.

3. In addition to the Interrupt-overhead we introduced in Chapter 4, we identify a new
parameter to capture the overhead due to resource contention among multiple server
threads.

5.1 Related Work

There have been several studies in the literature that have investigated the impact of multi-
threading. The most relevant to our current research are [34], [35] and [36]. In [34], a simulation
study was done to see the impact of multi-threading on cache performance. In [36] the authors
developed techniques to determine optimal allocation of threads for a specific Quality of Service
(QoS) objective and used realistic workloads on a typical web server to show the efficacy of
the new methodology. In [35], the complexity of optimal configuration of a multi-threaded web
server for different workloads was explored. There are also several studies that explore the
impact of multi-threading in a multi-core environment; this is an area we cover in Chapter 7
of our thesis. These studies, though they investigate multi-threaded performance, significantly
differ from our study. In our study we measure the performance in terms of packet drop-rate
probability as a function of number of SPS threads. The kernel and the SPS was modified to
get the packet waiting time in the queue, we then develop a drop-probability model based on
our results that can be applied to predict performance of any SPS system.

5.2 Experiments and Performance Measurements

In this section we describe the experiments and the corressponding performance measurements.
We use the same testbed that we have described in Chapter 4, and shown in Figure 4.1.

The testbed contains the OpenSIPS SPS Proxy server running on a quad-core Intel R© Xeon
TM

E5540 @2.53GHz processor with 8192 KB cache size. The other components of the testbed
UAC, UAS and router are as described in chapter 4. All the experiments are performed with
UDP as the transport protocol and with default kernel configurations.

The measurement methodology described in Chapter 3 is used to measure the components
Krcv, Kstack, Ksockq, Ksnd and Tsip of the time each SIP packet spends at the SPS. In addition,
for each experiment, the overall drop rate is measured by using the ’netstat -su’ command. The
command provides the statistics for UDP packets for the system.

46

For each experiment, the UAC initiates more than 100,000 calls to UAS. Each call is accepted
by the UAS, resulting in the message exchange shown in Figure 2.2. Therefore, for each call, six
different messages are generated by either the UAC or the UAS and are forwarded to the other
party via the SPS. In other words, for each experiment, the SPS may process more than 600,000
SIP messages, i.e., up to 100,000 messages of each type shown in Figure 2.2. To measure the
performance of SPS under multiple threads, two cores of the quad-core processor were enabled
such that, all the SPS threads were run on one core and ’syslogd’ was run on another core.
There was no other user-initiated process in the system.

Each experiment is characterized by three parameters:

• Call arrival rate: We varied the call arrival rate from 200 cps to 4000 cps. The maximum
call rate was set to the point where the SPS crashes frequently as it cannot handle the
message volume, indicating that the server is severely overloaded.

• Call inter-arrival time distribution: The call inter-arrival time is the time between
two consecutive INVITE messages generated by the UAC. For each call arrival rate, we
generated inter-arrival times using exponential distributions.

• Number of server threads: The total number of SPS server threads that are running as
part of SPS server. The experiments were conducted for 1,2,4,6,8 and 16 server threads.

For each packet processed by the SPS, we log the seven time values tarr, tstack, tsockq,
tsip−in, tsip−c, tsip−out and tdep. We then process the log files to obtain the sample mean values
for quantities Krcv, Kstack, Ksockq Tsip, and Ksnd; we record both the overall mean (i.e., across
all packets) and the mean per packet type. We use the method of batch means to estimate 95%
confidence intervals around the overall mean.

5.2.1 Experimental Results: Measurement Data for Krcv, Kstack, and Ksockq

The measured values for quantity Krcv, under exponentially distributed inter-arrival times and
for various call rates and for various number of server threads are shown in Figure 5.1. The
figure shows the cumulative mean value over the mean values of all message types.

The Ksockq and Kstack values we have obtained are similar to the data listed in Chapter 4.
We have observed that kernel stack processing times Kstack are largely constant, averaging 2 µs
independent of message type and call arrival rate (refer also to Table 4.3 for the Kstack values
obtained through a different experiment). The values of Kcopy, obtained as (Krcv − Kstack −
Ksockq), are also constant at around 2 µs. Hence, Krcv values are about 4 µs higher than the
Ksockq values.

We observe that all mean values of Krcv and Ksockq increase rapidly with the call arrival after
a certain point for all cases. Specifically, a single SPS server process has the least Krcv value.

47

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

icr
os

ec
)

Calls per second

Mean Krcv time for SPS with Increasing Threads vs. CPS

1 Server Threads
2 Server Threads
4 Server Threads
6 Server Threads
8 Server Threads

16 Server Threads

Figure 5.1: Krcv value for SPS as a function of the number of server threads

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

icr
os

ec
)

Calls per second

Mean Tsip time for SPS with Increasing Threads vs CPS

1 Server Threads
2 Server Threads
4 Server Threads
6 Server Threads
8 Server Threads

16 Server Threads

Figure 5.2: Tsip value for SPS as a function of the number of server thread

48

As server threads are added, the overhead due to the additional threads results in increased
service time for the same call rate. This further matches what we know about SPS, i.e, each
server thread processes a packet completely after receiving it from the queue and then hands
it for transmission. As only one server thread can run at a given instance due to only one
core being available, we see that, increasing the number of server threads, leads to increasing
overhead in switching the process context and results in higher waiting time.

The figure for Krcv can be explained by the following factors:

• Queuing delay. As the call arrival rate increases, packets arriving at the SPS are buffered
at the socket queue and experience increasing waiting times (Kw

sockq) before being delivered
to the SIP layer. This is the biggest factor that causes the increase in Krcv as the call
rate increases.

• Interrupt overhead. The number of interrupts increases in direct proportion to the packet
arrival rate. Interrupts introduce overhead in the form of the time needed to handle each
interrupt, the context-switching operations, and the increase in processing time as a result
of cache misses due to these interrupts. A cache miss causes the number of CPU cycles
consumed by the network-stack receiving process to increase, as the memory access cycles
of main memory are several times that of L2 caches. The impact of cache misses on the
network-stack was described in Chapter 3.

• Thread overhead. As the number of server threads increases, the overhead associated with
the context switching for each thread increases and this causes additional misses in the
cache for packets that are in the queue.

5.2.2 Experimental Results: Measurement Data for Tsip

Figure 5.2 presents the SIP layer processing times Tsip under exponentially distributed call
inter-arrival times and for various call rates and varying number of server threads.

The figure presents the overall mean value for all message types. All values are expressed in
µs. The overall trend for Tsip value is that it increases proportional to the number of threads.
For 16 server threads this value is significantly higher compared to one and two threads. This
increase can be attributed to the additional context switching and cache miss overhead.

5.2.3 Experimental Results: Measurement Data for Ksnd

We have observed that the values of the kernel service time Ksnd incurred for sending a packet
received from the SIP layer down to the device driver varies only slightly for each message type.
However, across various call arrival rates and server threads, the value remains fairly constant

49

for a given message type. The overall mean value is around 6 µs (refer also to Table 4.3 for the
Ksnd values obtained through a different experiment).

5.3 Drop-Probability Model for the SPS

As we mentioned at the beginning of this chapter, our focus is on drop-probability as the key
performance metric of SPS. The reasons are:

• Service providers will have single point of focus for the performance of SPS.

• End-users start experience call-establishment problems due to packet drops.

Based on our survey of industry standards, the threshold for acceptable drop-rate in VoIP
environment is about 1% [37]. This is used in industry as the point below which the voice
quality can still be considered toll quality. Though this data is for the voice data-plane, we
use 1% as the threshold for packet-loss in control plane to reflect the impact on end-users, that
service providers can use as a trigger to add more capacity to the system.

In Chapter 4, we modeled the single server SPS process as an M/G/1 queue. In the
experiments we conducted for multiple server threads, we see that as the number of server
threads increases, the SPS suffers from packet loss as call rate increases. Therefore, we enhance
the queuing model to be a M/G/c/K model as shown in Figure 5.3, to reflect the multiple
server threads and also the limited buffer of the socket queue. This single queue, models the
performance of the SPS, from the time packets arrive at the socket queue until they depart
from the kernel after undergoing SIP processing. From our earlier discussion, the service time
X of a packet may be expressed as:

X = Ks
sockq + Kcopy + Tsip + Ksnd, (5.1)

where Ks
sockq, Kcopy and Ksnd are the socket, copy and send service times, respectively, in the

kernel, and Tsip is the service time at the SIP layer.
Despite its simplicity, this model is sufficiently accurate for capturing the drop probability

of the SPS. First, recall that the kernel stack processing times Kstack on the receive side are
constant around 2 µs across the various arrival rates. Therefore, queuing times at the ring
buffer of the device driver are negligible compared to the queuing times at the socket queue and
the SIP service time, as shown in Figures 5.1 and 5.2, respectively. Hence, we believe that a
single queue model accounting for the socket queue is sufficient. The additional server threads
that are run as part of the SPS server all process packets from this single queue.

The queue size K is determined by the socket buffer size SK RMEM MAX allocated by
the system, based on the packet size of the various SIP messages for SPS. Size of the queue for

50

the SPS process is approximated as K = 200.
An exact solution for the M/G/c/K model is only possible for special cases, such as for

exponential service time, a single server, or no waiting room at all. Given the complexity of this
problem, a robust and efficient approximations for the blocking probabilities of these systems is
developed by Smith in [38]. In that paper, the author developed an expression for pK , the drop
probability of an M/G/c/K queue. The expression was derived by first looking at the optimal
buffer size of the system, and then inverting the buffer expression to yield the expression for pK .
The approximation formula for the pK value for the M/G/c/K system is based on a weighted
combination of the formulas for the M/M/c/K optimal buffers. Given that for our SPS system,
we have K approximated at 200, the queue is sufficiently large.

The blocking probability pK for both M/M/c/K and M/G/c/K as K → ∞ can be given
by:

limK→∞(pK) = 0 (5.2)

• pK is the long run probability that arrivals are rejected, i.e blocking probability of finite
queue of size K.

This is because as the queue size increases the number of packet drops decreases for the
queues. Given the large size of queue for the SPS system and M/M/c/K being a special case of
M/G/c/K, we now use the blocking probability of M/M/c/K to model the SIP proxy servers
blocking probability. Taking this approach serves two purpose:

• Using the blocking probability of M/M/c/K, we can use a closed form equation to obtain
the blocking probability of SPS.

• It will provide flexibility in approximating the blocking probability of various combinations
of number of servers c and buffer size K. This will greatly aid service providers in capacity
planning, which is one of our primary goals.

The analytical results for M/M/c/K, has the following expression for pK

pK =
1

cK−cc!

(
λ

µ

)K

p0 (5.3)

The expression for p0 is given by:

p0 =

[
c−1∑
n=0

1
n!

(
λ

µ

)n

+
(λ/µ)c

c!
1− (λ/cµ)K−c+1

1− (λ/cµ)

]−1

(5.4)

The various terms in Eq.(5.3) and(5.4) are:

51

• p0 is the unconditional probability that there are no customers in the queue or are being
serviced.

• λ is the packet arrival rate, expressed in packets per unit time;

• µ is the packet service rate, this is obtained from E[X], the packet service time at the
SPS; where µ = 1 / E[X]

• ρ = λE[X]
c is the server utilization;

• c is the number of SPS server threads running on the system

• K is the queue length of the SPS server, in terms of number of packets the queue can
hold.

As we have explained in Chapter 4 and shown again in expression (5.1), the service time
of the packet processed by SPS consists of four components. In our experiments, we have
measured directly three of the components, Kcopy, Tsip, and Ksnd. The fourth component,
Ks

sockq, represents the processing that is incurred by the packet from the instant, tstack, it
is added to the socket queue until the instant, tsockq, it is removed from the queue (refer
to Figure 3.2). Ks

sockq is one of the two components of Ksockq, as seen in expression (3.1).
The other component, Kw

sockq, represents the waiting time of the packet at the socket queue.
Although we have directly measured Ksockq, it is important to have an accurate estimate of
Ks

sockq (and, consequently, Kw
sockq) to apply the M/M/c/K model. To this end, we use the

baseline measurement of Ksockq under conditions of no queuing as described in Chapter 4, and
then we adjust this baseline value for higher call rates by accounting for the overhead caused
by cache misses and server thread overhead.

5.3.1 Modeling the Interrupt Overhead:

In Chapter 4, for the single single server thread case, the queuing model captured the Interrupt
overhead parameter α(λ) as the packet arrival increased. Interrupts pollute the cache, increasing
cache misses, and in turn increasing the number of cycles per instruction; the other two values
in the product are constants for a given operation. The interrupt overhead still applies as
additional threads are added to the system and we continue to use this parameter as before in
our new model.

5.3.2 Modeling the Server-Thread Overhead:

For modeling the overhead introduced by additional threads we look at the underlying process
scheduling policy used by the Linux OS. The main purpose of the scheduler is to provide fairness

52

among different processes, maintain high-throughput for the system and achieve maximum
utilization of the CPU. Some of these parameters can be conflicting with each other. Linux
Kernel uses a scheduling mechanism called Completely Fair Scheduling (CFS) [39].CFS is a
variant of Weighted-Fair Queuing (WFQ) and the main idea behind the CFS is to maintain
balance (fairness) in providing processor time to tasks. CFS uses Red-Black trees to get the
next process to run based on a ‘virtual run-time’. CFS has a concept called group scheduling

(introduced with the 2.6.24 kernel). Group scheduling is another way to bring fairness to
scheduling, particularly in the face of tasks that spawn many other tasks as is the case with
SPS process with multiple server threads. The server process that spawns many task share the
same ’virtual run-time’ (parameter used by CFS to schedule process to run). As the system load
increases, in order to achieve some useful work by the system, CFS relaxes the fairness policy
to reduce the context switching overhead of the threads and also to achieve some throughput
for the system.

As the number of threads in the system increases, there is additional process scheduling
overhead, and additional pollution of the instruction cache, in addition to the data cache pol-
lution with increasing packet arrival rate. The additional server threads add to the time for
context switching for the next available server thread to remove the packet from the queue to
process the packet. To capture this additional overhead we introduce a new parameter β as a
factor of number of threads c to be β(λ, c).

To capture the impact due to CFS’s group scheduling and behavior under load with the
parameter β, we update the service time of additional threads to reflect the reduced capacity
for each thread as follows:

E[Xc] = β(λ, c)(E[X1] ∗ c) (5.5)

Where:

• E[X1] is the service time with one server thread, with the α parameter captured in it.

• E[Xc] is the service time with c server threads.

• β(λ, c) is the parameter to capture the additional overhead due to increased number of
threads

• c is the number of server threads

Based on our data, we can model β to predict the point where we can start seeing drop-
rate exceeding 1%, as a multi-linear function of two parameters, the call-arrival rate λ and the
number of server thread.

β = (0.174)c + (0.923) ∗ 10−4λ− 0.60 (5.6)

53

Table 5.1: Waiting Time(µs): Measured vs Analytical, Exponential Inter-Arrival Times SPS
on 1 core 1-Server, K=200

Model Parameters Call Arrival Rate
200cps 600cps 1000cps 1200cps 1500cps 2000cps 2500cps 3000cps 4000cps

λ (packets/sec) 1200 3600 6000 7200 9000 12000 15000 14800* 14250*
α(λ) 1.3 2.0 2.5 3.2 3.2 3.2 3.2 3.2 3.2
β(λ, c) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
E[X] 61.65 60.66 63.12 67.01 65.61 65.16 65.78 67.09 69.842
ρ = λE[X] 0.074 0.218 0.378 0.482 0.591 0.782 0.987 0.992 0.995
W (model) 2.57 8.86 20.03 32.28 49.24 121.75 2566.36 4691.1 7679.62
W (measured) = Kw

sockq 2.60 10.30 26.53 66.69 57.81 123.36 413.29 1743.26 8309.5

TotalMessages 1,200,000 1,200,000 1,200,006 1,083,794 1,080,783 933213 835461 530772 556420
RCV Errors 0 0 0 0 0 22 4730 12079 91209
Droprate 0 0 0 0 0 0 0.00566 0.02275 0.1639

Using the above equation, we can interpret that, for smaller number of server threads, the β

value is more dependent on the call-arrival rate, indicating that the losses will be at a higher
rate. As the number of server thread increases, the beta value is more dependent on the number
of servers.

Using the β value above, Service Providers would need to only obtain the E[X1] value for
the system they would be using. Then, apply the β value for a given number of server threads
and call arrival rates, to obtain an approximate service time of the system. This can then be
applied to the pK formula in Eq.(5.3) to obtain a first approximation of the capacity of their
system.

5.3.3 Modeling Results

We now present the results for the SPS using the model we just described. Table 5.1 presents
the waiting time comparison for modeling vs. measured data as described in chapter 4. For
the one-server thread case, we keep β=1.

Tables 5.2, 5.3, 5.4 , 5.5 and 5.6 show the comparison of the drop probability obtained
analytically versus the measured drop rate. From the tables we observe that as the server
thread count increases, SPS begins to experience packet losses at lower call rates. The β value
at the point where the SPS starts experiencing 1% packet drop-rate increases gradually from
about 1.08 to 2.69 as the number of server threads increases from 2 to 16.

Figure 5.4 presents the drop probability as a function of the number of servers and call-
arrival rates, at the point where the drop probability exceeds 1% and compares the model values
to measured values. From the figure 5.4 we can see that the as the number of server thread
increases for single-core system, the system begins to experience drops at lower call rates. The
model we have developed captures this accurately.

54

 λ

Socket Queue, size K=200

Service Time = X

Server 1

Server 2

Server 3

Server C

Figure 5.3: M/G/c/K queuing model of the SPS

Drop Probability (Model) vs Drop Rate (Measured), 2-D View Map

Drop Probability(Model)
Drop Rate(Measured)

 0 5 10 15 20
Number of Server threads

 0

 500

 1000

 1500

 2000

 2500

 3000

Ca
lls

 P
er

 S
ec

on
d

Figure 5.4: Drop probability(Model) vs. Drop-Rate(Measured), Point where Drop rate starts
exceeding 1%; 2D-map view as Function of Number of Server threads and Call-Arrival rate

55

Table 5.2: Drop probability Analytical vs. Drop Rate Measured, SPS with 2-Server, K=200
Model Parameters Call Arrival Rate

2000cps 2200cps 2400cps
λ (packets/sec) 12000 13200 14400
β(λ, c) 1.158 1.158 1.077
E[X] 151.0 151.0 140.37
E[X2] 130.32 130.32 130.32
DropProbability(model) 0.00 0.0035 0.0119
TotalMessages 927,216 1,462,853 1,207,041
RCV Errors 0 5787 16890
Droprate(measured) 0 0.0039 0.0139

Table 5.3: Drop probability Analytical vs. Drop Rate Measured, SPS with 4-Server, K=200
Model Parameters Call Arrival Rate

1800cps 2000cps 2200cps
λ (packets/sec) 10800 12000 13200
β(λ, c) 1.417 1.284 1.314
E[X] 372 337.0 342.57
E[X4] 260.64 260.64 260.64
DropProbability(model) 0.0075 0.0110 0.115
TotalMessages 878,218 942,046 927,456
RCV Errors 6,344 9537 14791
Droprate(measured) 0.00722 0.0101 0.01595

Table 5.4: Drop probability Analytical vs. Drop Rate Measured, SPS with 6-Server, K=200
Model Parameters Call Arrival Rate

1400cps 1600cps 1800cps
λ (packets/sec) 8400 9600 10800
β(λ, c) 1.806 1.598 1.4408
E[X] 711.0 629.0 563.31
E[X6] 393.66 393.66 393.66
DropProbability(model) 0.0031 0.0088 0.0147
TotalMessages 1029177 1010682 1053671
RCV Errors 3,399 8483 10611
Droprate(measured) 0.0033 0.0084 0.01

56

Table 5.5: Drop probability Analytical vs. Drop Rate Measured, SPS with 8-Server, K=200
Model Parameters Call Arrival Rate

1200cps 1400cps 1600cps
λ (packets/sec) 7200 8400 9600
β(λ, c) 2.076 1.789 1.678
E[X] 1113 959.0 874.75
E[X8] 536.08 536.08 536.08
DropProbability(model) 0.0059 0.0093 0.047
TotalMessages 977624 1102910 1057955
RCV Errors 5852 10556 16577
Droprate(measured) 0.0059 0.0096 0.0156

Table 5.6: Drop probability Analytical vs. Drop Rate Measured, SPS with 16-Server,
K=200

Model Parameters Call Arrival Rate
800cps 900cps 1000cps

λ (packets/sec) 4800 5400 6000
β(λ, c) 3.298 2.956 2.737
E[X] 3325 2980 2758
E[X16] 1008 1008 1008
DropProbability(model) 0.00425 0.0087 0.0334
TotalMessages 787008 643863 687914
RCV Errors 3745 5627 13023
Droprate(measured) 0.00475 0.00873 0.0189

57

5.4 Conclusions

In this chapter, we have presented a large set of experiments that we conducted for the multi-
threaded SIP proxy server system. The experiments were conducted as a function of number
of server threads for the OpenSIPS SPS, where the SPS was assigned a single CPU-core. We
then presented a drop-probability model for the SPS, to predict the point where the SPS starts
experiencing more than 1% packet drops. We compared this model against the measured
packet drops due to buffer overflow and a good match was found between the model values
and the measured data. Based on our results, we can conclude that for a one-core system, the
performance of SIP proxy server is best with single-thread. As additional server threads are
added, the performance degrades due to lower capacity for each thread and due to resource
contention among multiple threads. This matches with the queuing theory that single server
with larger capacity performs better than N-servers with 1/N capacity of single server.

58

Chapter 6

Performance of Multi-threaded SIP

Servers: The Impact of Scheduler

Parameters

Multi-threading can increase the performance of a system in terms of responsiveness by concur-
rent execution of these threads. The process scheduler is a core part of the operating system,
and determines which process can execute on the system and the duration it runs. The schedul-
ing policy needs to account for several objectives, including fairness, throughput and response
time, which often may be contradictory. In this chapter, we investigate the impact of the Linux
Completely Fair Scheduler (CFS) on the performance of OpenSIPS, as a function of the number
of threads and the call arrival rate.

In Chapter 5, we used the SIP control packet drop-rate as the key performance metric for
the SPS. To provide a better metric to quantify the impact of the control packet loss at SPS
on user experience, we continue to use Packet Drop-rate (PDR) as the key performance metric
in this phase of our research. We collected a large set of experimental data, in a methodical
fashion, to characterize the performance of SPS as a function of number of server threads and
increasing call arrival rates.

Our key contributions presented in this chapter are:

• Characterization of the impact of the scheduler on the performance of a multi-threaded
SPS, in terms of waiting time and packet drop rate; and

• Identification of the key scheduler parameters of CFS scheduler and concrete guidelines
on tuning these parameters to achieve significant performance improvement.

59

6.1 Related Work

Several studies investigate the impact of the process scheduler in various contexts. An approach
to improve the interactivity of user tasks in an Android smartphone environment by passing
information about the user task from the Android framework layer to the underlying Linux
CFS is implemented in [40]. In [41], the Linux scheduler was analyzed under the presence of
network I/O and a certain parameter was tuned to mitigate starvation experienced by some
processes. In [42], the authors designed a feedback method between the user process and the
Linux scheduler so as to lower the global power budget. Our work differs from these studies in
that: (1) we focus on the performance of SPS in terms of SIP control packet drop rate; (2) we
modify the kernel and SPS code to obtain accurate packet measurements; and (3) we study the
impact of the scheduler and tune its parameters so as to improve the SPS performance.

6.2 Experiments and Performance Measurements

We use a testbed that was described in Chapter 4, and shown in Figure 4.1. The testbed contains
the OpenSIPS SPS Proxy server that was described in Chapter 5 running on a quad-core
Intel R© Xeon

TM
E5540 @2.53GHz processor with 8192 KB cache size. The other components

of the testbed UAC, UAS and the router are as described in chapter 4. All the experiments
are performed with UDP as the transport protocol and default kernel configurations. Multi-
threading in OpenSips server is implemented as a completely autonomous worker model. Each
thread represents a light-weight process in Linux OS. In OpenSIPS, a master process spawns
these autonomous worker threads based on a configuration parameter in OpenSIPS.

We measure the various time components of each SIP control packet as it traverses via the
SPS. The measurement methodology described in Chapter 3 is used to measure the components
Krcv, Kstack, Ksockq, Ksnd and Tsip SIP packet. In addition, for each experiment, the overall
drop rate is measured by using the ’netstat’ command.

The experiments conducted are same as those described in Chapter 5. For each experiment,
the UAC initiates more than 100,000 calls to UAS. In each experiment, the SPS may process
more than 600,000 SIP messages, i.e., up to 100,000 messages of each type seen in Figure 2.2. To
measure the performance of SPS under multiple threads, two cores of the quad-core processor
were enabled such that all the SPS threads were run on one core and ’syslogd’ was run on
another core. There were no other user initiated process in the system.

Each experiment was characterized by three parameters as in Chapter 5: Call-arrival rates,
Call inter-arrival distribution and Number of server threads

According to [43], the two primary factors operators consider when designing their network
is the service availability to end-users and the cost of operating the network. Furthermore,

60

from an economic standpoint, network operators aim to achieve high server utilization in order
to maximize the return on their capital investment. These observations motivate us to develop
guidelines for tuning the scheduler parameters that will balance these two conflicting objectives:
availability of SIP service and SPS server utilization. As call arrival rate increases, the key is
to know the threshold where CPU is getting overloaded resulting in excessive loss of SIP call
setup packets and service availability is negatively affected. Therefore, we consider the packet
drop rate (PDR) as the key performance metric of interest. Note that the only packets seen
by the SPS are SIP call setup and teardown messages. Since the loss of any of these messages
affects the call establishment process, we consider PDR as the primary metric that captures
the impact of server overload on end-user experience.

In this Chapter, We carry out a large number of experiments to measure the impact of the
scheduler parameters on PDR. We use the netstat command in each experiment to obtain
the number of SIP messages dropped at the SPS. This number is provided by the RcvErrors

counter that is incremented by the Linux kernel when the receive buffer is full (note that in our
experiments only the SIP process is active, hence the RcvErrors counter provides an accurate
count of dropped SIP messages). Therefore, we estimate the PDR metric as follows:

PDR =
RcvErrors

Total SIP MSGs

6.3 Impact of Process Scheduler on SPS Performance

The main purpose of the process scheduler is to provide fairness among different processes,
maintain high-throughput for the system and achieve maximum utilization of the CPU. The
Linux kernel uses a scheduling mechanism called completely fair scheduling (CFS) [39]. CFS is
a variant of weighted fair queuing (WFQ), and its objective is to maintain fairness in providing
processor time to tasks. CFS uses red-black trees to get the next process to run based on the
concept of a “virtual run-time”.

The main design principle of CFS is to model an ideal, precise multi-tasking CPU. Note
that a CPU can run only a single task at a given time, while other tasks are waiting. To ensure
fair access to the CPU across all tasks, CFS tracks a task’s “fairness imbalance” via a per-task
variable referred to as wait runtime, that captures the task’s waiting time. The wait runtime

is the amount of time the task should be allowed to run on the CPU under completely fair and
balanced scheduling. CFS tries to enforce fairness among all its runnable tasks by scheduling
the task that has the maximum wait runtime value and, thus, is most in need of CPU time.

CFS also encompasses the concept of group scheduling, introduced with the 2.6.24 kernel.
Group scheduling allows the scheduler to provide fair access to CPU time across all tasks in
the system, and enforces hierarchical fairness among tasks, when a task spawns multiple child

61

tasks.
CFS uses nanosecond granularity to account for the process times. Linux provides several

parameters for tuning the behavior of the CFS scheduler, including the following three that we
considered in our study:

• sched latency ns: A period in which each task runs once.

• sched min granularity ns: The minimum time after which a task becomes eligible to
be preempted. The scheduler tries to maintain this equality:

sched min granularity ns =
sched latency ns

nr tasks

where nr tasks is the number of tasks in the queue. If the equality is not met, the CFS
scheduler tries to increase the sched latency ns time to match the increased number of
tasks in the queue.

• sched wakeup granularity ns: This parameter represents the ability of the task being
awakened to preempt the current task. A larger value for this parameter makes it difficult
for other tasks to force preemption. Therefore, the function of this is parameter is to
reduce over-scheduling.

The above parameters may be used to tune the behavior of schedulers to “desktop” work-
loads (where the objective is low latency) or “server” workloads (where the goal is to achieve
good batching of jobs). The scheduler defaults to a setting suitable for desktop workloads. The
values of these parameters are a function of the number of CPUs in the system. For the two-
core system used for our experiments, the default values are: sched latency ns = 10,000,000
(10 ms), sched min granularity n = 2,000,000 (2 ms), and sched wakeup granularity ns =
2,000,000 (2 ms).

6.3.1 Baseline Server Mode

In our preliminary experiments, we determined that configuring the scheduler in “desktop”
mode results in poor performance for the SPS. Therefore, following the recommendations in [44],
we modified the values of the three scheduler parameters to move the default scheduler policy to
“server” mode, as follows: sched latency ns = 1,000,000 (1 ms), sched min granularity n

= 100,000 (100 µ s), and sched wakeup granularity ns = 25,000 (25 µ s). With these values,
the scheduler allows the threads that are spawned as part of the server to be scheduled more
often, improving the overall system performance. We will refer to this configuration as the
baseline “server” mode; we note that these parameter values are recommended in [44] as a

62

generic server configuration and do not take into account characteristics or workloads specific
to SPS.

Consider an SPS process with multiple server threads. As the system load increases, context
switching overhead and data cache pollution increases, and performance suffers. Similarly, as
the number of threads in the system increases, there is further process scheduling overhead, as
well as pollution of the instruction cache, in addition to the data cache pollution. Therefore, it
is clear that no set of fixed values for the scheduler parameters will work well across the range
of system loads and the number of threads under which a server is expected to operate. As we
mentioned above, CFS attempts to adapt to an increase in the system load (i.e., an increase
in the number of tasks in the queue) by increasing the value of parameter sched latency ns.
By doing so, in effect, CFS relaxes the fairness policy so as to reduce the context switching
overhead. As a result, the CPU is better utilized and system throughput increases.

6.3.2 Enhanced Server Mode

Based on the above observations, we have carried out a large number of experiments to measure
the impact of the three scheduler parameters identified above on two performance metrics: (1)
the service time, Tsip of a packet in the SIP layer, and (2) the kernel time, Krcv that includes
the waiting time at the socket queue.

Our findings are as follows:

1. sched latency ns: Setting this parameter to a fixed value 800,000, independent of the
number of threads, gave the best results. Recall that this parameter controls the latency of
CPU bound tasks, and is dynamically adjusted by the scheduler in response to variations
in the system load (in our case, packet arrival rate). Therefore, using a low value for
this parameter provides the scheduler with significant flexibility in adjusting this value
upwards to control the context switching overhead following an increase in system load.

2. sched min granularity ns: This parameter controls the amount of time that tasks may
run without preemption. Therefore, it is desirable to set it to a value that corresponds
to the amount of time needed to complete a task (in this case, we process a SIP packet),
so as to minimize context switching overhead. To this end, we set this parameter to a
value that roughly corresponds to the measured value of mean service time Tsip at the
point where the system starts experiencing overload. The specific values we used for this
parameter were 100,000, 150,000, 200,000, 250,000, and 400,000, for 2, 4, 6, 8 and 16
server threads, respectively.

3. sched wakeup granularity ns: This parameter controls the wake-up latency of a task,
i.e., the amount of time it must lapse before it can preempt the current task. Since we

63

set the amount of time that a task may run without preemption to a value that ensures
that most tasks will complete before being preempted (see the discussion on the second
parameter above), it follows that we should allow a new task to immediately preempt the
current task. Indeed, setting the value of this parameter to zero achieved the best results
across all thread configurations.

We will refer to the configuration of the CFS scheduler with these parameter values as the
enhanced “server” mode.

6.4 Experimental Results

We now present the results of experiments we have conducted to compare the performance of
the SPS under the baseline and enhanced “server” mode configuration for the scheduler. In
the experiments, we vary both the number of SPS threads and the traffic load, expressed as
number of calls per second (cps).

6.4.1 Average Service and Waiting Times

Figures 6.1 and 6.2 plot the value of Krcv and Tsip, respectively, as a function of traffic load (in
cps), for 2, 4, 6, 8 and 16 server threads and with the scheduler parameters tuned to baseline
“server” mode. Figures 6.3 and 6.4 present results with the scheduler parameters tuned to
enhanced “server” mode. Recall that Krcv primarily represents the waiting time of a SIP
packet, and Tsip is the service time within the SIP layer.

From the figures 6.1 and 6.2 we can observe that the Krcv value increases rapidly beyond
1500cps. This increase is due to three factors:

• Queuing delay. As the call arrival rate increases, packets arriving at the SPS are buffered
at the socket queue and experience increasing waiting times, Kw

sockq before being delivered
to the SIP layer.

• Interrupt Overhead. The number of interrupts increases in direct proportion to the packet
arrival rate. Interrupts introduce overhead in the form of the time needed to handle each
interrupt, the context-switching operations, and the increase in processing time as a result
of cache misses due to these interrupts. A cache miss causes the number of CPU cycles
consumed by the network stack receiving process to increase, as the memory access cycles
of main memory are several times that of L2 caches.

• Multi-Threading Overhead. Multi-threading adds another layer of overhead by requiring
additional context-switching, resulting in instruction-cache misses. This is most clearly
seen by results of the 16-server threads compared to the results of lower number of threads.

64

Regarding the Tsip curves shown in Figures 6.2 and 6.4, we observe that the Tsip value (i.e.,
service time) is similar for low loads and smaller number of server threads under both modes.
An important observation is that the mean SIP service times for all message types increases
almost linearly with the call rate. As the SPS is operating in stateful mode, it needs to perform
table look-ups for each incoming message, so as to match an existing transaction or create a new
one. As the call rate increases, the number of transactions in the system also increases, resulting
in larger tables at the SIP layer and, hence, longer lookup and overall service times. The rapid
increase in Tsip time for increased number of threads can be explained by the additional lock
contention among threads for shared data, including lookup tables at the SIP layer.

However, as the number of server threads and the load increase, we observe a larger im-
provement for the enhanced “server” mode; this improvement is particularly evident in the
16-thread system for which the service time is notably lower under the enhanced “server’ mode.
This is because of fine tuning of the scheduler to allow each thread to run to completion by
adjusting the sched min granularity ns parameter to match the Tsip time.

In Figures 6.5 and 6.6, we see that between 1500 and 2500 cps, the “knee” of the Krcv curves
shifts to a higher load under the enhanced “server” mode relative to the baseline “server” mode;
clearly, this behavior represents an improvement with respect to the load value where the server
starts becoming overloaded.

6.4.2 Packet Drop Rate

To provide a better measure of the impact on user experience as a function of load we use the
packet drop rate (PDR) as the metric to capture this.

Our goal is to identify the traffic load (in cps) at which the SIP control packet drop rate
starts to exceed a certain threshold, implying that end users may experience call establishment
problems due to packet drops. Service providers may use this traffic load as a trigger to add
more capacity to the system before significant losses of SIP call setup packets start to occur.

Based on our survey of industry standards, the threshold for acceptable drop-rate in a VoIP
environment is about 1% [37]. This value is considered in the industry as the threshold below
which voice calls have quality comparable to toll quality. Note that this threshold is typically
applied to voice packets to characterize the performance of the data plane. In this study, we
consider three different threshold values, 1%, 2% and 5%, as reasonable values above which the
SIP PDR will negatively impact the operation of the control plane; however, our methodology
can be applied with any other appropriate threshold value.

Tables 6.1 and 6.2 present the measured values of Tsip, Krcv, and SIP PDR under the
baseline and enhanced “server” mode, respectively. Each column in these tables presents the
average values of thirty experiments for the stated number of threads and load (cps). For each

65

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

icr
os

ec
)

Calls per second

2 Server Threads
4 Server Threads
6 Server Threads
8 Server Threads

16 Server Threads

Figure 6.1: Mean Krcv values vs. load, baseline “server” mode

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

icr
os

ec
)

Calls per second

2 Server Threads
4 Server Threads
6 Server Threads
8 Server Threads

16 Server Threads

Figure 6.2: Mean Tsip values vs. load, baseline “server” mode

66

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

icr
os

ec
)

Calls per second

2 Server Threads
4 Server Threads
6 Server Threads
8 Server Threads

16 Server Threads

Figure 6.3: Mean Krcv values vs. load, enhanced “server” mode

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 500 1000 1500 2000 2500 3000 3500 4000

Ti
m

e
(m

icr
os

ec
)

Calls per second

2 Server Threads
4 Server Threads
6 Server Threads
8 Server Threads

16 Server Threads

Figure 6.4: Mean Tsip values, enhanced “server” mode

67

 1000

 2000

 3000

 4000

 5000

 1000 1500 2000 2500 3000

Ti
m

e
(m

icr
os

ec
)

Calls per second

2 Threads Base
4 Threads Base
8 Threads Base

2 Threads Enhanced
4 Threads Enhanced
8 Threads Enhanced

Figure 6.5: Mean Krcv values, Comparison, Base vs enhanced Mode

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1000 1500 2000 2500 3000

Ti
m

e
(m

icr
os

ec
)

Calls per second

2 Threads Base
4 Threads Base
8 Threads Base

2 Threads Enhanced
4 Threads Enhanced
8 Threads Enhanced

Figure 6.6: Mean Tsip values, Comparison, Base vs enhanced Mode

68

value of the number of threads, we present results for two load values: the load value at which
the drop rate exceeds 1% for the first time, and the immediately lower value (in our experiments,
we used an increment of 200 cps for load values). Two observations can be made from these
tables. For the same load value, configuring the scheduler parameters to the enhanced “server”
mode, always improves the SPS performance in terms of drop rate and waiting time (which is
included in the kernel time, Krcv). Furthermore, in some cases (i.e., for two and 16 threads),
the load at which the PDR crosses the 1% threshold we imposed is higher for the enhanced
mode as compared to the baseline mode.

Table 6.1: Measured SPS Performance, 1% PDR, Baseline Server Mode
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
2200cps 2400cps 2000cps 2200cps 1800cps 2000cps 1600cps 1800cps 1200cps 1400cps

Arrival rate
(packets/sec)

13200 14400 12000 13200 10800 12000 9600 10800 7200 8400

Tsip (µs) 76.9 79.58 130.81 146.25 167.97 203.9 213.47 279.36 303.00 429.83
Krcv (µs) 1309.16 1752.26 1473.32 2184.27 1042.66 1981.73 893.26 1974.84 809.76 1394.47
Call-Setup Drops 3039 6353 3106 6270 2351 5956 1895 6053 1788 3637
Call-Setup Mes-
sages

490479 476002 374480 399158 327973 373430 313721 334716 242858 264716

Total Messages 633487 598877 494568 513137 441154 490867 417454 447876 354911 372133
PDR 0.0062 0.0133 0.0083 0.0157 0.0072 0.0159 0.0052 0.018 0.0074 0.0137

Table 6.2: Measured SPS Performance, 1% PDR, Enhanced Server Mode
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
2400cps 2600cps 2000cps 2200cps 1800cps 2000cps 1600cps 1800cps 1400cps 1600cps

Arrival rate
(packets/sec)

14400 15600 12000 13200 10800 12000 9600 10800 8400 9600

Tsip (µs) 77.21 85.11 129.28 138.76 178.11 186.85 189.37 242.29 392.25 540.13
Krcv (µs) 1624.2 2322.44 1363.77 1805.35 1116.93 1418.35 594.44 1321.15 918.58 1864.63
Call-Setup Drops 4957 8840 3452 4688 2454 3878 1233 3717 2112 6238
Call-Setup Mes-
sages

501871 520479 382147 408507 330213 350419 314944 327789 259611 267954

Total Messages 636057 642238 504670 525251 445583 461109 433703 440549 367064 363775
PDR 0.0098 0.0169 0.0090 0.0115 0.0074 0.0110 0.0039 0.0113 0.0081 0.0233

To better illustrate the performance improvement under the enhanced mode, the PDR and
Krcv values for specific number of threads and load pairs are compared in Table 6.3. These

69

Table 6.3: PDR at 1% And Kernel Time (Krcv) Comparison
Server Threads and CPS PDR comparison Kernel time, Krcv, comparison (µs)

Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

2 Threads, 2400cps 0.0133 0.0098 26.31% 1752.26 1624.2 7.3%
4 Threads, 2200cps 0.0157 0.0115 26.4 % 2184.27 1805.35 17.3 %
6 Threads, 2000cps 0.0159 0.0110 30.8% 1981.73 1418.35 28.4%
8 Threads, 1800cps 0.018 0.0113 37.22% 1974.84 1321.15 33.08%
16 Threads, 1400cps 0.0137 0.0081 40.87 % 1394.47 918.58 34.1%

pairs were selected as they correspond to the scenarios where the drop rate under the baseline
mode exceeds 1%. As one can see, the performance improvement is between 26 and 40% for
the drop rate and between 7 and 34% for Krcv. In fact, the enhanced mode results in better
performance in all the scenarios, and the degree of improvement increases with the number of
threads for the 1% threshold.

Tables 6.4, 6.5 and 6.6 and Tables 6.7, 6.8 and 6.9 are similar to Tables 6.1 6.2 and 6.3 and
show results for the 2% and 5% drop thresholds, respectively. As we can see, the performance
improvement of the enhanced mode over the baseline mode remains significant and ranges from
3% to 18% for the drop-rate and 3% to 21% for the Krcv values for the 2% threshold. For the
5% threshold the improvements range from from about 0.5% to 17% for the drop-rate and 4.5%
to 16% for the Krcv value.

The improvements due to enhanced “server” mode seen in data is a result of tuning the
scheduler to lower the multi-threading overhead. This in-turn results in better utilization of
the cache memory leading to lower waiting times. Further, lower waiting times in the socket
queue, results to a lower packet drop-rate as the socket buffer doesn’t get filled as quickly in
the enhanced ”server” mode.

Overall, the results we have presented indicate that, by adjusting the scheduler parameters
to align with the packet processing time at various degrees of multi-threading, the enhanced
“server” mode is capable of reducing the context switching overhead associated with larger
thread numbers. We emphasize that the benefits of the enhanced mode are available for free
(other than the one-time cost of carrying out the off-line experiments), in that they are achiev-
able simply by setting the scheduler parameter to appropriate values and do not involve any
resource trade-offs. Finally, we note that our methodology for optimizing the scheduler mode,
although carried out in the context of SPS, is independent of the application layer, and hence
can be applied to a spectrum of servers.

70

Table 6.4: Measured SPS Performance, 2% PDR, Baseline Server Mode
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
2600cps 2800cps 2200cps 2400cps 2000cps 2200cps 1800cps 2000cps 1600cps 1800cps

Arrival rate
(packets/sec)

15600 16800 132000 14400 12000 13200 10800 12000 9600 10800

Tsip (µs) 85.43 89.71 148.46 160.36 203.9 230.92 279.36 287.14 429.83 574.27
Krcv (µs) 2268.29 3047.18 2155.71 2947.3 1981.73 2658.6 1974.84 2156.87 1394.47 2320.68
Call-Setup Drops 8615 14479 6642 11247 5956 10334 6053 7655 3637 7239
Call-Setup Mes-
sages

546939 510773 417568 434796 373430 388947 334716 356045 264716 270279

Total Messages 674413 620083 535172 547052 490867 498053 447876 465978 372133 366678
PDR 0.0157 0.028 0.0159 0.0258 0.0159 0.0265 0.018 0.0215 0.0137 0.0267

Table 6.5: Measured SPS Performance, 2% PDR, Enhanced Server Mode
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
2600cps 2800cps 2200cps 2400cps 2000cps 2200cps 2000cps 2200cps 1400cps 1600cps

Arrival rate
(packets/sec)

15600 16800 13200 14400 12000 13200 12000 13200 9600 10800

Tsip (µs) 85.11 87.94 138.76 155.67 186.85 217.39 277.22 308.29 392.25 537.54
Krcv (µs) 2322.44 2930.03 1805.35 2769.65 1418.35 2216.36 1872.53 2624.5 918.58 1823.79
Call-Setup Drops 8840 13969 4688 10586 3878 8876 6369 11567 6238 6056
Call-Setup Mes-
sages

520479 561100 408507 425738 350419 400161 351093 384919 267954 278801

Total Messages 642238 687893 525251 538929 461109 513095 459549 491256 367064 379054
PDR 0.0169 0.0249 0.0115 0.0248 0.0110 0.0222 0.0182 0.030 0.0081 0.0217

Table 6.6: PDR at 2% And Kernel Time (Krcv) Comparison
Server Threads and CPS PDR comparison Kernel time, Krcv, comparison (µs)

Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

2 Threads, 2800cps 0.028 0.0249 11.07% 3047.18 2930.03 3.84%
4 Threads, 2400cps 0.0258 0.0248 3.87% 2947.3 2769.65 6.04%
6 Threads, 2200cps 0.0265 0.0222 16.23% 2658.6 2216.36 16.6%
8 Threads, 2000cps 0.0215 0.0182 15.34% 2156.87 1872.53 13.17%
16 Threads, 1800cps 0.0267 0.0217 18.7% 2320.68 1823.79 21.4 %

71

Table 6.7: Measured SPS Performance, 5% PDR, Baseline Server Mode
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
3000cps 3200cps 2600cps 2800cps 2400cps 2600cps 2200cps 2400cps 1800cps 2000cps

Arrival rate
(packets/sec)

18000 19200 15600 16800 14400 15600 13200 14400 10800 12000

Tsip (µs) 93.26 97.77 171.96 186.42 258.99 292.53 328.84 382.28 666.79 909.43
Krcv (µs) 4240.97 5634.44 3927.19 4850.92 3828.7 4876.98 3139.58 4364.83 2908.09 4902.85
Call-Setup Drops 24494 37581 22200 25563 20223 30836 16263 26337 12251 23421
Call-Setup Mes-
sages

553364 562299 454056 495007 415974 437796 391284 391631 300485 304924

Total Messages 664214 669725 558083 601043 523968 537479 499464 487814 394028 386162
PDR 0.044 0.0668 0.0489 0.0666 0.0486 0.0704 0.0416 0.067 0.0407 0.0768

Table 6.8: Measured SPS Performance, 5% Drop-Rate, Enhanced Server Mode
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
3000cps 3200cps 2600cps 2800cps 2400cps 2600cps 2200cps 2400cps 1800cps 2000cps

Arrival rate
(packets/sec)

18000 19200 15600 16800 14400 15600 13200 14400 10800 12000

Tsip (µs) 93.15 98.66 167.96 180.84 262.92 278.15 308.29 373.27 633.17 826.29
Krcv (µs) 4147.52 5373.29 3648.16 4235.35 3735.95 4359.41 2624.5 3943.79 2535.36 4125.02
Call-Setup Drops 23242 39067 17715 25613 19745 27726 14598 22589 11530 20396
Call-Setup Mes-
sages

532064 586615 460049 479114 420969 443106 381532 398049 306690 321400

Total Messages 641179 695193 567401 581137 528531 546988 491256 497423 404023 410442
PDR 0.0437 0.0665 0.0385 0.0534 0.0453 0.0626 0.030 0.0567 0.0376 0.0634

Table 6.9: PDR at 5% And Kernel Time (Krcv) Comparison
Server Threads and CPS PDR comparison Kernel time, Krcv, comparison (µs)

Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

2 Threads, 3200cps 0.0668 0.0665 0.45% 5634.44 5373.29 4.63%
4 Threads, 2800cps 0.0666 0.0534 19.82 % 4850.92 4235.35 12.69 %
6 Threads, 2600cps 0.0704 0.0626 11.08% 4876.98 4359.41 10.61%
8 Threads, 2400cps 0.067 0.0567 15.37% 4364.83 3943.79 9.65 %
16 Threads, 2000cps 0.0768 0.0634 17.45% 4902.85 4125.02 15.86%

72

6.5 Concluding Remarks

We have investigated the impact of the Linux scheduler settings on the performance of single-
core, multi-threaded SIP proxy servers. The metrics we used were packet service time, waiting
time, and packet drop rate (PDR) to capture the impact on user performance. Based on the
results of a large set of experiments across a wide range of values for the number of server threads
and traffic load, we have developed a methodology to configure the scheduler parameters that
results in significant gains in SPS performance compared to industry-recommended “server”
mode operation. Our methodology is not limited to SPS and may be applied to any application-
layer server. Importantly, the gains in performance are the result of simply setting the scheduler
parameters to appropriate values, without the need for adding server capacity or other capital
expenditures. In the next chapter, we investigate the performance of multi-threaded SPS on
multiple CPU cores.

73

Chapter 7

Performance Evaluation of

Multi-Core, Multi-Threaded SIP

Servers

Multi-core processors are ubiquitously used in all areas of computing, ranging from hand-held
devices to laptops/desktops and to server farms in data centers. Most multi-core processors
in use currently follow the symmetric multi-processor (SMP) paradigm, whereby all cores are
identical, and are controlled by a single instance of the OS, and share a common main memory.
With SMP, processes that do not need to share data with each other may be run on independent
CPU cores to improve the performance of each process. The OS scheduler performs load bal-
ancing so as to ensure that some cores do not become overloaded if other cores have processing
capacity available. Given the proliferation of multi-core systems, the characterization of the
performance of multi-threaded applications on such systems is of practical importance.

Multi-threading support in various applications provides improved performance by using
multiple CPU cores available in these processors. Process schedulers that are part of the
core functionality of an operating system (OS), have been enhanced over the years to account
for multiple cores in the processors and to support multi-threaded applications. One of the
enhancements in the Linux scheduler is the support for load-balancing among various CPU
cores available to the OS.

In this chapter, we investigate the impact of the Linux scheduler’s load-balancing algo-
rithm on the performance of multi-threaded OpenSIPS (an open source SIP proxy server, SPS)
running on a multi-core processor system.

74

7.1 Related Work

The scalability of Linux on a multi-core system was analyzed in [16] by examining seven system
applications. It was determined that all applications except one trigger a scalability bottle-
neck in the Linux kernel, and several modifications to the kernel were introduced to reduce
this bottleneck. In [17], the scalability of a multi-core web server was examined, and it was
observed that the capacity of the address bus in the eight-core system was the limiting factor
in performance scaling. The performance of a SIP server on multi-core systems was studied
in [45]. This study analyzed the performance of a realistic SIP workload on three different
multi-core architectures and suggested improvements to certain operations, including garbage
collection and lock contention, to improve performance. In this work, we look at the impact
of migration cost of a process to a processor that is going idle. The subject of migration cost
has been studied in the context of Virtual Machines (VM). In [46] the authors evaluated the
effects of live migration on virtual machines on the performance of applications running inside
Xen VMs. Their findings was, the migration overhead was acceptable for most cases. However,
for systems where service availability and responsiveness are governed by strict Service Level
Agreements (SLAs), the migration cost cannot be disregarded. In [47] the authors introduced
an efficient algorithm that performed a live migration with minimal cost possible when cer-
tain conditions were met. The authors also developed a simpler algorithm for scenarios where
optimal algorithm was not applicable and a fixed amount of bandwidth was available.

Several studies have specifically investigated the performance of SIP proxy servers (SPS).
A load balancing algorithm for processing SIP messages in server clusters was developed in [48]
and led to improvements in response time. The deployment of a multimedia service involving
SIP sessions and MGCP connections was studied in [49], and strategies consisting of resource
allocation and configuration in a virtualized environment were proposed to provide an optimal
deployment.

In Chapters 4, 5 and 6, we presented results related to comprehensive packet-level mea-
surements performed to obtain an accurate characterization of SPS performance in terms of
service time, waiting time and packet drop rate. In these chapters, investigatons pertaining to
single-core systems with a single and multiple server threads, respectively were discussed.

In this chapter, we investigate the impact of the load-balancing parameters of the Linux
completely fair scheduler (CFS) policy on the performance of multi-threaded SPS on multi-core
systems, as a function of the number of cores, the number of server threads and the call arrival
rate. In our study we use the OpenSIPS SIP proxy server, which provides a transactional
service. As seen from the above studies, there are several challenges in efficiently using multi-
core systems for these type of services. Our work differs from these in that we specifically focus
on the Linux CFS scheduler, and we provide guidelines for configuring the scheduler to optimize

75

Figure 7.1: Dual quad-core processor hosting the OpenSIPS server for the experiments

load-balancing among the CPU cores. Specific contributions of our work include: (1) collection
of extensive experimental data to characterize the packet-level performance of multi-threaded
SPS running on multiple cores; (2) insight into the impact of CFS scheduler settings on SPS
packet drops and and packet waiting times; (3) practical guidelines for tuning various CFS
parameters to optimize SPS performance; and (4) a capacity planning model for estimating the
scalability of SPS on a multi-core system.

7.2 Testbed and Experimental Setup

We use the same testbed and setup consisting of an OpenSIPS SPS and SIPp UAC and UAS,
as in earlier chapters. For the performance evaluation of multi-threaded SPS on multiple cores,
we upgraded the OpenSIPS SPS server to use Linux OS version 3.2.51 that is run on a system
with two quad-core Intel Xeon CPU E5540 @ 2.53 GHz processors. Hence, a total of 8 CPU
cores were available for our experiments, as shown in Figure 7.1.

7.3 Measurement Methodology and Experiments

In our experiments, we initiated calls between the UAC and UAS via the SPS. For each exper-
iment, 100,000 calls were started. For each call, the messages exchanged between the UAC and
UAS are the SIP call setup messages INVITE, 180 RINGING, 200OK and ACK, and the call

76

teardown messages, BYE and 200OK. For each message processed by the SPS, we measured
the time components described above to determine the waiting and service times of the mes-
sage through the SPS; we also kept a count of any messages dropped. Each experiment was
characterized by three parameters:

1. Number of CPU cores. The experiments were conducted with the SPS server configured
as a 2-, 4-, or 6-core system. In the experiments in which SPS was run on two cores, one
additional core was used for running syslogd, and the remaining cores were disabled. For
the 4-core and 6-core experiments, two cores were used for syslogd, and in the 4-core
case, the two unused cores were disabled.

2. Number of server threads. Experiments were conducted with 2, 4, 6, 8, and 16 server
threads for each of the multi-core systems above.

3. Call arrival rate. We varied the call rate starting at 200 calls per second (cps), with an
increment of 200 cps, up to a maximum call rate beyond which the SPS is overloaded and
the drop rate exceeded a certain threshold. As we show later, this maximum call rate
depends on the experimental parameters and drop threshold.

Upon completion of an experiment for a specific call rate and number of cores and server
threads, we process the logged data and calculate the sample mean values for Krcv and Tsip

as we have mentioned in earlier chapters. We obtain these mean values for each SIP message
type as well as the overall mean across all six message types. We also estimate 95% confidence
intervals around the overall mean. In addition, we use the netstat command to measure the
packet drop rate.

7.4 Impact of Process Scheduler on Multi-core SPS Perfor-

mance

In the 3.0-based Linux version, two configurable scheduler parameters are available specifically
for tuning the multi-core operation and performance of the system.

• sched migration cost: A tunable parameter used to specify the “cost” of migrating a
task from the current CPU to a CPU that is becoming idle. The scheduler load-balancing
algorithm uses this parameter to allow a CPU going idle to pull tasks from another CPU.

• sched tunable scaling: This parameter allows the various scheduler parameters to be
scaled as a function of the number of CPUs in the system. There are three options
for this parameter: “no scaling” (i.e., the values of other scheduler parameters are used

77

without modification); “logarithmic scaling” (i.e., other parameter values are multiplied
by 1 + log(ncpus)); and “linear scaling” (i.e., parameter values are multiplied by ncpus).

7.4.1 Baseline Multi-Core Server Mode

The default value scheduler parameters that we just described are, for sched migration cost

it is 500,000 (i.e., 500 µs), and for sched tunable scaling it is set to “logarithmic scaling.”
However, the study in [50] found that setting the value of sched migration cost to 5,000,000
(5 ms) instead of the default value of 500,000 (500 µs) results in better performance. This is
due to the fact that specifying a very high migration cost forces the scheduler to keep a task in
the current CPU, thereby increasing cache utilization.

In chapter 6 for a single-core system, we used the following values for three other scheduler
parameters to move the scheduler policy to “server” mode, as recommended in [44]: sched -

latency ns = 1,000,000 (1 ms), sched min granularity n = 100,000 (100 µs), and sched -

wakeup granularity ns = 25,000 (25 µs). In this study, we denote as the baseline “multi-core
server” mode the scheduler configuration in which, in addition to the above three parameter
values, the values of the multi-core specific parameters are set to: sched migration cost =
5,000,000 (5 ms), and sched tunable scaling is “logarithmic scaling.”

7.4.2 Enhanced Multi-Core Server Mode

We note that the parameter value recommendations in [44] are for a generic server configuration
and do not take into account workloads or operation characteristics specific to SPS. In this
section, we develop a methodology for configuring the scheduler parameters specifically for SPS
servers.

According to [43], the two primary factors that operators consider when designing their
network is the service availability to end-users and the cost of operating the network. Further-
more, from an economic standpoint, network operators aim to achieve high server utilization
in order to maximize the return on their capital investment. These observations motivate us
to develop guidelines for tuning the scheduler parameters so as to balance these two conflicting
objectives: availability of SIP service and SPS server utilization. To illustrate the tradeoffs
involved, consider the scheduler parameter sched migration cost. Increasing the value of this
parameter considerably higher than the default value of 500,000 (500 µs), e.g., as suggested
in [50], will allow SPS threads to remain resident in a single CPU. However, doing so may cause
the CPU to become overloaded. The increase in call arrival rates, will lead to excessive loss
of SIP call setup packets, negatively affecting service availability. Therefore, we consider the
packet drop rate (PDR) as the key performance metric of interest.

Our findings regarding the impact of each scheduler parameter are summarized below.

78

• sched latency ns: Setting this parameter to a fixed value of 800,000, independent of the
number of threads, achieved the best results for the single-core SPS system as we discussed
in Chapter 6. In experiments with multi-core systems, scaling this value linearly with the
number of CPU-cores resulted in the best performance in terms of PDR. Therefore, we
used the values 800, 000×ncpus, where ncpus = 2, 4, 6, for the 2-, 4-, and 6-core systems,
respectively.

• sched min granularity ns: As in chapter 6, we set this parameter to a quantity that
corresponds to the measured value of mean service time Tsip at the point where the system
starts experiencing overload. Note that the minimum value allowed for this parameter is
100,000. The specific values we used for this parameter were as follows: 2-core system:
100,000 for 2, 4, and 6 threads, 150,000 for 8 threads, and 200,000 for 16 server threads;
4- and 6-core systems: 100,000 for 2, 4, 6 and 8 threads and 200,000 for 16 server threads.

• sched wakeup granularity ns: Setting the value of this parameter to zero achieved the
best results across all threads and CPU core configurations, as explained in the previous
chapter.

• sched migration cost: For 2- and 4-core systems we set this parameter to zero, while for
6-core systems a value of 500,000 provided the best results. In the next section we present
experimental results that justify this choice of values.

• sched tunable scaling: Recall that this parameter may be used to scale the values of other
scheduler parameters either logarithmically or linearly with the number of cores. Since
our findings indicate that there is no common scaling factor for the other four parameters
above, we have set the value of this parameter to “no scaling.”

We will refer to the configuration of the CFS scheduler with these parameter values as the
enhanced “multi-core server” mode.

7.5 Experimental Results

7.5.1 Impact of sched migration cost

Figures 7.2 and 7.3 show the impact of varying the value of sched migration cost on the
packet waiting time (Krcv and PDR, respectively, as a function of the number of CPU cores. In
these experiments we used the following values for the call arrival rate and number of threads:
2-core system – 4200 cps, 4 threads; 4-core system – 5400 cps, 6 threads; 6-core system –
6200 cps, 8 threads. Results for other call arrival rate and thread values are very similar and
are omitted. Also, the scheduler was configured in the enhanced “multi-core” mode described

79

in the previous section, in that all parameters were set to values dictated by that mode, except
the sched migration cost parameter whose value was varied as shown in the figures.

As we can see, the results confirm our choice of values for this parameter, as we discussed
in the previous section. Consider the CPU architecture shown in Figure 7.1, and recall that the
value of sched migration cost is used by the load balancing algorithm to determine whether
to move tasks to an idle CPU, with a low value allowing an idle CPU to pull tasks more easily.
Also note that the main operation of the SPS involves processing a packet and forwarding it
to the UAC or UAS. For 2- and 4-core systems, a value of zero provided the best results: in
these systems, all cores are part of the same processor, and task migration incurs minimal
cache penalty; hence setting this cost to zero allows for better load balancing. For the 6-core
system, the most effective value is 500,000. In such systems, the cores are distributed across two
processors, thus the penalty of migrating the task in terms of cache miss is, on average, higher.
Therefore, using a low but non-zero value for the migration cost in an attempt to keep tasks
on the same CPU provided an appropriate balance between the cost of cache misses and load
balancing across CPUs. In all cases, setting the migration cost to the high value recommended
in [50] results in low or no thread migration; hence, increased load in a single core leads to
high packet drop rates even if other CPUs have available capacity. These results indicate that
scheduler configuration is highly application-dependent and settings that work well for some
applications may result in poor performance for others.

7.5.2 SPS Performance

Tables 7.1 and 7.2 present the measured values of Tsip (service time of SIP messages), Krcv

(waiting time), and PDR under the baseline and enhanced multi-core server mode, respectively,
for the 2-core system and various server thread configurations. Tables 7.4 and 7.5 present the
same data for the 4-core system, while Tables 7.7 and 7.8 show data for the 6-core system.
Each column in these tables present the average of thirty experiments for the stated number of
threads and load (in calls per second, cps). For each value of the number of threads, we present
results for two load values: the value at which the PDR exceeds 1% for the first time, and the
immediately lower value (recall that in our experiments, we used an increment of 200 cps).

We make two observations from these tables. For the same load value, configuring the
scheduler parameters to the enhanced server mode always improves the SPS performance over
the baseline mode, in terms of PDR and waiting time. Furthermore, in all cases the load at
which the PDR rate crosses the 1% threshold we imposed is higher for the enhanced mode
compared to the baseline mode in terms of CPS. We also see that, as the number of cores
increases, this threshold load is higher for 4-core compared to 2-cores, and increases further for
6-core; this result is expected given the higher capacity available with additional cores.

80

Figure 7.2: Impact of sched migration cost on Krcv (waiting time)

Figure 7.3: Impact of sched migration cost on PDR

81

To better illustrate the performance improvement under the enhanced mode, Tables 7.3,
7.6, and 7.9 compare the PDR and Krcv values for 2-, 4-, and 6-core systems, respectively. The
results shown are for a specific load for each thread value; this load value corresponds to the
scenario where the PDR rate under the baseline mode exceeds the 1% threshold for the given
number of threads.

As we can see, the performance improvement is between 4 and 53% for the PDR rate, and
ranges from 1 to 72% for Krcv for the 2-core system. For the 4-core (respectively, 6-core) system,
the improvement range is from 14 to 42% (respectively, 33 to 58%) for the PDR and between
2 and 42% (respectively, 12-45%) for Krcv. In fact, the multi-core enhanced server mode shows
improvements across all core and thread configurations.

Table 7.1: Measured SPS Performance, Baseline Multi-core Server Mode, SPS on 2-Core
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
3000cps 3200cps 3600cps 3800cps 3400cps 3600cps 3000cps 3200cps 2400cps 2600cps

Arrival rate
(packets/sec)

18000 19200 21600 22800 20400 21600 18000 19200 14400 15600

Tsip (µs) 58.05 60.31 74.92 78.22 96.78 104.48 114.64 124.6 204.04 218.29
Krcv (µs) 474.97 684.87 292.39 373.72 319.04 436.66 308.36 412.81 352.09 395.01
Call-setup Drops 2762 4202 2206 3792 2883 3614 2850 4452 2804 3364
Call-setup Mes-
sages

327213 322174 322212 318275 323412 320313 328611 323481 339835 335899

Total Messages 390029 379763 373528 366842 379274 372628 394732 384077 427449 417470
PDR 0.0084 0.0130 0.0053 0.0119 0.0089 0.0113 0.0087 0.0137 0.0083 0.0100

Table 7.2: Measured SPS Performance, Enhanced Multi-core Server Mode, SPS on 2-Core
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
3800cps 4000cps 4400cps 4600cps 3800cps 4000cps 3200cps 3400cps 2600cps 2800cps

Arrival rate
(packets/sec)

22800 24000 26400 27600 22800 24000 19200 20400 15600 16800

Tsip (µs) 54.41 53.55 83.62 85.34 101.28 116.15 125.78 139.26 218.07 262.32
Krcv (µs) 241.28 283.81 469.17 591.99 348.17 569.58 358.59 492.15 398.73 622.95
RCV Errors 3087 8017 3119 4245 3348 5366 3798 5586 3986 6830
Call-setup Drops 2682 7002 2736 3734 2879 4646 3205 4781 3228 5624
Call-setup Mes-
sages

320141 635594 317922 315676 321645 316459 324962 318851 334935 326550

Total Messages 368496 727720 362463 358886 373972 365455 385030 372492 413491 396564
PDR 0.0084 0.011 0.0086 0.0118 0.0089 0.0147 0.0098 0.0149 0.0096 0.0172

82

Table 7.3: Drop rate And Kernel Time (Krcv) Comparison, SPS on 2-Core
Server Threads and CPS Drop Rate comparison Kernel time, Krcv, comparison (µs)

Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

2 Threads, 3200cps 0.0130 0.0060 53.84% 684.87 186.83 72.72%
4 Threads, 3800cps 0.0119 0.0082 31.09% 373.72 253.45 32.18 %
6 Threads, 3600cps 0.0113 0.0058 48.67% 436.66 264.13 39.51 %
8 Threads, 3200cps 0.0137 0.0098 28.47% 412.81 358.59 13.13%
16 Threads, 2600cps 0.0100 0.0096 4% 395.01 388.73 1.6%

Table 7.4: Measured SPS Performance, Baseline Multi-core Server Mode, SPS on 4-Core
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
4000cps 4200cps 4800cps 5000cps 5000cps 5200cps 4200cps 4400cps 3800cps 4000cps

Arrival rate
(packets/sec)

24000 25200 28800 30000 30000 31200 25200 26400 22800 24000

Tsip (µs) 63.25 61.06 86.88 79.61 94.18 94.86 120.77 121.99 177.37 188.18
Krcv (µs) 427.16 518.30 220.13 212.46 165.59 192.17 212.6 221.57 209.9 259.36
RCV Errors 3318 4877 3387 3962 3276 3617 3145 3748 3101 3769
Call-setup Drops 2891 4267 3000 3542 2910 3214 2750 3305 2684 3279
Call-setup Mes-
sages

319102 315952 315704 313908 315739 315209 318907 316519 320946 318663

Total Messages 366171 361079 356395 351104 355482 354681 364633 358892 370774 366263
PDR 0.0091 0.0135 0.0095 0.0112 0.0092 0.0102 0.0086 0.0104 0.0084 0.0103

7.6 Capacity Planning Model

Several studies have investigated aspects of capacity planning in various contexts. A new
methodology was presented in [51] for the efficient analytic solution to account for the bursti-
ness of workload so as to develop a model for capacity planning. In [52], time-series analysis
techniques were used to automatically adjust the number of users for an on-demand streaming
service and the server bandwidth demand; the proposed mechanism was evaluated on a dataset
collected from a video-on-demand service provider. The study in [53] compared the static vs.
dynamic resource allocation of virtual machines (VMs) in corporate clouds to evaluate the en-
ergy efficiency of each mechanism. The authors concluded that dynamic resource allocation and
associated migration overhead may cost more than static VM allocation and does not increase
energy efficiency.

As we described earlier, the PDR metric captures the impact on user experience as a result
of the SPS becoming overloaded. We have obtained experimental measurements of PDR as a
function of the number of threads and the number of CPU cores in the system. We have also
adopted a drop rate of 1% as the point of impact. Based on the data we have collected from
our experiments, we now develop a capacity planning model that cloud providers and service
providers may use to obtain a first-order approximation of the load (in calls per second) that

83

Table 7.5: Measured SPS Performance, Enhanced Multi-core Server Mode, SPS on 4-Core
Model Parame-
ters

Number of Server Threads

2 Threads 4 Threads 6 Threads 8 Threads 16 Threads
4200cps 4400cps 5000cps 5200cps 5400cps 5600cps 4600cps 4800cps 4600cps 4800cps

Arrival rate
(packets/sec)

25200 26400 30000 31200 32400 33600 27600 28800 27600 28800

Tsip (µs) 61.03 60.49 80.74 79.59 89.59 96.5 114.33 109.6 184.16 203.75
Krcv (µs) 386.12 402.52 181.61 221.73 125.61 272.06 193.29 206.95 255.31 395.69
RCV Errors 3339 5001 3411 4642 2365 5580 3156 4215 2328 4916
Call-setup Drops 2918 4400 3038 4124 2098 4987 2789 3745 2044 4342
Call-setup Mes-
sages

318842 315232 315041 313723 316880 312176 316979 314595 318870 313507

Total Messages 364836 358278 353704 353137 357111 349292 358660 354077 363074 354953
PDR 0.0092 0.0139 0.0096 0.013 0.0066 0.0159 0.0088 0.0119 0.0064 0.0138

Table 7.6: Drop rate And Kernel Time (Krcv) Comparison, SPS on 4-Core
Server Threads and CPS Drop Rate comparison Kernel time, Krcv, comparison (µs)

Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

2 Threads, 4200cps 0.0135 0.0092 31.85% 518.3 386.12 25.5%
4 Threads, 5000cps 0.0112 0.0096 14.28% 212.46 181.61 14.5%
6 Threads, 5200cps 0.0102 0.0059 42.16% 192.17 110.16 42.67%
8 Threads, 4400cps 0.0104 0.0057 45.19% 221.57 132.69 40.11%
16 Threads, 4000cps 0.0103 0.0063 38.83% 259.36 252.64 2.6%

can be supported by their SPS servers without exceeding the 1% drop rate threshold.
Referring to Figure 7.1, let p and c be the number of independent processors and CPU cores,

respectively, in the system that are available to run SPS threads. Also, let Tp,c be the number
of threads that provides the best performance (i.e., the highest call arrival rate for which the
PDR under the enhanced multi-core server mode does not exceed 1%) for the given number of
CPU cores and processors. In our experiments, we have found that in systems with only p = 1
processor with c cores, setting T1,c ≈ c + 2 provides a good balance between the conflicting
factors of cache locality, multi-threading overhead and process migration cost, and offers the
best results. However, for p ≥ 2 of processors whereby threads execute on cores that are in
different processors, keeping the number of threads close to the total number of cores provides
the best performance as it avoids the additional migration cost of moving threads from one
processor to another. In this case, we let Tp,c ≈ c, p ≥ 2. Indeed, referring to Tables 7.2, 7.5,
and 7.8, we see that the above formula accurately predicts the number of threads that gives
the best results for the 2-, 4-, and 6-core systems as 4, 6, and 6 threads, respectively (note that
p = 1 for 2- and 4-core systems, while p = 2 for the 6-core system).

Now let C1,1 be the baseline capacity of a single-core, single-thread system; in earlier chapters
we established C1,1 = 1000 cps for our system. Then, the capacity of the multi-core, multi-
threaded system can be estimated as:

84

Table 7.7: Measured SPS Performance, Baseline Multi-core Server Mode, SPS on 6-Core
Model Parame-
ters

Number of Server Threads

4 Threads 6 Threads 8 Threads 16 Threads
5800cps 6000cps 6000cps 6200cps 6000cps 6200cps 3800cps 4000cps

Arrival rate
(packets/sec)

34800 36000 36000 37200 36000 37200 22800 24000

Tsip (µs) 71.78 72.12 83.03 93.07 100.29 110.13 181.02 193.93
Krcv (µs) 161.10 207.9 124.3 277.4 165.35 214.04 187.3 278.03
RCV Errors 2832 4366 2489 6235 3295 5204 2640 4673
Call-setup Drops 2505 3853 2200 5408 2852 4650 2283 4058
Call-setup Mes-
sages

317172 315447 317769 316568 320129 312013 321594 317896

Total Messages 358497 357417 359417 364948 369834 349180 371789 366019
PDR 0.0079 0.012 0.0069 0.017 0.0089 0.0149 0.0071 0.0127

Cp,c = Tp,c × C1,1 (7.1)

Expression (7.1) provides estimates of the CPS capacity of 4000 cps for the 2-core system
and 6000 for the 4- and 6-core systems, a good first-order approximation of the experimental
results.

7.7 Concluding Remarks

We investigated the performance of multi-core, multi-threaded SPS and the impact of Linux
CFS scheduler tuning on SPS in terms of packet drop rates and waiting times. We conducted
extensive experiments over a wide range of offered load and determined the CFS scheduler
settings that result in significant gains in performance. This addressed one of the most crucial
needs in today’s data center, which is to extract performance gains from the existing computing
infrastructures without additional capital expenses. Our methodology is expected to lead to
a better price-performance metrics for the SPS so that costly infrastructure expansion may
be avoided. We also developed a capacity planning model that provides a good first-order
approximation of the total capacity of the SPS system in terms of the call arrival rate that may
be supported without affecting user experience in terms of dropped call.

85

Table 7.8: Measured SPS Performance, Enhanced Multi-core Server Mode, SPS on 6-Core
Model Parame-
ters

Number of Server Threads

4 Threads 6 Threads 8 Threads 16 Threads
6000cps 6200cps 6600cps 6800cps 6400cps 6600cps 4200cps 4400cps

Arrival rate
(packets/sec)

36000 37200 39600 40800 38400 39600 25200 26400

Tsip (µs) 72.25 73.59 91.09 92.26 111.71 112.86 195.16 211.05
Krcv (µs) 182.19 221.16 180.26 215.09 224.81 278.99 245.88 386.42
RCV Errors 2946 4586 2777 4435 3417 5509 3406 5656
Call-setup Drops 2573 3994 2344 3759 2897 4698 2978 4949
Call-setup Mes-
sages

319534 317889 325325 322247 321044 320477 318556 314689

Total Messages 365891 364950 385418 380141 378616 375724 364293 359605
PDR 0.0080 0.013 0.0072 0.0117 0.0090 0.0146 0.00935 0.0157

Table 7.9: Drop rate And Kernel Time (Krcv) Comparison, SPS on 6-Core
Server Threads and CPS Drop Rate comparison Kernel time, Krcv, comparison (µs)

Baseline Mode Enhanced Mode %Lower Baseline Mode Enhanced Mode %Lower

4 Threads, 6000cps 0.012 0.008 33.33 % 207.9 182.19 12.36%
6 Threads, 6200cps 0.017 0.0071 58.23% 277.4 151.4 45.4%
8 Threads, 6200cps 0.0149 0.0086 42.28% 214.04 177.89 16.88 %
16 Threads, 4000cps 0.0127 0.0081 36.22% 278.03 193.68 30.33 %

86

Chapter 8

Summary and Future Work

The primary considerations for service providers and cloud operators when designing their
networks are:(a) service availability to end-users, and (b) the cost of operating the network.
Furthermore, from an economic standpoint, network operators aim to achieve high server uti-
lization in order to maximize the return on their capital investment. For service providers to
deal effectively with the demand growth, they must develop a good understanding of current
usage patterns, be able to forecast and plan upgrade needs, and be able to configure a robust
service capability for new users. Ultimately, all these considerations require accurate estimates
of the performance capability of the SPS that forms the core of the SIP network and a deeper
understanding of various factors that can impact the performance of the SPS.

Hence, we had the following main objectives for our research:

1. Develop tools and techniques that can be easily adapted to carry out similar experimental
studies for other SPS configurations as well as different protocol suites.

2. Conduct a comprehensive set of experiments to understand how individual SIP packets
are processed and measure their processing and waiting times (within the kernel and the
SIP protocol)

3. Develop a guideline for extracting performance gains from existing computing infrastruc-
tures without additional capital expenditures.

4. Develop a parametrized model that can be used to estimate the performance and the
capacity of the SPS over a range of offered loads, and a range of SPS hardware and
software configurations.

In this work we investigated the performance of OpenSIPS [3], an open source SIP proxy
server, and made several contributions, as follows.

87

• Measurement Methodology and tools:

– We have modified the Linux kernel and the OpenSIPS source code to obtain packet-
level measurements for each SIP message, in order to obtain the service and waiting
times within the kernel and the SIP layer. In particular, the kernel modifications
can be used for collecting these measurements for any protocol, while the OpenSIPS
modifications may be easily adapted to other application servers.

– We also enhanced SIPp [4], a SIP traffic generator tool, to generate calls with inter-
arrival times that follow any user-specified distribution. The modified versions of the
kernel, OpenSIPS, and SIPp are made available in the Appendix and also as media
files as part of this thesis.

– We have collected a large set of experimental data to characterize the performance
of the SPS under various call arrival rates and inter-arrival time distributions and
various SPS configurations.

• Single-core, single threaded SPS and Queuing Model: For a single SPS server
thread on a single-core CPU hardware we conducted large set of experiments and modeled
the SIP proxy server as an M/G/1 queue. A key component of the model is a parameter
that captures the Interrupt overhead, i.e., the impact of Interrupts and resulting cache-
misses on socket queue service times.

• Single-core, multi-threaded SPS and Drop-Probability Model: We studied the
performance of multiple SPS server threads on a single-core CPU hardware. We measure
the call rate where the SPS server starts experiencing losses greater than 1% and developed
a prediction model for the drop probability as a function of call rate and the number of
server threads. We also introduced a new parameter to capture the overhead of multiple
server threads, in addition to the interrupt overhead.

• Impact of Process Scheduler: We investigated the impact of the Linux scheduler
settings on the performance of single-core, multi-threaded SIP proxy servers, in terms
of packet service time, waiting time, and packet drop rate (PDR) to capture its effect
on user performance. We identified the key scheduler parameters of the Linux scheduler
and provide concrete guidelines for tuning these parameters that we identify as ’enhanced
server mode’ to achieve significant performance improvement.

• Multi-core, multi-threaded SPS and Capacity Model: We expanded our study to
investigate the impact of the Linux scheduler’s load-balancing algorithm on the perfor-
mance of multi-threaded SPS running on a multi-core processor system. We conducted
extensive experiments and collected data to characterize the packet-level performance of

88

multi-threaded SPS running on multiple cores. Further, we developed practical guide-
lines for tuning various CFS parameters to optimize SPS performance on a multi-core
system; and developed a capacity planning model for estimating the scalability of SPS on
a multi-core system.

8.1 Future Work

Performance evaluation of servers is a broad area of research and in our research we developed
a specific methodology and made several key contributions. Our research ranged from specific
application layer protocol, to tuning underlying OS software to configuring the hardware to a
specific settings. This research can serve as the foundation for this topic. Some of the area’s
where this research can be further expanded are the following:

• Transport Layer: In our study we configured the SPS to use UDP as the transport
layer. In future research, using our tools and measurement methodology the impact of
using TCP as transport protocol for the SPS can studied. Security is one of the main
area of concern for service providers and as such impact of using Transport Layer Security
(TLS) over TCP on SPS can be further studied. TLS is used for encapsulating SIP packets
for providing a secure control path session for call setup and teardown.

• Application Protocols: As we mentioned earlier, our measurement and modeling
methodology is general, and can be applied to characterize the performance of a wide
range of network application protocols. One area of future work is to apply similar
methodology to measure and model the performance of other protocols such as HTTP,
SMTP and XMPP. This will provide data on the variations across different network ap-
plication protocols.

• Hyper-Threading: Intel’s Hyper-Threading technology is enabled on most server class
Intel processors. Hyper-threading allows one physical CPU core to be divided into two
logical cores, allowing number of cores seen by the operating system to be doubled. How-
ever, each logical core’s cache size is reduced by half. This trade-off between cache size
and increased number of processors presents an interesting area of research on the impact
of overall server performance. This trade-off can be studied using our methodology to
quantify the impact in terms of waiting time and total capacity of the system. The Hyper-
threading can be controlled via a setting in the BIOS. In our study Hyper-threading was
disabled.

• CPU tuning: The performance capacity of a given processor itself can have significant
impact on the overall performance of the server. In all our experiments we used the default

89

clock frequencies of the CPU. Another area that can be investigated is the impact of CPU
clock frequency in terms of waiting time and drop rate. The CPU clock frequency can
be set at artificially lower rate, the default rate and then over-clocked. The waiting time
and drop-rate for these variations can be compared to see the performance gain obtained
in terms of CPU clock frequency.

In our research we developed new measurement methodology and tools that enabled us to
measure service time with high accuracy and provide performance metrics in terms of waiting
time and drop-rate. We applied this technique to a SPS for various settings and our research
enhanced the knowledge in several areas related to server performance.

90

REFERENCES

[1] J. Rosenberg et al. SIP: Session Initiation Protocol. RFC 3261, June 2002.

[2] J. Rosenberg. Requirements for management of overload in the session initiation protocol.
RFC 5390, December 2008.

[3] OpenSIPS: Open source implementation of a SIP server. http://www.opensips.org/.

[4] SIPp. http://sipp.sourceforge.net/.

[5] A. Johnston. SIP: Understanding Session Initiation Protocol. Artech House Publishers,
2nd Edition, 2004.

[6] D. Malas et al. Basic telephony SIP end-to-end performance metrics. RFC 6076, January
2011.

[7] V.K. Gurbani, L. Jagadeesan, and V.B. Mendirittam. Characterizing the Session Initiation
Protocol (SIP) network performance and reliability. In Proceedings of ISAS 2005, pages
196–211, April 2005.

[8] S.V. Subramanian and R. Dutta. Comparative study of M/M/1 and M/D/1 models of a
SIP proxy server. In Proceedings of the Australasian Telecommunications Networking and
Application Conference (ATNAC), pages 397–402, December 2008.

[9] S.V. Subramanian and R. Dutta. Measurements and analysis of M/M/1 and M/M/c queue-
ing models of the SIP proxy server. In Proceedings of the 18th International Conference
on Computer Communications and Networks (ICCCN 2009), pages 1–7, August 2009.

[10] S.V. Subramanian and R. Dutta. Performance and scalability of M/M/c based queueing
model of the SIP proxy server - a practical approach. In Proceedings of the Australasian
Telecommunications Networking and Application Conference (ATNAC), pages 1–6, De-
cember 2009.

[11] SIP express router. http://www.iptel.org/ser/.

[12] E. Nahum, J. Tracey, and C.P. Wright. Evaluating sip server performance. Technical
Report Research Report RC24183, IBM T. J. Watson Research Center, February 2007.

[13] K.K. Ram, I.C. Fedeli, A.L. Cox, and S. Rixner. Explaining the impact of network trans-
port protocols on SIP proxy performance. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software, pages 75–84, April 2008.

[14] H. Jiang, A. Iyengar, E. Nahum, W. Segmuller, A. Tantawi, and C.P. Wright. Load
balancing for SIP server clusters. In Proceedings of IEEE INFOCOM, pages 2286–2294,
April 2009.

[15] M. Cortes, J.O. Esteban, and H. Jun. Towards stateless core: Improving SIP proxy scala-
bility. In Proceedings of IEEE Globecom, pages 1–6, December 2006.

91

[16] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans
Kaashoek, Robert Morris, and Nickolai Zeldovich. An analysis of linux scalability to many
cores. In Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation, OSDI’10, pages 1–8, Berkeley, CA, USA, 2010. USENIX Association.

[17] Bryan Veal and Annie Foong. Performance scalability of a multi-core web server. In
Proceedings of the 3rd ACM/IEEE Symposium on Architecture for Networking and Com-
munications Systems, ANCS ’07, pages 57–66, New York, NY, USA, 2007. ACM.

[18] Charles Shen, Erich Nahum, Henning Schulzrinne, and Charles Wright. The impact of tls
on sip server performance. In Principles, Systems and Applications of IP Telecommunica-
tions, IPTComm ’10, pages 59–70, New York, NY, USA, 2010. ACM.

[19] C. Benvenuti. Understanding Linux Network Internals. O’Reilly, 2006.

[20] S.P. Bhattacharya and V. Apte. A measurement study of the Linux TCP/IP stack perfor-
mance and scalability on SMP systems. In Proceedings of the 1st International Conference
on Communication Systems software and middleware (COMSWARE), pages 1–10, 2006.

[21] G. Chuanxiong and Z. Shaoren. Analysis and evaluation of the TCP/IP protocol stack
of LINUX. In Proceedings of the International Conference on Communication Technology
Proceedings (ICCT 2000), 2000.

[22] W. Wu, M. Crawford, and M. Bowden. The performance analysis of Linux networking –
packet receiving. Computer Communications, 30:1044–1057, March 2007.

[23] Red-Hat Linux Performance tuning guide. Linux Packet Path.
https://access.redhat.com/documentation/enUS/Red Hat Enterprise -
Linux/6/htmlsingle/Performance Tuning Guide/index.html.

[24] J.C. Mogul and K. K. Ramakrishnan. Eliminating receive livelock in an interrupt-driven
kernel. ACM Transactions on Computer Systems, 15(3):217–252, August 1997.

[25] V. Anand and B. Hartner. TCP/IP Network Stack Performance in Linux Kernel 2.4 and
2.5. Proc. of Linux Symposium, 2008.

[26] Linux Foundation. NAPI. http://www.linuxfoundation.org/collaborate/workgroups/networkingnapi,.

[27] K. Salah and A. Kahtani. Improving snort performance under linux. IET Communications,
3(12):1883–1895, Dec. 2009.

[28] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Cache behavior of network protocols. In
Proceedings of ACM SIGMETRICS, volume 25, pages 169–180, June 1997.

[29] Fang Liu, Fei Guo, Yan Solihin, Seongbeom Kim, and Abdulaziz Eker. Characterizing and
modeling the behavior of context switch misses. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages 91–
101, New York, NY, USA, 2008. ACM.

92

[30] V. Babka, L. Marek, and P. Tuma. When misses differ: Investigating impact of cache
misses on observed performance. In Parallel and Distributed Systems (ICPADS), 2009
15th International Conference on, pages 112–119, Dec 2009.

[31] F.E. Goncalves. Building Telephony Systems with OpenSIPS 1.6. PACKT publishing,
2004.

[32] Leonard Kleinrock. Theory, Volume 1, Queueing Systems. Wiley-Interscience, 1975.

[33] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3 edition, 2003.

[34] Ben Lee et al. Hantak Kwak. Effects of multithreading on cache performance. IEEE
Transactions on Computer, 48(2):176–184, Feb. 1999.

[35] V Beltran, J Torres, and E Ayguade. Understanding tuning complexity in multithreaded
and hybrid web servers. pages 1–12, April. 2008.

[36] H. Jamjoom, C.T. Chou, and K.G. Shin. Impact of concurrency gains on the analysis and
control of multi-threaded internet services. pages 827–837, March 2004.

[37] Packet Drop Rate. http://www.telecompute.com/voip.asp/.

[38] J. MacGregor Smith. M/G/c/K blocking probablity models and system performance,
2002.

[39] Linux CFS Proces Scheduler. https://www.kernel.org/doc/Documentation/scheduler/sched-
design-CFS.txt.

[40] Jonghun Yoo Sungju Huh and SeongSoo Hong. Improving interactivity via vt-cfs and
framework-assisted task characterization for linux/android smartphones. 2012.

[41] S.Zeaddally K.Salah, A.Manea and Jose M.Alcaraz Calero. On liux starvation of cpu-
bound processes in the presense of network i/o. Computer and Electrical Engineeting, 30,
2011.

[42] Ajoy K. Datta and Rajesh Patel. Cpu scheduling for power/energy management on multi-
core processors using cache misses and context switch data. IEEE Transactions on Parallel
and Distributed Sys, pages 1190–1199, May 2013.

[43] Cisco White Paper. Capacity Management and Optimization of Voice Traf-
fic. https://www.cisco.com/en/US/technologies/tk869/tk769/technologies white pa-
per0900aecd8070329d.html.

[44] CFS Tuning by IBM. http://tinyurl.com/CFSTuning.

[45] C.P. Wright, E.M. Nahum, D. Wood, J.M. Tracey, and E.C. Hu. Sip server performance
on multicore systems. IBM Journal of Research and Development, 54(1):7:1–7:12, January
2010.

93

[46] William Voorsluys, James Broberg, Srikumar Venugopal, and Rajkumar Buyya. Cost of
virtual machine live migration in clouds: A performance evaluation. In Proceedings of the
1st International Conference on Cloud Computing, CloudCom ’09, pages 254–265, Berlin,
Heidelberg, 2009. Springer-Verlag.

[47] David Breitgand, Gilad Kutiel, and Danny Raz. Cost-aware live migration of services
in the cloud. In Proceedings of the 3rd Annual Haifa Experimental Systems Conference,
SYSTOR ’10, New York, NY, USA, 2010. ACM.

[48] Hongbo Jiang, A. Iyengar, E. Nahum, W. Segmuller, A.N. Tantawi, and C.P. Wright.
Design, implementation, and performance of a load balancer for sip server clusters. Net-
working, IEEE/ACM Transactions on, 20(4):1190–1202, Aug 2012.

[49] M. Femminella, F. Giacinti, and G. Reali. Optimal deployment of open source application
servers providing multimedia services. Network, IEEE, 28(5):54–63, September 2014.

[50] Cfs load balancing tuning for sql. http://tinyurl.com/CFSSQLLoad.

[51] G. Casale, Ningfang Mi, and E. Smirni. Model-driven system capacity planning under
workload burstiness. Computers, IEEE Transactions on, 59(1):66–80, Jan 2010.

[52] Di Niu, Zimu Liu, Baochun Li, and Shuqiao Zhao. Demand forecast and performance
prediction in peer-assisted on-demand streaming systems. In INFOCOM, 2011 Proceedings
IEEE, pages 421–425, April 2011.

[53] A. Wolke, M. Bichler, and T. Setzer. Planning vs. dynamic control: Resource allocation
in corporate clouds. Cloud Computing, IEEE Transactions on, PP(99):1–1, 2015.

94

APPENDICES

95

Appendix A

Kernel, OpenSIPS and SIPp

Modification

Here we are attaching the modification introduced to the Linux kernel, OpenSIPS and SIPp.
The attachments are the README and ’diffs’ compared to the base code. The complete files
will be provided as media file.

A.1 Kernel Modification

List of files :

/usr/include/asm_sockios.h

include/asm-x86/sockios.h

include/linux/skbuff.h

include/net/sock.h

net/ipv4/af_inet.c

net/ipv4/udp.c

net/core/sock.c

Description of Changes:

• Defines for SIOCGSTAMPUDP and SIOCGSTAMPRECV are:

/usr/include/asm sockios.h include/asm-x86/sockios.h

• The fields to store the new stamps in:

include/linux/skbuff.h include/net/sock.h

96

• Handle the ioct call from user and provide the timestamp to user space in: net/ipv4/af inet.c

• Set the timestamps after udp stack processing and in recvfrom (currently checks if port
is a SIP port 5060) in: (for other UDP apps, this check can be removed, for TCP similar
change will be needed) net/ipv4/udp.c

• Define sock get timestamp recvfrom() and sock get timestamp udp() that copies the
timestamp to socket structure, called from inet ioctl() in af inet.c

net/core/sock.c

A.1.1 Diffs

include_asm-x86_sockios.h

11a12,13

> #define SIOCGSTAMPRECV 0x890a /* Get stamp (timeval) */

> #define SIOCGSTAMPUDP 0x1234 /* Get stamp (timeval) */

/usr/include/asm_sockios.h

11a12,13

> #define SIOCGSTAMPRECV 0x890a /* Get stamp (timeval) */

> #define SIOCGSTAMPUDP 0x1234 /* Get stamp (timeval) */

include/linux/skbuff.h

257a258,259

> ktime_t tstamp_udp;

> ktime_t tstamp_sockrecv;

include/net/sock.h

97

265a266,269

>

> ktime_t sk_stamp_recvfrom;

> ktime_t sk_stamp_udp;

>

1256a1261

> ktime_t kt_udp = skb->tstamp_udp;

1261a1267,1268

>

> sk->sk_stamp_udp = kt_udp;

1323a1331,1334

> extern int sock_get_timestamp_recvfrom(struct sock *, struct timeval __user *);

> extern int sock_get_timestamp_udp(struct sock *, struct timeval __user *);

>

>

net/ipv4/af_inet.c

810a811,818

> case SIOCGSTAMPRECV:

> err = sock_get_timestamp_recvfrom(sk,

> (struct timeval __user *)arg);

> break;

> case SIOCGSTAMPUDP:

> err = sock_get_timestamp_udp(sk,

> (struct timeval __user *)arg);

> break;

net/ipv4/udp.c

107a108,109

> #include <linux/hrtimer.h>

>

904a907,909

> if (ntohs(udp_hdr(skb)->dest) == 5060) {

> sk->sk_stamp_recvfrom = ktime_get_real();

98

> }

1189a1195,1196

>

>

1191,1193c1198,1204

< if (!sock_owned_by_user(sk))

< ret = udp_queue_rcv_skb(sk, skb);

< else

> if (ntohs(udp_hdr(skb)->dest) == 5060) {

> skb->tstamp_udp = ktime_get_real();

> }

>

> if (!sock_owned_by_user(sk)) {

> ret = udp_queue_rcv_skb(sk, skb);

> } else

1216a1228,1229

>

>

net/core/sock.c

300a301,302

> // skb->tstamp_udp = ktime_get_real();

>

1741a1744,1745

> sk->sk_stamp_udp = ktime_set(-1L, 0);

> sk->sk_stamp_recvfrom = ktime_set(-1L, 0);

1796a1801,1828

> int sock_get_timestamp_recvfrom(struct sock *sk, struct timeval __user *userstamp)

> {

> struct timeval tv;

>

> tv = ktime_to_timeval(sk->sk_stamp_recvfrom);

>

> if (tv.tv_sec == -1) {

> return -ENOENT;

99

> }

>

> return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;

> }

> EXPORT_SYMBOL(sock_get_timestamp_recvfrom);

>

> int sock_get_timestamp_udp(struct sock *sk, struct timeval __user *userstamp)

> {

> struct timeval tv;

>

> tv = ktime_to_timeval(sk->sk_stamp_udp);

>

> if (tv.tv_sec == -1) {

> return -ENOENT;

> }

>

> return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;

> }

> EXPORT_SYMBOL(sock_get_timestamp_udp);

>

A.2 OpenSIPS Modification

Description of the modification performed on OpenSIPS SPS server.

• receive.c: Implement the callid, and cseq number function here for logging with the packet
in receive msg() get current time. after the parsing, make ioctl call with SIOCGSTAMP,
SIOGGSTAMPUDP and SIOCGSTAMPRECV and use these timestamps to get relevant
data. log the data to syslog.

• forward.c, modules/tm/twd.c,modules/tmi t reply.c: Get the current timestamp just
before the packet is sent, get another timestamp after packet is sent. Log the timestamp
and the diff to syslog

receive.c:

100

47a48

> #include <sys/ioctl.h>

63a65

>

82a85,132

> static int

> get_callid(struct sip_msg* msg, str *cid)

> {

> if (msg->callid == NULL) {

> if (parse_headers(msg, HDR_CALLID_F, 0) == -1) {

> LM_ERR("cannot parse Call-ID header\n");

> return 0;

> }

> if (msg->callid == NULL) {

> LM_ERR("missing Call-ID header\n");

> return 0;

> }

> }

>

> *cid = msg->callid->body;

>

> // trim(cid);

>

> return 1;

> }

>

> static int

> get_cseq_number(struct sip_msg *msg, str *cseq, int *method_id)

> {

> if (msg->cseq == NULL) {

> if (parse_headers(msg, HDR_CSEQ_F, 0)==-1) {

> LM_ERR("cannot parse CSeq header\n");

> return 0;

> }

> if (msg->cseq == NULL) {

> LM_ERR("missing CSeq header\n");

> return 0;

101

> }

> }

>

> *cseq = get_cseq(msg)->number;

> *method_id = get_cseq(msg)->method_id;

>

> if (cseq->s==NULL || cseq->len==0) {

> LM_ERR("missing CSeq number\n");

> return 0;

> }

>

> return 1;

> }

>

>

>

88a139,161

> str callid, cseq;

> int method_id;

> struct timeval tim1, tim2, wtime, wtime_recv;

> struct timeval wtime_udp ;

> double time1 =0 ;

> double time2 =0 ;

> double time3 =0 ;

> double time4 =0 ;

> double time5 =0 ;

> double time6 =0 ;

> double time9 =0 ;

> double time10 =0 ;

> double time11 =0 ;

> double time12 =0 ;

> double prev = 0, now = 0, waittime = 0;

> double sock_recvtime =0;

> double udp_recvtime =0;

> int werror = 0;

> int werror_recvfrom = 0;

> int werror_udp = 0;

102

>

> memset(&tim1, 0, sizeof(struct timeval));

> gettimeofday(&tim1, NULL);

114a188,229

> if ((get_callid(msg, &callid)) && (get_cseq_number(msg, &cseq, &method_id))) {

>

> memset(&wtime, 0, sizeof(struct timeval));

> memset(&tim2, 0, sizeof(struct timeval));

>

> memset(&wtime_recv, 0, sizeof(struct timeval));

> memset(&wtime_udp, 0, sizeof(struct timeval));

>

> werror = ioctl(rcv_info->bind_address->socket, SIOCGSTAMP, &wtime);

> werror_recvfrom = ioctl(rcv_info->bind_address->socket, SIOCGSTAMPRECV,

> &wtime_recv);

> werror_udp = ioctl(rcv_info->bind_address->socket, SIOCGSTAMPUDP,

> &wtime_udp);

> time1 = tim1.tv_sec;

> time2 = tim1.tv_usec;

> prev = time1 * 1000000 + time2;

>

> time5 = wtime.tv_sec;

> time6 = wtime.tv_usec;

> waittime = time5 * 1000000 + time6;

>

>

> time9 = wtime_recv.tv_sec;

> time10 = wtime_recv.tv_usec;

> sock_recvtime = time9 * 1000000 + time10;

>

> time11 = wtime_udp.tv_sec;

> time12 = wtime_udp.tv_usec;

> udp_recvtime = time11 * 1000000 + time12;

>

> gettimeofday(&tim2, NULL);

> time3 = tim2.tv_sec;

> time4 = tim2.tv_usec;

103

> now = time3 * 1000000 + time4;

>

> LM_ERR("ramekris src_ip %d parse_time=%lf wait_time=%lf stack_time=%lf sock_recvtime=%lf now=%lld request %d callid=%.*s cseq=%.*s %d ",

> *(rcv_info->src_ip.u.addr32), now - prev, prev - waittime,

> udp_recvtime - waittime, sock_recvtime - udp_recvtime, (long long) now,

> msg->REQ_METHOD , callid.len, callid.s,

> cseq.len, cseq.s, method_id

>);

> }

forward.c:

60a61

> #include <sys/time.h>

376a378,386

> struct timeval tim2;

> struct timeval tim3;

> double time3 =0;

> double time4 =0;

> double now =0;

> double time5 =0;

> double time6 =0;

> double ip_out =0;

>

397a408,410

>

>

>

431a445,449

> gettimeofday(&tim2, NULL);

> time3 = tim2.tv_sec;

> time4 = tim2.tv_usec;

> now = time3 * 1000000 + time4;

>

104

436a455,464

> gettimeofday(&tim3, NULL);

> time5 = tim3.tv_sec;

> time6 = tim3.tv_usec;

> ip_out = time5 * 1000000 + time6;

>

> LM_ERR("ramekris now=%lld ip_out=%lld request %d callid=%.*s cseq=%.*s",

> (long long) now, (long long) (ip_out - now),

> msg->REQ_METHOD, msg->callid->body.len, msg->callid->body.s,

> msg->cseq->body.len, msg->cseq->body.s);

>

451a480

>

619,620c648,652

< LM_DBG("reply forwarded to %.*s:%d\n", msg->via2->host.len,

< msg->via2->host.s, (unsigned short) msg->via2->port);

> LM_ERR("reply forwarded to %.*s:%d method %d callid %.*s\n",

> msg->via2->host.len,

> msg->via2->host.s, (unsigned short) msg->via2->port,

> msg->REQ_METHOD , msg->callid->body.len, msg->callid->body.s

>);

t_fwd.c:

62a63

> #include <sys/time.h>

605a607,614

> struct timeval tim2;

> struct timeval tim3;

> double time3 =0;

> double time4 =0;

> double now =0;

105

> double time5 =0;

> double time6 =0;

> double ip_out =0;

699a709,712

> gettimeofday(&tim2, NULL);

> time3 = tim2.tv_sec;

> time4 = tim2.tv_usec;

> now = time3 * 1000000 + time4;

700a714,730

>

> gettimeofday(&tim3, NULL);

> time5 = tim3.tv_sec;

> time6 = tim3.tv_usec;

> ip_out = time5 * 1000000 + time6;

>

>

> LM_ERR("ramekris now=%lld ip_out=%lld request %d callid=%.*s cseq=%.*s",

> (long long) now, (long long)

> (ip_out - now),

> p_msg->REQ_METHOD,

> p_msg->callid->body.len,

> p_msg->callid->body.s,

> p_msg->cseq->body.len,

> p_msg->cseq->body.s);

>

>

t_reply.c

80a81

> #include <sys/time.h>

92a94

> #include <sys/time.h>

289a292,300

> struct timeval tim2;

106

> double time3 =0;

> double time4 =0;

> double now =0;

> struct timeval tim3;

> double time5 =0;

> double time6 =0;

> double ip_out =0;

>

306a318,322

> gettimeofday(&tim2, NULL);

> time3 = tim2.tv_sec;

> time4 = tim2.tv_usec;

> now = time3 * 1000000 + time4;

>

307a324,334

>

> gettimeofday(&tim3, NULL);

> time5 = tim3.tv_sec;

> time6 = tim3.tv_usec;

> ip_out = time5 * 1000000 + time6;

>

> LM_ERR("ramekris now=%lld ip_out=%lld request %d callid=%.*s cseq=%.*s",

> (long long) now, (long long) (ip_out - now),

> rpl->REQ_METHOD, rpl->callid->body.len, rpl->callid->body.s,

> rpl->cseq->body.len, rpl->cseq->body.s);

>

1110a1138,1146

> struct timeval tim2;

> double time3 =0;

> double time4 =0;

> double now =0;

> struct timeval tim3;

> double time5 =0;

> double time6 =0;

> double ip_out =0;

>

1239a1276,1281

107

>

> gettimeofday(&tim2, NULL);

> time3 = tim2.tv_sec;

> time4 = tim2.tv_usec;

> now = time3 * 1000000 + time4;

>

1240a1283,1294

>

> gettimeofday(&tim3, NULL);

> time5 = tim3.tv_sec;

> time6 = tim3.tv_usec;

> ip_out = time5 * 1000000 + time6;

>

> LM_ERR("ramekris now=%lld ip_out=%lld request %d callid=%.*s cseq=%.*s",

> (long long) now, (long long) (ip_out - now),

> p_msg->REQ_METHOD, p_msg->callid->body.len,

> p_msg->callid->body.s,

> p_msg->cseq->body.len, p_msg->cseq->body.s);

>

A.3 SIPp Modification

The modifications introduced to SIPp (version 3.1 SIPp code base), file modified ’sipp.cpp’

1. Add the Command-Line change for ′iat file′

2. Read the inter-arrivals and delay the next INVITE for that period

3. Make the clock more granular 200uS from 1 mS

66a67

>

116c117,118

< #define SIPP_OPTION_INDEX_FILE 33

> #define SIPP_OPTION_IAT_FILE 33

> #define SIPP_OPTION_INDEX_FILE 34

108

159a162

> {"iat_file", "Input file specifying the Inter-arrival time for next Outgoing Invite message\n" , SIPP_OPTION_IAT_FILE, NULL, 1},

348c351,352

< return getmicroseconds() / 1000LL;

> //return getmicroseconds() / 1000LL;

> return getmicroseconds() /200LL;

3277a3282,3290

>

> /*

> * Variables used for reading IAT file and

> * using the read data for next call time

> */

> unsigned long iat_msec;

> unsigned int next_call_time;

> FILE *f_iat;

>

3280d3292

<

3288a3301,3306

>

> f_iat = fopen(iat_file, "r");

> if (f_iat == NULL) {

> ERROR("\n Unable to Open IAT file - it is required!");

> }

>

3347,3350c3365,3366

< while((calls_to_open--) &&

< (!open_calls_allowed || current_calls < open_calls_allowed) &&

< (total_calls < stop_after))

< {

> while(total_calls < stop_after) //Modified to support IAT

> {

3357a3374,3377

> /*

> * Check Added to Support IAT file

109

> */

> if (getmilliseconds() >= next_call_time) {

3383c3403,3407

< call_ptr -> run();

> call_ptr -> run();

> fscanf(f_iat, " %u", &iat_msec);

> next_call_time = getmilliseconds() + iat_msec;

>

> } //End of check block for IAT

3390a3415,3417

>

>

>

3392c3419,3420

< if (new_time > (first_open_tick + (timer_resolution < 2 ? 1 : (timer_resolution / 2)))) {

>

> if (new_time > first_open_tick) { //check modified for IAT

3398c3426

< set_rate(rate);

> //set_rate(rate); //rate not set for IAT

3562c3590

< set_rate(rate);

> // set_rate(rate); // rate not set for IAT

3565a3594

> fclose(f_iat);

4186d4214

<

4364a4393,4403

>

> case SIPP_OPTION_IAT_FILE:

> REQUIRE_ARG();

> CHECK_PASS();

> /* By default, the first file is used for IP address input. */

110

> if (!iat_file) {

> iat_file = argv[argi];

> //ERROR("File name found for -iat_file: %s", argv[argi]);

> }

> break;

>

111

Appendix B

Call Arrival Rate and Number of

Interrupts

As the call arrival rate increases, the rate of packets arrving at the SPS increases in proportion.
The increased packet rate causes an increase in the number of interrupts. In Chapter 4 we
introduced the parameter α to capture the impact of increased interrupt on the waiting time.
The outputs below shows the average number of interrupts per second seen by the kernel for
various Calls per second.

• 1000 cps

Average: CPU intr/s

Average: all 11288.53

Average: 0 8849.51

Average: 1 0.00

Average: 2 0.00

Average: 3 0.00

• 1500 cps

Average: CPU intr/s

Average: all 19340.27

Average: 0 11657.27

Average: 1 0.00

Average: 2 0.00

Average: 3 0.00

112

• 2000 cps

Average: CPU intr/s

Average: all 22908.33

Average: 0 13221.17

Average: 1 0.00

Average: 2 0.00

Average: 3 0.00

• 2500 cps

Average: CPU intr/s

Average: all 26946.75

Average: 0 14514.25

Average: 1 0.00

Average: 2 0.00

Average: 3 0.00

113

