
ABSTRACT

RUDRA DUTTA. Virtual Topology Design for Traffic Grooming in WDM Networks. (Un-
der the direction of Dr. George N. Rouskas.)

Wavelength division multiplexing (WDM) in optical fiber networks is widely viewed

as the technology with the potential to satisfy the ever-increasing bandwidth needs of net-

work users effectively and on a sustained basis. In WDM networks, nodes are equipped

with optical cross-connects (OXCs), devices which can optically switch a signal on any

given wavelength from any input port to any output port. This makes it possible to es-

tablish lightpaths between any pair of network nodes. A lightpath is a clear channel in

which the signal remains in optical form throughout the physical path between the two

end nodes. The set of lightpaths established over the fiber links defines a virtual topology.

Consequently, the problem arises of designing virtual topologies to optimize a performance

measure of interest for a set of traffic demands.

With the deployment of commercial WDM systems, it has become apparent that

the cost of network components, especially line terminating equipment (LTE) is the domi-

nant cost in building optical networks, and is a more meaningful metric to optimize than,

say, the number of wavelengths. Furthermore, since the data rates at which each individual

wavelength operates continue to increase (to OC-192 and beyond), it becomes clear that a

number of independent traffic components must be multiplexed in order to efficiently utilize

the wavelength capacity. These observations give rise to the concept of traffic grooming,

which refers to the techniques used to combine lower speed components onto available wave-

lengths in order to meet network design goals such as cost minimization. Traffic grooming

is a hard problem in general which remains computationally intractable even for simple

networks.

We consider the problem of traffic grooming in ring, star and tree topologies.

We provide theoretical results regarding achievability bounds for these networks as well as

practical frameworks to obtain increasingly better feasible solutions with the expenditure

of more computational power.
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Chapter 1

Introduction

In the past few years, there has been growing interest in wide area “All Optical

Networks” with wavelength division multiplexing (WDM), using wavelength routing. These

are considered to be candidates for future wide area backbone networks. The ability to tap

into attractive properties of optics, including the very high bandwidth potential of optical

fiber, makes these networks attractive for backbone transport networks. At the same time,

the WDM technique can be used to bridge the mismatch between user and fiber equipment.

A fuller discussion of wide area optical networks can be found in [17, 23, 28, 18].

Virtual topology design over a WDM WAN is intended to combine the best features

of optics and electronics. This type of architecture has been called “almost-all-optical”

because traffic is carried from source to destination without electronic switching as far as

possible, but some electronic switching still needs to be performed. The architecture uses

clear channels between nodes, called lightpaths, so named because they traverse several

physical links but information traveling on a lightpath is carried optically from end-to-

end. Usually a lightpath is implemented by choosing a path of physical links and reserving

a particular wavelength on each of these links for the lightpath. This is known as the

wavelength continuity constraint, indicating that a lightpath consists of a single wavelength

over a sequence of physical links. This constraint can be relaxed by assuming the availability

of wavelength converters at intermediate nodes. However, this involves not only expensive

equipment but further complications relating to the tuning delay of converters and the issue

of converter placement, and logical topologies which do not make use of them are of interest.

We include the wavelength continuity constraint in our definition of the problem. Because

of limitations on the number of wavelengths that can be used, and hardware constraints at
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the network nodes, it is not possible to set up a clear channel between every pair of source

and destination nodes. The particular set of lightpaths we decide to establish on a physical

network comprises the virtual (otherwise called the logical) topology.

The tradeoff involved here is between bandwidth and electronic processing over-

head. Forming lightpaths locks up bandwidth in the corresponding links on the assigned

wavelength, but the information traveling on the lightpath does not have to undergo electro-

optic conversion at the intermediate nodes. A good virtual topology trades some of the

ample bandwidth inherent in optical fiber to obtain a solution that is the best of both

worlds.

The use of WDM allows the utilization of the large bandwidth inherent in optical

fiber. In some cases, the fiber has been used as a simple alternative to copper wire. This

means that only a single wavelength is used to carry information over a fiber and the fiber

then acts as a point-to-point link of a given bandwidth. With WDM, each wavelength

can utilize bandwidths comparable to that which the entire fiber was providing. With the

further use of wavelength routing or virtual topologies, the bandwidth available to traffic

does not increase (in fact bandwidth utilization is typically less, so bandwidth effectively

decreases), but electronic processing can be drastically reduced, with concommitant decrease

in equipment cost and probability of loss. Figure 1.1 shows a simple physical network in

which lightpaths, indicated by dotted lines, have been set up to allow communication by

a clear channel between nodes which are not directly connected by a fiber link. Two

lighpaths can share a physical link by using different wavelengths. An attractive feature of

the process of stepping up from point-to-point fibers to WDM and then virtual topologies is

that it can be undertaken in an incremental manner with current networks [25]. The virtual

topology provides a certain measure of independence from the physical topology, because

different virtual topologies can be set up on the same physical topology, though the set of

all virtual topologies that can be set up is constrained by the physical topology. In setting

up a virtual topology, the usual considerations are delay, throughput, equipment cost and

reconfigurability.

Of late, two concerns have clearly emerged in the treatment of optical networks

using WDM and wavelength routing. First, it has been recognized that the the cost of

network components, specifically electro-optic equipment and SONET add/drop multiplex-

ers (ADMs), or more generally Line Terminating Equipment (LTE), is a more meaningful

metric for the network or topology rather than the number of wavelengths. Second, earlier
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Routing
Node

Lightpath

Access Node

Figure 1.1: A WDM network. The routing nodes are interconnected by point-to-point fiber

links and may have access nodes connected to them. The dotted lines show lightpaths.

studies of wavelength routed networks had assumed that individual traffic demands are

comparable to the wavelength bandwidth, and this assumption was reflected in the design

of logical topologies [9, 24, 27, 4, 11]. However, it is now evident that the independent traf-

fic streams that wavelength routed networks will carry are likely to have small bandwidth

requirements compared even to the bandwidth available in a single wavelength of a WDM

system. This assumption is further supported by the fact that the number of different

traffic components in a network is likely to be much larger than the number of wavelengths

available. These two issues give rise to the concept of traffic grooming, which refers to

techniques used to combine lower speed traffic components onto available wavelengths in

order to meet network design goals such as cost minimization.

1.1 Focus

The virtual topology design encompasses only the transport network and not the access

network. As we remarked above, the advantages of optical technology lie in switching

and transmission, not processing or storage. Thus, electronic switching and transmission

(or similar protocols over a physical fiber medium) are more suitable in access networks

where the bandwidth requirements are low and processing requirements (as in routing or

consolidating) are relatively high. In this thesis, we focus on wide-area or backbone optical

networks, also called “long-haul” networks. In such cases, it is more appropriate to design

topologies for wavelength reuse.
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A similar virtual topology design problem exists for broadcast optical networks,

used as LANs. In these networks, there is a single broadcast medium which is accessed

by all nodes in the network. Lightpaths are set up by assigning a wavelength to a source-

destination pair which then acts as a clear channel between them. Traffic is sent from one

node to another using a lightpath if one is available, or a sequence of lightpaths if a direct

lightpath is not available. For this reason, these networks are called multihop networks.

These networks are distinct from the wavelength routed WANs that are the subject of this

thesis. One of the reasons the virtual topology problem is different in that case is that

with a broadcast medium, the physical topology does not constrain the virtual topologies

that can be implemented. Another reason is that since each lightpath in the network needs

a unique wavelength, there is no possibility of wavelength reuse as with WDM WANs. A

survey of these problems for multihop networks can be found in [20].

For backbone networks, it is more approprite to consider the traffic demands made

on the network in aggregate. This is equivalent to formulating the virtual topology problem

in terms of static traffic demands. That is, the bandwidth demand from one node to another

or the average traffic flow from one node to another is considered to be known when designing

the virtual topology. This is distinct from topology design problems for networks in which

we are interested in designing topologies and algorithms that will allow us to estimate and

obtain optimum blocking probabilities under dynamic traffic demands, that is, calls which

are established and terminated on demand [10]. This is not to say that traffic demands are

assumed never to change in an actual network. However, such changes are not visible to a

single instance of our static virtual topology design probelm. If the traffic pattern changes

significantly, it would act as the input data for a new virtual topology design, and the old

virtual topology would be reconfigured to the new virtual topology. Consequently, each

virtual topology is designed only on the basis of a single average traffic demand pattern.

Of course, it is possible that such a traffic pattern is itself made up of a combination of

different estimates of network traffic, but this is not part of the virtual topology problem.

Another way to make this distinction is to state that the virtual topologies we consider are

sets of static lightpaths, not slowly varying lightpaths as would be the case if lightpaths

were set up and torn down in response to user demands.
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1.2 Contribution

In this thesis, traffic grooming is considered for ring, star and tree networks. Our motivation

in studying these topologies is two-fold. First, despite their simplicity, these topologies are

important in their own right. For instance, star networks arise naturally in the intercon-

nection of a number of local or metropolitan area networks with a wide area backbone [14],

while passive optical networks (PONs) [13, 1] and cable TV networks (which are increas-

ingly used for high-speed Internet access) are based on a tree topology. Because of the

widespread use of SONET/SDH networks, in the short term many optical networks are

likely to be built as rings, or rings of rings. As a result, the traffic grooming techniques

and algorithms we develop can be applied directly to these network environments. Second,

ring, star and tree structures can be thought of as the building blocks for creating more

general mesh topologies. Consequently, it is possible to tackle the traffic grooming problem

in mesh networks by systematically decomposing the latter into a combination of stars,

trees, and rings and paths (the study of ring networks in this thesis includes a study of path

networks). While such a decomposition is outside the scope of this thesis, our work in this

area is ongoing and the study of ring, star and tree networks can provide valuable insight

into the more general problem.

Since the traffic grooming problem remains NP-hard even for these simple net-

works, our focus is on developing bounds as well as heuristics. We present a new framework

for computing bounds for the problem of optimal traffic grooming in physical ring topolo-

gies. The framework is based on the idea of decomposing the ring into path segments

consisting of successively larger numbers of nodes. We show that wavelength assignment

can be performed in linear time for the path network. Thus the path segments solution

requires an amount of time which is orders of magnitude less than that required for solving

a ring of the same number of nodes. The path segments are solved independently, and the

individual results are appropriately combined to obtain bounds on the optimal value of the

objective function. In this manner, we obtain a series of bounds, both lower and upper, in

which each bound is at least as strong as the previous one. The first few bounds in the se-

quence require trivial computational effort. Although subsequent bounds take successively

larger computational efforts to determine, even several later bounds require significantly

less computational effort than the full solution does, depending on the problem instance.

The problem we consider is very general, as we do not impose any constraints on the traffic
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patterns. Furthermore, the upper bounds we derive are based on actual feasible topologies,

so our algorithm for obtaining the upper bounds is a heuristic for the general problem of

traffic grooming. Finally, although we illustrate our approach using a specific formulation

of the problem, it is straightforward to modify it to apply to a wide range of problem vari-

ants with different objective functions and/or constraints. We take a similar approach for

star and tree networks. First, we prove that in WDM networks with a star physical topol-

ogy, wavelength assignment can be performed in polynomial time for any feasible logical

topology (i.e., any logical topology in which the number of lightpaths crossing a link in a

given direction does not exceed the number of wavelengths available on that link). Next, we

obtain a sequence of strong lower and upper bounds on the objective function which permit

a tradeoff between the quality of the final solution and the computational requirements.

We then show that the sequence of upper bounds yields an approximation algorithm for

the traffic grooming problem. We utilize these results in our analysis of the tree network.

We show that wavelength assignment is once again straightforward for tree networks. We

present two different ways of combining the star network solutions to obtain upper bounds

and feasible solutions for the tree network, as well as a lower bound. Since only partial so-

lutions for star networks may be practically achievable, we present a framework to combine

these partial solutions to obtain increasingly better bounds and heuristic solutions for the

tree network.

1.3 Structure of the Thesis

In the next chapter, the context for current literature in the field (as well as this thesis) is

presented. Chapter 3 surveys some recent literature in this research area. Chapters 4, 5, 6

present the bounds and heuristics developed for networks with physical topologies of rings,

stars and trees respectively. Chapter 7 discusses future work and concludes the thesis.
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Chapter 2

Optical Networking Context

2.1 Architecture and Notations

2.1.1 Network Components

Wavelength Division Multiplexing (WDM) refers to the use of distinct wavelengths over an

optical fiber to implement separate channels. An optical fiber can carry several channels in

parallel, each on a particular wavelength. The number of wavelengths that each fiber can

carry simultaneously is limited by the physical characteristics of the fiber and the state of

optical technology used to combine these wavelengths onto the fiber and isolate them off

the fiber. This limit was of the order of 10 in past years and is currently of the order of

100 and growing. WDM has been seen as not only an obvious multiplexing method for the

optical medium, but a technique vital to utilising the huge bandwidth of the fiber medium,

because it can be used to correct the mismatch between the bandwidth available in the fiber

and the bandwidth requirement of end users [24].

A Wavelength Add/Drop Multiplexer (WADM) is an optical system that is used

to modify the flow of traffic through a fiber at a routing node [16]. A WADM passes

traffic on certain wavlengths through without interruption or optoelectronic conversions

(conversions to electronic form and back to optical form), while traffic on other wavelengths

is terminated optically, that is, converted to electronic form (the wavelength is dropped).

Some wavelengths can also be added, that is, traffic is injected at this node using those

wavelengths.

An Optical Cross-Connect (OXC) is a more powerful system than a WADM. It
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Figure 2.1: An Optical Cross Connect

takes in a signal at each of the wavelengths at an input port, and routes it to a particular

output port, independent of the other wavelengths [10, 27]. An OXC with N input and N

output ports capable of handling W wavelengths can be thought of as W independent N×N

switches. These switches have to be preceded by a wavelength demultiplexer and followed by

a wavelength multiplexer to implement an OXC, as shown in Figure 2.1. Thus an OXC can

cross-connect the different wavelengths from the input to the output, where the connection

pattern of each wavelength is independent of the others. For this reason, it is sometimes

also called a wavelength cross-connect. This description highlights the routing function of

the OXC. Of course, some of the wavelengths on some of the input ports may be carrying

signals which are destined for an access node directly connected to the OXC in question.

In this case, that signal has to be extracted from the optical medium at this OXC. To do

this, it is necessary to terminate that particular wavelength, convert the data into electronic

form, and deliver it to a higher layer. There may also be signals on some wavelengths which

need to be forwarded to other nodes on a different wavelength. The wavelength has to be

terminated in this case as well, the signal extracted to electronic form, converted back to

optical form in the other wavelength and injected into an output port. To highlight the fact

that the OXC does both forwarding entirely in the optical domain (optical switching) as well

as forwarding via conversion to electronic form and back to optical (more like conventional

routing), they are sometimes also calledWavelength Routing Switches (WRS) [24, 25]. They

have also been called simply Wavelength Routers.

A Wavelength Converter is an optical device that can be used in an optical router,
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to convert the wavelength a channel is being carried on [26]. Without wavelength conversion,

an incoming signal from port pi on, say, the wavelength λ1 can be optically switched (without

intermediate optoelectronic conversions) to any port pj , but only on the wavelength λ1.

With wavelength conversion capability, this signal could be could be optically switched to

any port pj on any wavelength λk. That is, wavelength conversion allows a clear optical

channel to be carried on different wavelengths on different physical links. Different levels

of wavelength conversion capability are possible. Figure 2.2 illustrates the differences for a

single input and single output port situation; the case for multiple ports is more complicated

but similar. Full wavelength conversion capability implies that any input wavelength may

be converted to any other wavelength. Limited wavelength conversion denotes that each

input wavelength may be converted to any of a specific set of wavelengths, which is not the

set of all wavelengths for at least one input wavelength. A special case of this gives us fixed

wavelength conversion, where each input wavelength is converted to exactly one wavelength.

If each wavelength is “converted” only to itself, then we have no conversion. If a node has

limited or full wavelength conversion capability, then the conversion to be effected can be

configured as part of the virtual topology design. The advantage of wavelength conversion is

that the virtual topology that can be implemented is less constrained, since the wavelength

continuity constraint is removed. Thus wavelength use is more efficient. However, the use

of converters increases cost, as well as the complexity of the problem. The cost increase

can be minimized by using limited conversion rather than full conversion, and assuming

a small number of converters rather than conversion capability in every node. But these

assumptions introduce the problems of specifying the nature of the limited conversion and
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placement of converters in the network, which greatly increase the difficulty of topology

design.

The virtual topology designed and implemented on a physical network not only

determines the performance of the network in terms of metrics like throughput, but also

carries an associated cost, determined by how many and what network components are used

to implement that virtual topology. Attempting to model the network cost is a related field

to the virtual topology design problem. The primary goal of such studies is to provide an

idea of the comparative impacts of various system components on system cost, and hence

provide guidelines for economically efficient virtual topology design, rather than actually

determine the cost of implementing a virtual topology. Comparatively few studies have

been undertaken in this area (see [3] for such a study). Guidelines that result from such

studies may relate to choosing some initial parameters for the virtual topology, as suggested

in [3], or may be integrated into the optimization procedure to find the virtual topology.

The latter approach is taken in [7], where a heuristic is designed for the topology design

problem with a goal of maximizing wavelength utilization in the Wavelength Routers, which

would certainly have an impact on the cost of the virtual topology.

2.1.2 Notation

In this section, we define some terminology and notation and introduce some concepts which

will be used in the following sections, and which are common to most formulations of the

virtual topology problem.

Physical Topology A graph Gp(V,Ep) in which each node in the network is a vertex,

and each fiber optic link between two nodes is an arc. Each fiber link is also called

a physical link, or sometimes just a link. The graph is usually assumed to be

undirected, because each fiber link is assumed to be bidirectional. There is a weight

associated with each of the arcs which is usually the fiber distance or propagation

delay over the corresponding fiber.

Lightpath A lightpath, as we remarked above, is a clear optical channel between two

nodes. That is, traffic on a lightpath does not get converted into electronic forms at

any intermediate nodes, but remains and is routed as an optical signal throughout.

With the usual wavelength continuity constraint, the lightpath becomes a sequence of
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physical links forming a path from source to detination, along with a single wavelength

which is set aside on each of these links for this lightpath.

Virtual Topology A graph Gv(V,Ev) in which the set of nodes is the same as that of the

physical topology graph, and each lightpath is an arc. It is also called the logical

topology, and the lightpaths are also called logical links. Usually this graph is

assumed to be directed, since a lightpath may exist from node A to node B while there

is none from node B to node A. This graph may also be weighted, with the lightpath

distance of each lightpath (see below) acting as the weight of the corresponding arc.

Link Indicator Whether a physical link exists in the physical topology from a node l to

another node m, denoted by plm which is 1 if such a link exists in the physical topology

and 0 if not.

Lightpath Counter The number of lightpaths that exist from a node i to another node j,

denoted by bij . In many formulations, it is assumed that such a lightpath, if it exists,

is unique, that is a maximum of one lightpath can exist from node i to node j. In

such case, bij is called the lightpath indicator, and is restricted to one of two values, 1

if such a lightpath exists in the virtual topology and 0 if not.

Lightpath Distance The propagation delay over a lightpath, denoted by dij for the light-

path from node i to node j. It is the sum of the propagation delays over the physical

links which make up the lightpath in the virtual topology.

Physical Degree The physical degree of a node is the number of physical links that di-

rectly connect that node to other nodes.

Virtual Degree The virtual (or logical) degree of a node is the number of lightpaths

connecting that node to other nodes. The number of lightpaths originating and ter-

minating at a node may be different, and we denote them by virtual out-degree and

virtual in-degree respectively. We speak simply of the virtual degree if these are as-

sumed to be equal, as they often are. If this degree is assumed to be same for all nodes

of the network, then this is called the virtual degree of the network. The virtual degree

is determined in part by the physical degree, but is also affected by the consideration

of what volume of electronic switching can be done at a node [27], and affects the cost
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of the topology, since it determines to some extent the number of LTE’s that would

be needed.

Physical Hops The number of physical links that make up a lightpath is called the phys-

ical hop length of that lightpath.

Logical Hops The number of lightpaths a given traffic packet has to traverse, in order to

reach from source to destination node over a particular virtual topology, is called the

virtual or logical hop length of the path from that source to that destination in that

virtual topology.

Traffic Matrix A matrix which specifies the average traffic between every pair of nodes

in the physical topology. If there are N nodes in the network, the traffic matrix is an

N ×N matrix T = [t(sd)], where t(sd) is the average traffic from node s to node d in

some suitable units, such as arriving packets per second, or a quantized bandwidth

requirement. This matrix provides in numerical terms the nature of how the total

network traffic is distributed between different source-destination node pairs, that is,

the pattern of the network traffic.

Virtual Traffic Load When a virtual topology is established on a physical topology, the

traffic from each source node to destination node must be routed over some lightpath.

The aggregate traffic resulting over a lightpath is the load offered to that logical link.

If a lightpath exists from node i to node j, the load offered to that lightpath is denoted

by tij . The component of this load due to traffic from source node s to destination

node d is denoted by t
(sd)
ij . The maximum of the logical loads is called the congestion,

and denoted by tmax = maxi,j tij .

Physical Loading of a Link This term is used to indicate, for each physical link, the

number of lightpaths that are required to traverse that link in the virtual topology.

2.1.3 Architecture

In this section we characterize in more detail the WDM wavelength routed network we have

been describing above, and which Figure 1.1 illustrates. The network consists of several

routing nodes which are connected to each other by point-to-point optical fibers. The nodes

and their physical connections are specified by the physical topology. Each of the routing
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nodes may have access nodes connected to it. For the purposes of virtual topology design,

however, only the aggregate traffic between routing nodes is important. Thus we can assume

that each routing node has exactly one access node connected to it. We concentrate on the

routing nodes and refer to them simply as nodes. The traffic matrix specifies the aggregate

traffic from every node to each of the other nodes.

The fiber links connecting the nodes each support a specific number of wavelengths,

say W . Each of the nodes is equipped with a WR capable of routing these W wavelengths.

In general, no wavelength conversion capability is assumed to exist at any of the nodes.

Every physical link carries at most one channel (lightpath) in each direction on each of the

W wavelengths.

Lightpaths are set up on the physical topology, creating the virtual topology. Each

arc of the virtual topology graph is a lightpath. A lightpath is set up by configuring the

source and destination nodes to originate and terminate a specific wavelength, then choosing

a path from the source to destination node and configuring the WR at each intermediate

node on that path to forward that wavelength optically to the next node. Thus at the

intermediate nodes the traffic is not converted to electronic form, and the lightpath acts

as a single-hop path from source to destination, or a pipe, with no queuing delay. Two

lightpaths that share a physical link must be assigned different wavelengths. The total

number of wavelengths used on a certain link must be W or less. The logical in-degree

and out-degree are usually equal for each node. The logical degree of every node is usually

assumed to be the same and this is called the logical degree of the network.

Traffic is routed from each source to destination node over a single lightpath if

one exists for that source and destination, or a sequence of more than one ligthpaths or

logical hops. It is usually assumed to simplify the optimization problem that traffic for

a single source-destination pair may be bifurcated over different virtual routes. The aim

of creating the virtual topology is to ensure that more traffic can be carried with fewer

optoelectronic conversions along the way. The extreme case of this would be if a lightpath

could be set up from each source to each destination; however, the number of wavelengths

available is usually too limited to allow this. At the other extreme is a virtual topology

which is identical to the physical topology, so that optoelectronic conversion occurs at

every intermediate node. With reasonable and achievable virtual topologies, the number

of optoelectronic conversions should not be very large. Together with the fact that in high

speed wide area networks the propagation delay dominates over the queueing delay (as long
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as links are not loaded close to capacity), queueing delays are typically neglected in the

problem formulation [27].

The goal of the virtual topology design process is usually to optimize network

performance, such as minimize network congestion or minimize average packet delay. In

the optimization, usually the number of wavelengths available is taken as a constraint.

If both minimizations are desired, then one of them is usually expressed as a constraint

by relating it to a known physical network characteristic. In general both are important

because too little emphasis placed on the congestion aspect usually results in a virtual

topology very similar to the physical topology, and too little emphasis placed on the delay

aspect can result in virtual topologies which bear little resemblance to the physical topology,

with convoluted lightpaths that increase delay [27].

2.2 Network Performance Optimization

In this section we provide an exact formulation of the virtual topology design problem using

the packet traffic approach, and discuss specific techniques and heuristics, used to solve it.

2.2.1 Formulation

The exact formulation of the virtual topology problem is usually given as a Mixed Integer

Linear Program. The formulation provided here follows closely that in [19], and also those in

[27, 24, 25]. The symbols and terminology are as defined in Section 2.1.2. New terminology

is defined as necessary.

Additional Definitions

Let H = [hij ] be the allowed physical hop matrix, where hij denotes the maximum

number of physical hops a lightpath from node i to node j is allowed to take. This hop

matrix is one of the ways to characterize the bounds which lightpaths in the virtual topology

must be within. Let c
(k)
ij be the lightpath wavelength indicator, i.e. c

(k)
ij is 1 if a

lightpath from node i to node j uses the wavelength k, 0 otherwise. Let c
(k)
ij (l,m) be the

link-lightpath wavelength indicator, to indicate whether the lightpath from node i to

node j uses the wavelength k and passes throught the physical link from node l to node m.

Let ∆l denote the logical degree of the virtual topology.
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Objective

Minimize the congestion of the network, that is,

min tmax (2.1)

Subject to:

Degree Constraints

∑
j

bij ≤ ∆l, ∀i (2.2)

∑
j

bji ≤ ∆l, ∀i (2.3)

Traffic Constraints

tij ≤ tmax, ∀(i, j) (2.4)

tij =
∑
sd

t
(sd)
ij , ∀(i, j) (2.5)

t
(sd)
ij ≤ bijt

(sd), ∀(i, j), (s, d) (2.6)

∑
j

t
(sd)
ij −

∑
j

t
(sd)
ji =




t(sd), s = i

−t(sd), d = i

0, s �= i, d �= i



∀(s, d), i (2.7)

Wavelength Constraints

W−1∑
k=0

c
(k)
ij = bij , ∀(i, j) (2.8)

c
(k)
ij (l,m) ≤ c

(k)
ij , ∀(i, j), (l,m), k (2.9)∑

ij

c
(k)
ij (l,m) ≤ 1, ∀(l,m), k (2.10)

W−1∑
k=0

∑
l

c
(k)
ij (l,m)plm −

W−1∑
k=0

∑
l

c
(k)
ij (m, l)pml =




bij , m = j

−bij , m = i

0, m �= i,m �= j



∀(i, j),m

(2.11)
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Hop Constraints ∑
lm

c
(k)
ij (l,m) ≤ hij , ∀(i, j), k (2.12)

Discussion

The degree constraints (2.2) and (2.3) constrain the virtual topology to a given logical de-

gree. Among the traffic constraints, (2.4) defines the network congestion. Expression (2.5)

asserts that the total traffic on a lightpath is the sum of the traffic components on that light-

path due to all the different pairs of source and destination nodes. Constraint (2.6) captures

the fact that the component of traffic on a lightpath due to a particular source-destination

pair can be present only if the lightpath exists in the virtual topology, and cannot be more

than the total traffic for that source-destination pair. Constraint (2.7) is an expression of

the conservation of traffic flow at lightpath endpoints. All but one of the remaining con-

straints relate to the allocation of wavelengths to lightpaths. Constraint (2.8) ensures that

a lightpath, if it exists in the virtual topology, has a unique wavelength out of the available

ones. Constraint (2.9) enforces the consistency of the lightpath wavelength indicators and

the link-lightpath wavelength indicators, and expression (2.10) enforces that a wavelength

can be used at most once in every physical link, avoiding a wavelength clash. Expression

(2.11) asserts the conservation of every wavelength at every physical link endpoint for each

lightpath. The last remaining constraint, expression (2.12), enforces the bounds on the

number of physical hops each lightpath is allowed.

The parameters, or inputs, to the formulation are the traffic matrix T , the hop

bound matrix H, the number of wavelengths supported by a fiber W , the desired logical

degree ∆l, and the details of the physical topology graph. The variables, whose values at

optimum are the “output” of the MILP, relate to the virtual topology graph, wavelength

assignment in the virtual topology, and the traffic routing over the virtual topology. The

lightpath indicators bij provide the virtual topology graph. The lightpath wavelength and

link-lightpath wavelength indicators provide the wavelength assignments to the lightpaths

in the virtual topology and also the physical links used to implement each lightpath. Lastly,

the virtual traffic load variables tij and t
(sd)
ij provide the routing of the traffic between each

source and destination on the virtual topology.

Formulations of this problem are possible that address only some and not all of

these aspects. In Section 3.2 we discuss such approaches. Even when all these aspects
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are addressed, or the same aspect is addressed, different formulations of the problem are

possible.

The above formulation assumes that lightpath indicators are used instead of light-

path counters. If lightpath counters are used, this formulation can be used unchanged if

it is assumed that all lightpaths from a given source node i to a given destination j must

traverse the same sequence of physical links; however, this is not a very reasonable assump-

tion in general. The formulation can be enhanced to allow more general approaches using

lightpath counters.

The above formulation allows the magnitude of the traffic components t(sd) to be

quite general. However, in practical situations there is likely to be a base unit of bandwidth.

All traffic requirements would be expressed as integral multiples of this bandwidth. The

bandwidth of one wavelength channel is likely to be a large multiple of this base bandwidth,

which we denote by C. (For example the base rate may be OC-3 and the wavelength channel

may have a bandwidth of OC-48, leading to C = 16.) This quantity has also been called

the “granularity” in literature. This would be introduced into a formulation as above by

the introduction of constraints such as the following:

Granularity Constraints

t(sd) ∈ {0, 1, 2, · · ·} (2.13)

t
(sd)
ij ∈ {0, 1, 2, · · ·} (2.14)

The above also enforces that traffic be bifurcated only in whole multiples of the

base rate, which is likely to be a reasonably needed constraint.

The exact formulation in [24] seeks to minimize the average message delay. For this

purpose fiber distance metrics are introduced as parameters in the formulation. Through-

put parameters are not considered, and the traffic parameters are used only to weigh the

delay variables. Multiple and single logical hop paths are explicitly distinguished in the

formulation. Unlike the above formulation, in [24], as well as [19, 25], the given logical

in-degree and out-degree of each node (the number of receivers and transmitters available

at that node) is considered to be a separate parameter, not a single parameter for the net-

work. The formulation in [24] does not address the wavelength assignment issue, and there

is no constraint corresponding to the physical hop constraint on the lightpaths, as given by

(2.12) in the above formulation.
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In [27], the bound on the number of wavelengths a single fiber can carry is ignored

in the exact formulation. The wavelength assignment problem is also not addressed. The

physical hop bound is not used to constrain the virtual topology, instead there is an av-

erage delay constraint on each source-destination pair. The maximum propagation delay

between any source-destination pair in the physical topology is denoted by d(max) and in-

troduced in the formulation, together with a tuning factor α which determines how tightly

the virtual topology should be constrained by d(max). The average packet delay for each

source-destination pair is constrained to be less than or equal to the product of α and d(max).

Thus the delay performance metric is addressed using a constraint such as the following:

Delay Constraints ∑
ij

t
(sd)
ij ≤ t(sd)αd(max), ∀s, d (2.15)

The throughput performance metric is addressed by the goal of the optimization,

which is to minimize congestion as in the formulation provided above.

The exact formulation in [25] follows the exact formulation in [24], but adds some

elements. The capacity of each lighpath C is introduced as a parameter and it is used

to refine the delay minimization goal and to set up an alternative optimization goal of

maximizing the offered load to the network. The second goal is non-linear in nature. The

wavelength assignment problem is made part of the exact formulation.

In [3], the formulation is similar to the one we have provided above, but a simplifi-

cation is introduced as part of the formulation. The goal of the optimization is to minimize

the average physical hop lengths of the lightpaths in the virtual topology. The wavelength

continuity constraint is not included. The lightpath distance is constrained to be bounded

by the fiber distance of the shortest path in the physical topology between the endpoints

of that lightpath, together with a factor α introduced as a parameter. The simplification

consists of pruning the search space based on the fiber length of paths: lightpaths are only

allowed to use physical paths which are among the K shortest such paths between any pair

of nodes, K being a parameter in the problem formulation.

Some common features of the exact formulations from various studies in the lit-

erature are also shared by the formulation provided above. Bifurcation of traffic for a

source-destination pair over different virtual paths is allowed. In view of the predominance

of propagation delay over queueing delay in high speed wide area networks, the queueing
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delay is neglected in almost every formulation of the problem. A special parameter β is

introduced in [3] to bound the congestion to values at which it is reasonable to neglect

queueing delays. The formulation provided above also has a specific feature not shared

by all the others in that it does not allow for more than one lightpath from one node to

another.

As we discuss in Section 2.2.2, this formulation gets quickly intractable with size.

One of the ways it can be made more tractable is to aggregate traffic from a given source node

to all destination nodes, that is, not formulate the problem in terms of the traffic components

between each source-destination pair t(sd), but traffic components for each source node t(s)

only. This results in a more tractable formulation because the number of variables and

constraints is lower, otherwise the formulation is similar. Of course, the solution to the

problem so formulated does not provide a complete solution to the full problem in terms

of routing traffic over the virtual topology designed, moreover there may not be a feasible

solution to the original problem corresponding to a solution for the aggregate problem.

However, the aggregate problem, being less constrained than the original one, helps set

achievability bounds on the full problem, such as lower bounds on the achievable congestion

[27, 19]. Bounds which can be calculated with significantly lower computational costs than

solving the full problem are useful in evaluating heuristics employed to obtain good solutions

to the full problem, as discussed in Section 2.2.2.

Usually, such an aggregate formulation is used after relaxing the MILP above

into an LP, that is allowing the lightpath, lightpath wavelength and link-lightpath wave-

length indicator variables to take up values from the continuous interval [0, 1] rather than

constraining them to be binary variables. The relaxation, like the aggregate formulation,

results in a less constrained formulation, and hence is suitable for deriving achievability

bounds. When the MILP is relaxed, an extra “cutting plane” constraint is introduced

[27, 19], to ensure that the definition of congestion remains consistent with the MILP for-

mulation when traffic components may be weighted with the “fractional lightpaths” that

the relaxation introduces.

2.2.2 Heuristics

An exact formulation of this problem such as the one given in Section 2.2.1 quickly grows

intractable with increasing size of the network. In fact, this problem and some of its
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subproblems are known to be NP-hard [9, 24, 19, 2]. Thus for networks of moderately large

sizes it is not practical to attempt to solve this problem exactly. Heuristics to obtain good

approximations are needed. In the rest of this section we discuss heuristic approaches to

the virtual topology design problem or to related subproblems.

Subproblems

The full virtual topology design problem can be approximately decomposed into four sub-

problems. The decomposition is approximate or inexact in the sense that solving the sub-

problems in sequence and combining the solutions may not result in the optimal solution

for the fully integrated problem, or some later subproblem may have no solution given the

solution obtained for an earlier subproblem, so no solution to the original problem may be

obtained. Although this decomposition follows [25], it is also consistent with the decompo-

sitions of [27, 24, 19, 2]. The subproblems are as follows.

1. Topology Subproblem: Determine the virtual topology to be imposed on the phys-

ical topology, that is determine the lightpaths in terms of their source and destination

nodes.

2. Lightpath Routing Subproblem: Determine the physical links which each light-

path consists of, that is route the lightpaths over the physical topology.

3. Wavelength Assignment Subproblem: Determine the wavelength each lightpath

uses, that is assign a wavelength to each lightpath in the virtual topology so that

wavelength restrictions are obeyed for each physical link.

4. Grooming (or Traffic Routing) Subproblem: Route packet traffic between

source and destination nodes over the virtual topology obtained.

In terms of the formulation provided in Section 2.2.1, the topology subproblem

consists of determining the values of the lightpath indicator variables bij , the lightpath

routing subproblem consists of determining the values of the variables c
(k)
ij (l,m), the wave-

length assignment suproblem consists of determining the values of the variables c
(k)
ij , and the

traffic routing subproblem consists of determining the values of the variables t
(sd)
ij . It may be

noted that the above description of the lightpath routing subproblem is approximate since

fixing the values of the variables c
(k)
ij (l,m) would entail specifying wavelengths for each
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lightpath, that is solving the wavelength assignment subproblem as well. The lightpath

routing subproblem actually consists only of determining values of link-lightpath indicators

(not included in the above formulation) and does not refer to wavelength assignment in any

way.

The traffic routing subproblem may appear to be not essential to the virtual topol-

ogy design issue. Indeed, once the virtual topology is fixed by solving the first three sub-

problems, the traffic routing subproblem is the known one of routing traffic over a given

topology, for which many algorithms exist. This is true when we are concerned only with

specific optical characteristics of the topology, such as the number of wavelengths needed.

However, as we have mentioned above, it is now recognized that grooming of traffic is of

primary importance since it affects the cost of the network as well as performance (by re-

ducing the necessity of electronic processing and hence loss). Thus traffic grooming is not

only integral to the problem but central to it.

As we remarked above, the decomposition into subproblems is inexact and hence

attempting to solve the subproblems and combine the solutions may result in a suboptimal

solution or even no solution to the full problem. Exact solution of all the subproblems is

also not possible since some of the subproblems are NP-hard as well. Heuristics must be

employed to obtain good solutions to the subproblems. This also leads to the possibility

of obtaining no solution to the full problem. Some constraints are usually relaxed so that

at least some solution is obtained from the heuristics, which can be then tested for near

optimality using achievability bounds as we discuss in the following section. One of the

constraints which is commonly relaxed is that of the maximum number of wavelengths that

can be carried by a fiber. Of course, if after the solution is obtained we find that some of

the relaxed constraints have been violated (for example, if we have assigned a link to carry

more lightpaths than the maximum number of wavelengths it can carry, or the total number

of unique wavelengths used in the virtual topology is more than the maximum number of

wavelengths a fiber can carry) then we would need to abandon that solution and search for

a different one, possibly after modifying the heuristics used.

The virtual topology problem can be decomposed into different subproblems than

the ones we list above. Such different decompositions are used in many of the studies

we survey. However, we consider the above decomposition to be reasonable and fairly

consistent with any others proposed in the literature we survey, and we shall refer only to

this decomposition while discussing such studies.
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Chapter 3

Previous Work

Since the virtual topology problem is recognized to be intractable in general, lit-

erature has been largely concerned with obtaining good bounds and heuristic solutions to

the problem in various contexts. In this chapter, we review and summarize some of the

recent literature in this field, as well as some literature that address issues related to virtual

topology problems.

3.1 Bounds

To evaluate an approximate solution produced by a heuristic, we would like to know how

close the obtained solution is to the optimal one. Since we are using the heuristic because

of the very reason that the optimal solution cannot be obtained in the first place, we must

resort to comparing the solution obtained with known bounds on the optimal solutions

derived from theoretical considerations. These are the achievability bounds we have men-

tioned before (so called because they are bounds on what can be achieved in principle) and

we discuss them below.

3.1.1 Lower Bounds on Congestion

The goal of virtual topology design is often to minimize network congestion, as in our

formulation in Section 2.2.1. A lower bound on the congestion obtained from theoretical

considerations allows us to know that an even smaller value of congestion cannot be achieved

by any solution, and helps us evaluate the solution produced by some heuristic. We discuss

several lower bounds on congestion below. Our discussion follows closely that of [27], and
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also that of [19], as well as literature on virtual topology problems in broadcast LAN

scenarios as referred to in [27, 20]. More details can be found in these sources.

Physical topology independent bound: This bound utilizes the fact that the load on

each logical link would be the same, and this would be the congestion, if the total traffic in

the network were equally distributed among all the lightpaths. The value of this congestion

would then act as a lower bound on any virtual topology that could be designed for the

network under the given traffic conditions. This bound takes into account the total traffic

demand, but not the distribution of total traffic among the different source-destination pairs

(that is, the traffic pattern). As such, it assumes that traffic for any source-destination pair

can be assigned to any lightpath in the virtual topology, and hence, it ignores the physical

topology.

Let H be the traffic weighted average number of logical hops in the virtual topology.

If El denotes the number of lightpaths in the virtual topology and r denotes the total arrival

rate of packets to the network, then it is easy to see that

tmax ≥ rH /El (3.1)

Thus, setting a lower bound on H results in a lower bound on the congestion. This is

done from the following consideration. For N nodes in the network and a logical degree

∆l, the maximum number of source-destination node pairs that can be connected by only a

single hop is N∆l. Similarly the maximum number of source-destination pairs that can be

connected by only two hops is N∆2
l , by only three hops is N∆3

l , and so on. For the traffic

weighted number of hops to be minimum, source-destination pairs with the largest amount

of traffic must be connected by a small number of logical hops. Accordingly, assume that

the N∆l source-destination pairs with the largest traffic between them are each connected

by a single hop path (that is there is a lightpath between each source and the corresponding

destination). The N∆2
l source-destination pairs with the next largest traffic should be

connected by two hop paths, and so on. The traffic weighted average number of logical

hops in this case is a lower bound, in other words

H ≥
∑
k

kSk (3.2)

where Sk is the sum of the traffic fractions (with respect to total network traffic r) which

comprise the k-th block when the traffic fractions are arranged in descending order of
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magnitude, and the i-th block is made up of N∆i
l successive elements in that list.

Minimum flow tree bound: This bound is derived from similar considerations as above,

but on the basis of each source node rather than the network as a whole. In the above we

assumed that the N∆l source-destination pairs are all connected by single hop paths, and

so on, but this is impossible if the ∆l + 1 top traffic components all have the same source

node, for example. In this bound, we take into account the restriction that each source node

can only source ∆l lightpaths altogether, in addition to the considerations above. Thus this

is a stronger bound.

The calculation of this bound is done by assuming that for each source, the source

is connected by one logical hop to the ∆l destinations to which it has the largest amounts

of traffic, by two hops to the ∆2
l destinations to which it has the next largest amounts

of traffic, and so on. We then form the sum of these traffic components weighted by the

appropriate number of hops, as in the above scheme, and obtain the bound for the traffic

weighted average number of logical hops H, similar to (3.2). The bound on congestion is

then obtained from (3.1), as before. We omit the derivation and exact expression of this

bound, which can be found in [27].

Iterative bound: This type of bound is developed in [27, 19] by aggregating and then

relaxing the MILP formulation and solving it as mentioned in Section 2.2.1. The additional

constraint imposed on the relaxed aggregate formulation is that the congestion be higher

than a lower bound on the congestion known a priori, such as the minimum flow tree

bound discussed above. To improve the tightness of the bound, the value obtained for the

congestion by solving the relaxed aggregate LP can be used as a new value of the a priori

bound and the LP solved again to yield a further improved bound on the congestion. This

iterative process can be carried out repeatedly to improve the tightness of the bound. It is

remarked in [27] that about 25 iterations result in a bound that is improved very little by

further iterations.

Independent topologies bound: This bound is proposed in [4] as another method of

taking into account the physical topology in computing a bound on the congestion. This

bound is also based on relaxing the MILP formulation to obtain a linear problem. First a

logical feasible virtual topology is obtained that maximizes the one-hop traffic. In the next
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stage, the traffic carried by this topology is eliminated from the total traffic and another

virtual topology is designed which carries the maximum possible two-hop traffic out of the

residual traffic. This procedure is repeated for successive number of hops until all the traffic

is routed. The value of congestion can now be extracted from the several topologies. If

this procedure were carried out exactly, it would be an exact solution and would not be

more easily computable than a solution to the problem itself. However, the several logical

topologies are not allowed to constrain each other, so that the topologies for more than

one hop are not necessarily feasible. Thus the topologies are mutually independent. The

authors of [4] note that this bound is only a little tighter than the flow tree based bound if

traffic is uniform, but becomes much tighter for highly nonuniform traffic.

3.1.2 Lower Bounds on the Number of Wavelengths

It is usually necessary in virtual topology design to complete the design using as few distinct

wavelengths as possible, since in practice there is a limit on the number of wavelengths a

fiber can carry. This limit may be known and introduced in the exact formulation as in the

formulation of Section 2.2.1, but such a limit is often not included in heuristic approaches.

A lower bound on the number of wavelengths needed for a particular problem is then useful

in evaluating the solution provided by the heuristic. Also, in the presence of practical

limitations, an easy to compute lower bound on the number of wavelengths can provide a

quick negative answer to the question of whether a virtual topology design problem is at

all feasible or not. Two such bounds, following [27], are discussed below.

Physical topology degree bound: This bound is derived from the simple consideration

that each node in the virtual topology must source a number of lightpaths equal to the logical

degree of the virtual topology ∆l. Considering the node with the minimum physical degree

δp in the physical topology, there must be a sufficient number of wavelengths to allow ∆l

lightpaths to be realized over δp physical links, that is the number of wavelengths required

is bound from below by W ≥ 
∆l/δp�.

Physical topology links bound: Another consideration is that each physical link is

traversed in general by multiple lightpaths in each direction. If we count each physical link

once every time a lightpath traverses it, then the total will be greater than the number of

directed physical links in the topology (we multiply the number of links in the undirected
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physical topology by two to get this latter number). This is possible because different

lightpaths on the same physical link (in the same direction) use different wavelengths. Thus

the average number of lightpaths traversing a physical link can be obtained by dividing the

total number of physical links traversed by all the lightpaths by the number of directed

physical links in the topology, and this is a bound on the number of wavelengths required.

For the number of physical links traversed by all the lightpaths, we use the following

argument. For each source node, reaching every other node requires a minimum number of

physical hops, using the shortest physical path. Let us list the N − 1 possible destination

nodes for a source node ni in increasing order of the number of physical hops needed to

reach that destination from ni, and then assume that the ∆l lightpaths sourced from ni

traverse the ∆l physical paths which lead to the first ∆l destinations on that list. We

assume this is true for each source node ni. This assumption results in a lower bound on

the total number of physical links traversed, and hence on the number of wavelengths. We

omit the derivation and exact expression of this bound, which can be found in [27].

Another bound, which is derived with respect to the lightpath routing and wave-

length assignment subproblems and not the complete problem, may nevertheless be useful

in some cases. This is the NWC bound [9] (for Non-Wavelength Continuous) which states

that given a physical topology and a set of lightpaths to be established, the number of

wavelengths needed to establish a virtual topology obeying the wavelength continuity con-

straint is not less than the number needed to establish the same virtual topology without

the wavelength continuity constraint. In general, it is not clear how tight this bound is, and

it is not easily computable. However, it can be shown that for networks with topologies

which are acyclic this bound is not only tight but exact [9]. Thus it could be useful if after

finding a solution to the lightpath routing subproblem we find an acyclic topology and want

a bound to evaluate a heuristic solution to the wavelength assignment subproblem.

Bounds on the number of wavelengths required can also be found under specific

assumptions regarding the solution to the different subproblems. For example, in [10] it is

demonstrated that if the virtual topology being implemented is decided to be a hypercube

(as part of solving the topology subproblem) then for a specific proposed algorithm to map

the hypercube nodes to physical network nodes (solving the rest of the topology subprob-

lem), the number of wavelengths required cannot be less than 2
3n, where n is the number of

nodes in the physical network. A similar result for a torus embedding, as well as a general

result in terms of the physical topology and the topology being embedded is also provided
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in [10].

3.2 Heuristic Approaches and Techniques

In the design of heuristics or approximate solutions to the virtual topology problem, em-

phasis is placed on different aspects of the problems by different authors. In the majority of

the literature, heuristics are designed for only some and not all the subproblems. Some as-

sumption regarding the nature of the virtual topology to be implemented is often a starting

point for heuristic methods. Below we discuss heuristics found in the literature surveyed

under three different categories. In the first, it is assumed that the virtual topology to be

implemented is a well-known regular topology, such as a hypercube or a shufflenet. In the

second, the lightpaths of the virtual topology are assumed to be already known in terms of

sources and destinations for each instance of the problem, and the lightpath routing and

wavelength assignment subproblems are addressed. No particular assumption is made re-

garding the virtual topology in the last category. Some of the interest in the study of regular

topologies in the context of virtual topologies for WANs came from the assumption that to

some extent the virtual topology could dictate the physical topology, that is, fibers could

be laid to supplement a physical topology before implementing a virtual topology. As more

and more fiber has been laid in practice and has become part of single wavelength optical

networks utilizing the fibers as point-to-point links, the concern has shifted to extracting

more utilization out of these fibers using WDM and virtual topologies, rather than having

to lay more fibers. Thus studies relating to arbitrary physical topologies have attracted

more interest in recent times.

3.2.1 Regular Topologies

Regular topologies such as hypercubes or shufflenets have several advantages as virtual

topologies. They are well understood, and results regarding bounds and averages are com-

paratively easier to derive. Routing of traffic on a regular topology is usually also simpler

and results are available in the literature, so the traffic routing subproblem usually becomes

trivial. Also, regular topologies possess inherent load balancing characteristics.

Once a regular topology is decided upon as the one to be implemented as a virtual

topology, it remains to decide which physical node will realize each given node in the regular

topology (this will be referred to as the node mapping subproblem) and which sequence of
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physical links between two physical nodes will be used to realize each given edge in the

regular topology, that is, lightpath (this will be called the path mapping subproblem). This

procedure is also called embedding a regular topology in the physical topology. In terms

of the subproblems introduced in Section 2.2.2, the choice of the regular topology together

with the node mapping problem make up the virtual topology subproblem, and the path

mapping problem corresponds to the lightpath routing subproblem. Obviously, the number

of nodes in the regular topology may not be chosen with complete freedom, instead it must

obey the constraints of the regular topology. For example, the number of nodes in a torus

must obey n = m2 for some m. In case the physical topology has a few nodes less than the

regular topology, this can usually be circumvented by adding fictitious nodes to it before

embedding [24]. If a few more nodes are present in the physical topology, then some of the

ones with less traffic may be combined for the purpose of embedding, though this introduces

further approximations to the virtual topology solutions. In general, the node mapping and

path mapping problems leave out of consideration the traffic patterns in the network, and

utilize metrics such as fiber distances and wavelength reuse to route lightpaths over the

physical topology. Thus there is a tacit assumption of reasonably uniform traffic pattern in

the use of regular topologies as virtual topologies.

The mappings must also be free of wavelength clashes and must obey any pre-

defined limit on the number of wavelengths. These problems are themselves known or

conjectured to be NP-hard [10, 24], hence heuristics are needed for them. Below we discuss

some approaches taken in the literature with regular topologies as candidates for virtual

topologies.

Embedding via strings: In [10], the authors propose a two-phase heuristic for perform-

ing the mappings. In the first phase, an “equivalent” string is obtained for the physical

network. In the second phase, the selected regular topology is embedded into the string.

The elements listed in the string represent the nodes of the physical topology. Each edge

connecting two successive elements of the string corresponds to a path between the corre-

sponding nodes. The string also has the property that any two paths that are edge disjoint

in the string are also edge disjoint in the physical topology, so that path mapping and

wavelength allocation on the string can be translated in a straightforward manner to the

physical topology.

Three methods of obtaining such a string representation from a physical topology
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are discussed in [10]. The first two involve finding a Hamiltonian path and an Eulerian

path in the physical topology. However, there is no guarantee that such paths can be found

in an arbitrary physical topology, and hence these methods are not completely general,

though they have other attractive characteristics. The third method involves finding a

spanning tree in the physical topology, which only requires that the topology graph be

connected. Algorithms for embedding a torus topology and a hypercube topology into these

string representations are then presented. A general result regarding a lower bound on the

number of wavelengths needed to embed an arbitrary topology Ge on another topology Gg

is then derived in terms of characteristics of Ge and Gg, and this result is used to derive

lower bounds for the torus and the hypercube cases. The resulting virtual topologies are

compared in terms of logical degree of the network, average number of logical hops, and

the number of wavelengths needed. The hypercube embedding is seen to have the better

(i.e., smaller) number of logical hops, but it requires a larger network degree and more

wavelengths. It appears that algorithms can be similarly developed for embedding other

regular topologies in the string representations.

The approximation in this approach is introduced at the time of obtaining a string

representation. The string obtained is constrained by only the criteria mentioned above,

and this does not guarantee that the particular string we obtain for a given instance will lead

us to an optimal or near-optimal virtual topology. However, given the regular topology to

be embedded and the embedding function, it is shown in [10] that the particular algorithms

presented are near-optimal. In this approach, the traffic pattern in the network is ignored.

Comparison of topologies: Three different regular topologies are compared for their

suitability as virtual topologies in [22]. The comparison is based on the number of logical

hops between nodes and the number of wavelengths required. No traffic pattern considera-

tions are included. In fact this comparison does not refer to a physical network at all. The

regular topologies are looked upon only as candidates for embedding into physical topolo-

gies, and it is assumed that the required node mapping and path mapping may be carried

out. In this sense this study is from the perspective of the first part of the virtual topology

subproblem, in that the virtual topology is proposed but node mappings are not performed.

However, this study addresses the issue of wavelength routing given the virtual topology,

which provides the path mapping.

The three topologies compared are the K-grid topology (an extension to K di-
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mensions of the Manhattan Street topology), the twin shuffle topology (a shufflenet with

twice the connectivity, that is two shufflenets in parallel), and a modified de Bruijn graph

(de Bruijn graphs with connectivity multiplied by a factor). The basis of comparison is the

degree of the network. However, this is expressed as the number of bundles of fiber leaving

each node, where each bundle carries fibers to exactly one other node but may contain more

than one fiber. Thus, the allowed number of wavelengths along a connection between two

nodes would be larger with this scheme than with a single fiber scheme. This difference

is expressed by a difference between the number of wavelengths required to implement the

virtual topology and a normalized version of the same number.

The authors point out that the de Bruijn graph topology has the advantage of a

constant number of hops between nodes, and this number is smaller than either the average

or maximum number of hops for the other two topologies. The number of wavelengths

required appear to be similar for the three topologies.

Simulated Annealing: In [24], heuristics are developed for the node mapping problem

for regular topologies (specifically, hypercubes), and the solution is carried through to path

mapping as well as wavelength assignment. Thus, the node mapping part of the virtual

topology subproblem, the lightpath routing, and the lightpath wavelength assignment sub-

problems are addressed. Moreover, the nature of the physical topology is taken into account

to some extent. The goal of each heuristic is to minimize overall average message delay in

the virtual topology, which involves the fiber distances and the traffic pattern in the net-

work. Two heuristic approaches are developed, one based on a greedy algorithm and the

other on simulated annealing.

In both approaches, fictitious nodes are created in the physical topology if it has

fewer nodes than the chosen hypercube. The greedy approach starts with a reasonable

initial node mapping obtained by mapping the nodes with the highest physical degrees

first and attempting to map nodes so that logical nodes that are neighbors in the logical

topology are mapped to physical nodes that are neighbors in the physical topology as far

as possible. This node mapping is then refined by traversing the list of nodes in reverse

order of initial embedding and swapping each with a different node if this would reduce

the average message delay. Once the final node mapping is obtained, the path mapping

is obtained by shortest path routing on the physical topology to realize each edge of the

hypercube, that is, lightpath. A remark is made regarding the traffic routing subproblem
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that shortest path routing on the hypercube virtual topology has been assumed.

To assign wavelengths, physical links are ordered in decreasing order of number

of lightpaths passing through them. For each physical link, each lightpath is assigned a

different wavelength if it has not already been assigned one through some other physical

link. Wavelength conflicts are avoided while assigning wavelengths. This algorithm is

heuristic in nature and in particular is not guaranteed to find a solution if the number of

wavelengths is bounded, even if a solution exists. With unbounded number of wavelengths,

this algorithm does not impose an obvious non-trivial bound on the number of wavelengths

it uses, and such a bound is not discussed in [24].

In the simulated annealing heuristic, the node mapping process starts with an

initial random mapping. The perturbation is provided by swapping the mapping of two

nodes in the virtual topology. The acceptance criterion is the average message delay in the

network; the new mapping is always accepted if the resulting delay decreases, and is accepted

if the delay increases with a probability that goes down as the simulated temperature falls.

Once the mapping “freezes” the path mapping and wavelength assignment are carried out

as for the greedy algorithm.

In [25], a very similar simulated annealing heuristic is presented, with the difference

that the traffic routing subproblem is assumed to be solved using the flow deviation method.

The flow deviation method is a good heuristic alternative to an exactly optimal linear

programming routing flow solution. The literature in which it was developed is referred to

in [25] and also [20]. This method starts from an initial flow assignment, and iteratively

deviates flows over alternate paths, avoiding links carrying the largest amounts of traffic.

3.2.2 Pre-specified Topologies

In this section we discuss studies which focus on the lightpath routing subproblem, and

possibly the wavelength assignment and traffic routing subproblems. In other words, the

virtual topology in terms of a list of lightpaths with their source and destination nodes

is supposed to be given for each instance of the problem. The traffic pattern in the net-

work, as we have seen, can be used to determine what lightpaths to set up. The traffic

pattern can also be useful in routing the lightpaths and the traffic, because the network

performance metrics which are the goals of the virtual topology design are related to traffic,

such as message delay or congestion. Thus the traffic pattern may be utilized even in an
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approach focused on the lightpath routing subproblem only. However, in some approaches,

it is considered that the traffic pattern has been properly taken into consideration while

solving the virtual topology subproblem which resulted in the given set of lightpaths to be

implemented, and thus the lightpaths take care of the traffic characteristics of the network.

The lighpath routing and wavelength assignment subproblems can then be viewed as hav-

ing goals defined purely in terms of the lightpaths, such as minimization of the number of

distinct wavelengths needed.

SLE: In [9], not only the source and destination, but also the routing of the lightpaths is

assumed to be given, and the problem is seen to be the assignment of wavelengths to these

lightpaths. That is, the lightpath wavelength assignment subproblem is addressed, and it is

called the Static Lighpath Establishment (SLE) problem. SLE as posed includes a bound

on the number of wavelengths that can be used to establish the lightpahts. It is proved that

SLE as stated is equivalent to the n-graph-colorability problem, and hence NP-complete.

A heuristic algorithm to assign wavelengths to a given set of lighpaths with the

aim of using as few wavelengths as possible is presented. This algorithm is based on a

greedy allocation heuristic which iteratively assigns a wavelength to as many edge disjoint

lightpaths as possible before going on to the next wavelength. Longer lightpaths are allo-

cated a new wavelength earlier. The algorithm terminates when all lightpaths have been

assigned a wavelength. There is no obvious non-trivial bound to the number of wavelengths

needed by this algorithm, and none is discussed in [9]. A modified version of this algorithm

that allocates wavelengths only until a given maximum number of wavelengths have been

allocated, and then stops, is also given. The use of such an algorithm is in deriving values of

blocking probabilities than can be compared with values encountered in the dynamic case.

The problem of dynamic lightpath establishment, in which lightpaths are set up

and torn down on demand, and the goal is to provide the minimum blocking probability

seen by new lightpath demands, is also discussed in [9]. However, this is outside the scope

or this survey.

Wavelength utilization: The study presented in [7] assumes that the virtual topology

subproblem has been solved and the set of lightpaths to be established is available in terms

of the source and destination nodes of the lightpaths. Thus the lightpath routing and

wavelength assignment subproblems are addressed, and an integrated approach is taken for



33

these two subproblems. It is assumed that traffic related objectives have been addressed

while obtaining the set of lightpaths to establish.

The objective for the routing and wavelength assignment problem presented is to

maximize wavelength utilization at the switches. This objective is presented in terms of

the utilization of the Wavelength Routers (WR) at each network node. It is assumed that

enough distinct wavelengths are available so that every WR can switch a lightpath from each

of its input ports to each of its output ports. If each node has a physical degree of N , then

at least N wavelengths are needed to switch these N2 lightpaths at the WR. However, with

certain wavelength allocations to some of the lightpaths, it may not be possible to switch

every wavelength at every input port to some output port, while a different wavelength

assignment would allow all the lightpaths to be set up. Thus wavelength utlization is

defined for a WR in terms of the number of input port wavelengths that are not “blocked”

as described above.

To formally define the problem, the concept of a “Latin Square” is introduced.

An N ×N Latin Square is filled with N distinct elements such that no two elements in the

same row or column are the same. This is seen to correspond to a wavelength assignment

at a node such that wavelength utilization is maximum. A partial Latin Square is one

in which not all entries are present but those that are present obey the constraint above.

This represents a node at which some lightpaths have already been assigned wavelengths.

Thus for achieving maximum wavelength utilization, a routing and wavelength assignment

algorithm would have to ensure that the solution results in a wavelength assignment at

each node that is as close as possible to a full Latin Square. The algorithm can start with a

partial Latin Square at each network node and proceed to fill them by routing and assigning

wavelengths to lightpaths such that this goal is achieved. The initial partial Latin Square

at each node will normally be completely empty, or some entries may be prefilled if some of

the lightpath routing or wavelength assignments are constrained by some factor outside the

scope of this problem. It is remarked that not all partial Latin Squares can be completed

into full Latin Squares, and deciding whether a given partial Latin Square can be completed

is an NP-complete problem.

Two heuristic algorithms are presented to complete partial Latin Squares at indi-

vidual network nodes, and then a scheme is specified to use these in combination to solve

the lightpath routing and wavelength assignment problem at the network level. The first

algorithm is based on backtracking. To reduce the number of backtracking steps, the con-
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cept of a degree of freedom is introduced for each entry in a partial Latin Square. For an

empty entry, the degree of freedom is the number of different values that can be assigned to

that entry which would still result in a partial Latin Square, while the degree of freedom is

zero for an entry which already has a value assigned to it. The algorithm iteratively assigns

values to empty entries, each time assigning a value to the empty entry with the least degree

of freedom, and assigning the particular value that would result in the minimum reduction

of the total degree of freedom of other entries in the same row or the same column. If an

empty entry is seen to have a degree of freedom of zero, the algorithm backtracks to the last

entry and assigns a different value. The algorithm terminates when all entries are assigned

values or it is known that the square cannot be completed. At worst this corresponds to an

exhaustive search. The second algorithm is based on converting the problem into an edge

coloring problem in a bipartite graph, but with this algorithm the solution may violate

the wavelength continuity constraint, that is, the WR must have wavelength conversion

capability.

When routing a lightpath over the network nodes and assigning a wavelength,

there may be no routing that allows the lightpath to occupy the entry with the minimum

degree of freedom at each intermediate node. Thus the scheme for the overall problem at

the network level involves a search for the k best shortest routes for each lightpath, then

picking the one with the minimum total degree of freedom over each intermediate node.

Similarly the wavelength is assigned by choosing a value which results in the minimum

reduction of the total degree of freedom over each intermediate node. A remark is made

to the effect that the goal is to maximize the traffic carried in one logical hop. No further

detail is provided as to how to successively choose lightpaths for routing and wavelength

assignment.

Randomized rounding and graph coloring: In [2], the virtual topology is assumed

to be given in terms of a list of lightpaths with their source and destination nodes for each

instance of the problem. The lightpath routing and wavelength assignment subproblems

are addressed. The traffic pattern in the network is not considered, and it may be assumed

that this was taken into consideration when obtaining the set of lightpaths, so that each

lightpath carries traffic nearly to its capacity. Thus lightpaths themselves are used as units

of traffic and congestion.

The lightpath routing problem is formulated in terms of lightpath traffic as a
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multicommodity flow problem which is known to be NP-complete. It is suggested that the

problem size can be reduced considerably by customizing the formulation for each instance

of the problem, in terms only of the lightpaths that are given, and also by pruning the

search tree by assuming that the optimal routing of a lightpath can always be found among

a few alternate shortest path routing of the lightpath on the physical topology. The integer

constraints of the formulation may also be relaxed.

The technique of randomized rounding is used as a heuristic algorithm to determine

lightpath routing. The goal is to minimize the number of wavelengths needed to establish

all the lightpaths. First, the integer constraint on the flows representing lightpaths are

relaxed, creating a non-integral multicommodity flow problem, and this is solved by some

linear programming method. Then, a phase called path stripping is carried out, in which

a set of possible paths is created for each lightpath. Successive paths for the commodity

representing that lightpath are found from among the links that carry any part of the flow

of that commodity in the solution to the relaxed flow problem. Each path is given a weight

equal to the minimum fraction of the commodity carried by a link in the path, and this

minimum value is subtracted from each link participating in the path. Once the set of paths

has been obtained for all the lightpaths, a single path is chosen for each lightpath randomly,

using the weights assigned during path stripping.

The wavelength assignment is presented as a separate subproblem once the light-

path routing has been carried out. A transformation of this problem to a graph coloring

problem which is known to be NP-complete is specified. An efficient well-known sequential

graph coloring algorithm called smallest-last coloring is specified as the chosen method due

to its simplicity.

The study employs known heuristic methods with provably good characteristics to

address the lightpath routing and wavelength assignment problems. It may be noted that

[2] demonstrates the use of the algorithms specified for dynamic as well as static lightpath

establishment.

Ring networks: The problem of designing logical topologies for rings that minimize

cost as measured by the amount of electro-optic equipment has recently received much

attention in the literature. Given the widespread use of SONET/SDH networks, it is not

surprising that some of the early work on WDM traffic grooming has focused on ring topolo-

gies [33, 6, 32, 30, 15, 16, 26, 21, 12]. In [26], the problem of wavelength assignment to
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a given set of lightpaths is considered. The discussion focuses on how limited wavelength

conversion affects the capability of the network, and specific cases are discussed with con-

structive proofs. Several different virtual topologies for ring networks are discussed in [16]

in the light of the twin issues of traffic grooming and network cost, and characteristic met-

rics are derived. The study in [15] complements [16] by addressing only the wavelength

assignment issue, with the goal of minimizing the number of SONET ADMs. The concept

of lightpath splitting in designing a virtual topology is discussed and heuristics for wave-

length assignment are developed based on this concept. In [32], the problem of grooming

traffic is considered both for unidirectional and bidirectional rings, with a primary goal

of either minimizing the number of SONET ADMs or the number of wavelengths. The

strategy presented is to first construct circles from the given traffic components and then to

groom these circles. Algorithms for exact solutions for uniform traffic and heuristics for the

NP-hard non-uniform traffic case are presented. A similar approach of constructing circles

first is taken in [33], but now the resultant circles are scheduled in a sequence of virtual

topologies. Heuristic algorithms to minimize network cost by grooming are presented in [8],

for special traffic patterns such as uniform, certain cases of cross-traffic, and hub. In [6], the

concept of a t-allowable traffic pattern is discussed, in which the traffic for each node-pair is

constrained to be at most t. A bidirectional ring, but with symmetric traffic, is considered

for dynamic traffic. A heuristic algorithm based on a bipartite matching formulation of

the problem is presented, and blocking characteristics of the result are discussed. In [21],

a problem similar to that in [15] is considered, but the problem of routing the lightpaths

is considered as well as the wavelength assignment problem. An Euler-trail decomposition

of the ring network is presented, and a heuristic which uses one of the heuristics of [15]

and performs rerouting of lightpaths as well, based on the Euler-trail decomposition, is

presented. The characteristics of the architectures are discussed both for the case of limited

and unlimited number of available wavelengths. The studies [11, 32] note that the prob-

lem of logical topology design is NP-hard even for a physical ring topology, and obtaining

an exact solution requires significant amount of computation even for modest sized rings.

Heuristic approaches have been reported in literature [32, 33, 8, 15, 21].
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3.2.3 Arbitrary Topologies

There are various studies proposing heuristic methods for arbitrary virtual topologies. These

studies address the virtual topology subproblem itself, as well as some or all of the sub-

sequent subproblems of virtual topology design. Most of these methods take into account

the effect of the network traffic pattern, since arbitrary virtual topologies are usually called

for in response to non-uniform traffic patterns and irregular physical topologies. Some of

the heuristics proposed are similar to each other. In this section we discuss such heuristic

approaches.

In [34], the problem is looked upon as the establishment of an optical connection

graph over a WAN based on the average traffic demand, and then using demand based

routing on this connection graph, that is, dynamic virtual circuits, which allocate whole

lightpaths at a time. The connection graph subproblem presented is therefore identical to

the first three subproblems of the virtual topology problem as presented in Section 2.2.2.

The problem is formulated as a nonlinear integer programming problem, and an approximate

decomposition is presented. The heuristic algorithm is then presented, which is based

on a greedy approach. The algorithm iteratively attempts to create as many lightpaths

as possible using each wavelength without violating the wavelength clash and continuity

constraints. Lightpaths are assigned between source-destination node pairs in descending

order of the amount of average traffic flowing between them, which favors one logical hop

traffic. By assigning a wavelength to as many lightpaths as possible before going on to

the next wavelength, the attempt is made to utilize the number of wavelengths used for a

maximum number of lightpaths. Only a predefined number of wavelengths can be used, and

the algorithm terminates when no more lightpaths can be set up using these wavelengths.

The authors remark that there is no guarantee that the virtual topology obtained would be

connected. To allow the routing of traffic from any node to any other on this topology, the

suggestion is made that the procedure be stopped when one wavelength still remains, and

then this wavelength be used to connect any disconnected subnetworks that may have been

formed before using it to form any other lightpaths that may be possible. The study goes on

to describe a routing scheme which dynamically allocates and deallocates these lightpaths

on demand, but this is outside the scope of this survey.

Several different heuristics are presented in [27]. The first one is simply called

“heuristic logical topology design algorithm”, and it also attempts to create lightpaths
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between nodes in order of decreasing traffic demands. A network degree is assumed to be

given as part of the problem. Each lightpath is established between the nodes that have the

maximum amount of traffic between them which is not already carried by some lightpath,

provided wavelength clash, continuity, and degree constraints are obeyed. If all traffic is

accounted for but each node does not have the required degree, the rest of the lightpaths

are placed at random obeying the constraints. A modified version of this heuristic is also

presented which is only applicable if the logical degree is greater than the physical degree. In

this algorithm, a pair of lighpaths in opposite directions is initially set up for each physical

edge, then the original algorithm is exactly followed. This ensures that traffic can always

be routed on the shortest physical path between any two nodes and hence can satisfy any

physically realizable delay constraints. Another heuristic depends on the iterative bound

developed in this study by relaxing the MILP formulation as described in Section 3.1. The

higher values of the lightpath indicator variables are taken to represent actual lightpaths and

the lower values are discarded, obeying the degree constraints, yielding a virtual topology.

Finally, a heuristic is presented that does not take into account the traffic pattern at all,

but concentrates on creating lightpaths that use only a few physical edges, since this should

conserve wavelengths. Thus the heuristic first creates lightpaths between all nodes which

are one physical hop apart, then between all nodes which are two physical hops apart, and

so on, while the degree constraints are not violated. Wavelength assignment algorithms

for the last two heuristics are not discussed, and lightpath routing for the LP relaxation

algorithm is not discussed.

A similar heuristic maximizing one logical hop traffic is briefly described in [3], but

a heuristic with the opposite objective is also suggested. Since in a virtual topology some

traffic will always be carried in multiple logical hops because of constraints on number of

wavelengths and node degrees, a heuristic approach must account for multihop traffic and

not only concentrate on maximizing single hop traffic. Accordingly, this heuristic aims at

maximizing multihop traffic. Some results are provided in which the two approaches appear

to perform very similarly to each other. Details of wavelength assignment are not discussed.

The study in [4] also suggests that attempts to maximize one logical hop traffic

concentrates on the comparatively larger traffic components, and may cause the smaller

traffic components to be routed unreasonably and cause congestion on some physical links.

A scheme is presented to avoid this. A complete bipartite graph is created in which each

partition contains all nodes of the physical topology. The edges are weighted with traffic
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demands between corresponding nodes. Each edge represents the shortest physical path

between corresponding nodes. Now a minimum weighted perfect matching is identified and

the corresponding edges are eliminated from this graph. The traffic carried by the eliminated

edges is rerouted over the least congested of the remaining edges. This is repeated until

the number of edges connected to each node has been reduced from N to ∆l, the desired

logical degree. Now this graph represents a logical topology with each edge representing a

lightpath. The lightpath routing and wavelength assignment can be done arbitrarily and

the congestion will be the same, but different number of wavelengths will be required. Since

minimizing the number of wavelengths is known to be NP-hard, a known path-graph based

algorithm is specified for path embedding and wavelength assignment. This algorithm

is described in literature referred to in [4]. If the number of wavelengths is more than

the number desired, extra wavelengths may be eliminated by choosing wavelengths which

implement the least number of lightpaths, and rerouting traffic carried by those lightpaths

along others with least load.

In [19], a heuristic algorithm following the LP relaxation heuristic from [27], but

more complete, is presented. After rounding the lightpath indicator variables obtained by

a suitable number of iterations of the LP obtained by relaxing the exact formulation, the

virtual topology subproblem has been solved. The constraint on the number of physical

hops for lightpaths, which is a part of the exact formulation provided in [19], may be lost

in the relaxation, in the sense that some lightpaths may be formed with larger number

of hops than was allowed for in the exact formulation. Now the lightpath wavelength

indicator variables are also rounded using a specified rounding algorithm which sets the

highest of the alternative values to 1 and the rest to 0, maintaining consistency with the

lightpath indicators as rounded previously. This results in a set of lightpath routings for

each lightpath. Then a path of least resistance is followed for each lighpath from among the

possible choice of paths to pick the routing for the lightpath. It appears that backtracking

may be necessary at this stage. At the end of this stage, a tentative wavelength assignment is

also obtained, but this assignment may not be free of clash. The last stage of the procedure

is to resolve wavelength clashes. Different approaches to this are discussed in [19], and

the one specified involves coloring a path-graph by first listing nodes in order of decreasing

degree, removing one node each time, and then sequentially assigning the first available free

color to the nodes in this order. A remark is made that the results obtained using the other

approaches specified are similar. This results in a wavelength assignment on the original
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virtual topology. It appears that the bound on the number of wavelengths, which is part of

the exact formulation provided, may not be strictly obeyed by the final solution obtained

by following this procedure.

3.3 Related Approaches

In this section we discuss some techniques and algorithms that are different from those

described in Section 3.2, but which are related to the problem of virtual topology design

for wavelength routed networks.

Incremental Benefit Analysis: In [25], a study of the incremental benefits of introduc-

ing a virtual topology over optical WANs is undertaken. Several simplifying assumptions

such as infinite buffers and adequate number of wavelengths is made. The authors obtained

data regarding the traffic pattern in the T1 NSFNET backbone network. The data was col-

lected in January 1992. At that time, the NSFNET backbone used optical fibers as physical

medium, but only as T1 links, without the use of either WDM or wavelength routing. This

data serves to establish the pattern of traffic only, that is, the proportion of total traffic in

the network flowing between each source-destination node pair.

The goal of implementing techniques such as WDM or virtual topologies in such

a network would be to scale up this traffic pattern. Thus we would like to increase the

overall traffic flowing in the network without changing the relative quantities of different

source-destination traffic. This is the equivalent of designing a virtual topology for minimum

congestion as we discussed before. The pattern is scaled up in three different ways. First,

the method of flow deviation is used to scale up the traffic pattern without the use of

either WDM or wavelength routing, but merely by routing traffic efficiently. This serves as

the baseline with which to compare scaleup benefits obtained with the use of the other two

techniques. A maximum scaleup factor of 49 was observed. This scheme uses two lightpaths

in each direction corresponding to each fiber, and is thus equivalent to a virtual topology

which is the same as the physical topology, with a single wavelength.

The second scheme uses WDM, but no wavelength routing. In other words, each

fiber now acts as not one but multiple point-to-point lightpaths, but there are no lightpaths

spanning multiple physical links. The nodal degree was limited to 4 and lightpaths were

added by inspection. The best scaleup factor was now observed to be 57.
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The last scheme applies wavelength routing as well as WDM, to implement arbi-

trary lightpaths and virtual topologies, though it appears that the virtual topologies are all

chosen to be hypercubes. Simulated annealing as discussed previously in [25] was applied to

find the best possible virtual topologies in terms of scaleup. The maximum scaleup factor

was observed to be 106.

It was noted that the average packet delay, as well as propagation delay and

queueing delay, both of which were modeled, increased somewhat over the three schemes.

However, the average number of logical hops decreased. The most dramatic result is in the

increase of the scaleup factor, and the link utilization which went from 32% and 23% in the

minimum loaded link in the first two schemes to 71% in the last one, while the maximum

link load remained 99% in all three schemes. Thus this analysis provides demonstration of

the benefits of implementing a virtual topology, as well as the incremental nature in which

it may be undertaken.

Limited Conversion: The motivation for the study presented in [26] is the lower cost

associated with limited conversion of wavelengths at Wavelength Routers as opposed to full

conversion, as we remarked in Section 2.1. In this study, some terms related to limited

conversion are first defined. Theoretical results are derived regarding the virtual topologies

which networks with limited conversions can support. A network node is said to have a

wavelength degree k if each wavelength at an input port can be switched to one of a

maximum of k wavelengths at the output port. Not all wavelengths may be switchable

to k different wavelengths. In terms of our earlier terminology, full wavelength conversion

would correspond to a wavelength degree of W , with every wavelength switchable to every

other, and fixed and no wavelength conversions would both be represented by a wavelength

degree of 1. The set of lightpaths to be established, in terms of their source and destination

nodes, as well as the route to be followed, are assumed to be given. Thus the wavelength

assignment subproblem is the focus of this study. Several results are obtained in theoretical

terms about ring networks with specific wavelength conversion capabilities. For example,

it is shown that a ring network with full wavelength conversion capability at one node and

no wavelength conversion at the others can be used to assign clash free wavelengths to any

set of lightpaths, as long as the maximum number of lightpaths assigned a path over a

single physical link is no more than W (which is a physical bound). A similar result is also

derived with a ring network that has two nodes of wavelength degree 2, and no wavelength
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conversion at the others. All these results are followed by constructive proofs rather than

simply existence proofs, so that a blueprint is provided for the actual construction of such

ring networks.

Similar results are derived for more general physical network topologies. In partic-

ular, results are derived about a star network where limited wavelength conversion is only

employed at the single hub node. There is a corollary which can be used to extend this

result to arbitrary topologies, with the (somewhat severe but not entirely unreasonable) re-

striction that the number of physical hops is no more than 2 for any lightpath in the virtual

topology. A result removing this restriction for the case of physical topologies in the form

of specially constructed tree networks is stated but no constructive proof is supplied. It is

stated that a proof is possible, but it is not mentioned whether the proof is constructive.

All the results in this study are exact and none depend on heuristic methods. It

is not entirely clear how to integrate this with heuristic techniques which can solve other

subproblems, or how to extend this work to arbitrary topologies, but the issue of limited

wavelength conversion capabilities would appear to be worth further investigation.

Generalized Lightpaths: In [29], the concept of a lightpath is generalized into that of

a lighttree, which, like a lightpath, is a clear channel implemented with a single wavelength

with a given source node. But unlike the lightpath, a lighttree has multiple destination

nodes, thus a lighttree is a point-to-multipoint channel. The physical links implementing

a lighttree form a tree rather than a path in the physical topology, hence the name. The

points that are emphasized in this study are the following. A lighttree is a more general

representation of a lightpath, hence the set of virtual topologies that can be implemented

using lighttrees is a superset of the virtual topologies that can be implemented only using

lightpaths. Thus for any given virtual topology problem, an optimal solution using lighttrees

is guaranteed to be at least as good and possibly an improvement over the optimal solution

obtained using only lightpaths. Another attractive feature of lighttrees is the inherent

capability for optical multicasting. The current study refers to only unicast and broadcast

traffic problems and identifies the multicast problem as an area of ongoing study. An

illustrative example is given, and the mathematical formulation of the problem is outlined.

Optical switch architectures involved in networks based on lighttrees is also reviewed.

As pointed out previously, the optimal solution using a more general construct

is certain to improve on the optimal solution with a less general one. However, as we
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already know, optimal solutions are not practically obtainable, and with a more general

construct and hence a much larger search space this is going to be even more true. Heuristic

solutions will have to be designed to obtain good solutions, and must be tailored to suit the

larger search space. With unicast traffic problems, the lighttree approach trades off more

bandwidth to further improve delay, congestion, and physical hop characteristics than the

lightpath approach. This is the tradeoff we mentioned in Chapter 1. The challenge in this

case will be to design heuristics that can cope with the increased complexity of the problem

and yet produce solutions in which a good tradeoff is achieved. This appears to be an area

worth further investigation.

3.4 Reconfigurability Considerations

Since the virtual topology problem is defined on a static traffic matrix, the topology must

be redesigned when the aggregate traffic pattern changes significantly. Thus the problem of

reconfiguring a network from one virtual topology to another is a related problem to virtual

topology design. Two possible approaches to this problem are discussed in this section.

3.4.1 Cost Approach

In this approach, it is assumed that the current virtual topology as well as the new virtual

topology that the network must be reconfigured to are known, together with the physical

topology details. The concern is to minimize the cost of the reconfiguration. The cost can

be expressed in terms of the number of Wavelength Routers that need to have their optical

switching reprogrammed, or the total number of optical switchings that need to be changed

to implement the new lightpaths and eliminate old ones. These metrics are appropriate since

they reflect the amount of time the network must be taken off line to make the changes,

as well as the reprogramming effort for the reconfiguration. Other similar metrics may

also be applicable. It may be the case that the network cannot be taken off line at all,

but that a succession of intermediate virtual topologies have to be designed to eliminate

single, or groups of, routers which can be reconfigured and put back in operation. Much

more complicated metrics reflecting total time taken to reconfigure as well as the effort to

redesign the intermediate topologies need to be developed in this case.

We have not found any study of these reconfiguration problems in the literature for

wavelength routed WANs, though studies involving the reconfiguration of virtual topologies
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for broadcast LANs exist, as detailed in the survey of related literature carried out in [20].

These studies involve link-exchange and branch-exchange techniques to minimize the cost

of converting one virtual topology into another, and similar methods may be possible to

exploit for the wavelength routed wide area network.

3.4.2 Optimization Approach

Another approach is to assume that only the current virtual topology is given, together with

the changed traffic pattern and/or physical topology that makes reconfiguration necessary.

This is the approach taken in [3]. The reconfiguration algorithm proposed in [3] involves

solving the new virtual topology problem on its own without reference to the current virtual

topology to obtain a new optimal solution, with a new optimal value for the objective

function which is noted. The virtual topology design problem is then reformulated with

an additional constraint that constrains the old objective function to this noted value, and

a new objective function that involves minimizing the number of lightpaths that must be

either added or removed.

While this method is guaranteed to find a solution that results in a virtual topology

that is optimal for the new conditions, it does not achieve a balance between finding an

optimal new virtual topology and one that involves as little change from the old one as

possible. It is possible that a very costly reconfiguration will be undertaken for only a slight

gain in network performance. More balanced formulations of this problem may be possible,

and heuristics designed on such formulations are likely to perform better in practice.
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Chapter 4

Ring Networks

In this chapter, we consider networks with the physical topology of a unidirectional

ring. As has been noted in literature [11, 32], the problem of logical topology design is NP-

hard even for a physical ring topology, and obtaining an exact solution requires significant

amount of computation even for modest sized rings. Heuristic approaches are needed for

practical purposes and have been reported in literature [32, 33, 8, 15, 21]. To evaluate

the performance of such heuristic approaches when the optimal solution is not available,

achievability bounds are useful.

The problem of interest is to groom lower speed traffic streams into the wavelengths

available, that is minimize electronic routing of traffic. In this context, we have created a

framework of bounds, both upper and lower, on the optimal value of the amount of traffic

electronically routed in the network.

The bounds are obtained based on the idea of decomposing the ring network a

few nodes at a time. We specify the decomposition method and derive a result showing

that solving the decompositions is a considerably more tractable problem than solving the

complete problem. We present a method of combining these partial solutions into a sequence

of bounds, both upper and lower, in which every successive bound is at least as strong as

the last one. We derive a result showing how close the final upper and lower bounds are

guaranteed to be to each other. An algorithm is developed which enables us to combine the

decompositions into bounds without facing a combinatorial explosion.

We present numerical results of the computation of these bounds by computing

the bounds on different families of traffic matrices. For small rings, we can compute nearly

all the bounds in the framework. Numerical results indicate that in these cases the expec-
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tations from theoretical considerations are fulfilled. For larger rings, the sequence cannot

be computed to the end and we are limited by the availability of computing power in how

far we can compute this sequence. The numerical results show that we can get good results

in either case.

The framework can be adapted to other formulations of the problem on the ring

network, such as bidirectional rings or quantized objective functions. The bounds help

us in evaluating heuristics which must be used in practical situations because of the NP-

hard nature of the problem. The upper bounds are based on constructing actual feasible

topologies on the network, and thus also provide us with a sequence of increasingly good

heuristics. Thus, we feel this is a useful framework in a broad context of ring problems for

wavelength routing optical networks.

4.1 Problem Formulation

We consider a unidirectional ring R with N nodes 1, numbered from 0 to N − 1, as shown

in Figure 4.1(a). The fiber link between each pair of nodes can support W wavelengths,

and carries traffic in the clockwise direction; in other words, data flows from a node i to

the next node i⊕ 1 on the ring, where ⊕ denotes addition modulo-N . (Similarly we use �
to denote subtraction modulo-N .) The links of R are numbered from 0 to N − 1, such that

the link from node i to node i⊕ 1 is numbered i. Each node in the ring is equipped with a

WADM. We focus on the detail of the connection of a WADM to the network in the context

of traffic grooming (see Figure 4.1(b)). A WADM can perform three functions. It can

optically switch some wavelengths from the incoming link of a node directly to its outgoing

link without the need for electro-optic conversion of the signal carried on the wavelength.

It can also terminate (drop) some wavelengths from the incoming link to the node; the

data carried by the dropped wavelengths is converted to electronic form and undergoes

buffering, processing, and possibly, electronic switching at the node. Finally, the WADM

can also add some wavelengths to the outgoing link; these wavelengths may carry traffic

originating at the node, or they may carry traffic originating at previous nodes in the ring

and electronically switched at this node.

The important point to note is that ordinary LTE’s such as SONET ADM’s are
1We describe the working part of the ring. It is assumed that there is a protection part for self-healing

or fault-tolerance as dictated by design or required by standards, but our description does not include this.
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Figure 4.1: (a) An N -node unidirectional ring, and (b) detail of a node with a WADM

required for each wavelength that is dropped/added at a WADM, but not for a wavelength

that is passed through. Since the traffic contained in the dropped wavelengths must be

electronically processed at very high speeds, these LTE’s are very costly equipment.

As before, the traffic demands between pairs of nodes in the ring are given in the

traffic matrix T = [t(sd)], each quantity t(sd) ∈ {0, 1, 2, · · ·} expressed in terms of the basic

rate. We let C denote the capacity of each wavelength expressed in units of this basic rate.

Given the ring physical topology, a logical topology is defined by establishing light-

paths between pairs of nodes. A lightpath is a direct optical connection on a certain wave-

length. More specifically, if a lightpath spans more than one physical link in the ring, its

wavelength is optically passed through by WADMs at intermediate nodes, thus, the traffic

streams carried by the lightpath travel in optical form throughout the path between the

endpoints of the lightpath. We assume that ring nodes are not equipped with wavelength

converters, therefore a lightpath must be assigned the same wavelength on all physical links

along its path.

An important problem that has received considerable attention in the literature is

the design of logical topologies that optimize a certain performance metric. The performance

metric of interest in this work is the amount of electronic forwarding (routing) of traffic

streams, since such forwarding involves electro-optic conversion and added message delay

and processor load at the intermediate nodes. There is also the possibility of increased buffer
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requirement and queueing delay. In a global sense, this means that we want to reduce the

number of logical hops taken by traffic components, individually or as a whole. For each

node, it also means that we want to reduce the amount of traffic that node has to store and

forward. Thus we have two alternative goals, one is to minimize the total traffic weighted

logical hops in the network, and the other is to minimize the maximum number of traffic

components electronically routed at a node. In this paper we have chosen to concentrate

on the former. A single traffic unit may not be bifurcated, but different traffic units for

the same source-destination traffic component are looked upon as separate traffic and may

be assigned different logical routes. Another possible quantity of interest is the number of

wavelengths each WADM is required to add or drop due to lightpath terminations. This

would correspond to the minimizing of the number of SONET ADM’s as in [32, 8, 15, 21]. It

should be noted that adding and dropping more wavelengths will result in a larger number

of logical hops for traffic components and thus this concern is to some extent incorporated

in the electronic forwarding issue we mentioned above.

We let t(l) denote the aggregate traffic load on the physical link l (from node l to

node l ⊕ 1) of the ring. The value of t(l) can be easily computed from the traffic matrix

T by adding up all traffic components t(sd) such that the path from s to d includes the

physical link l (note that, because of our assumption of unidirectional traffic flow around

the ring, there is exactly one path between any pair of nodes). The component of the

traffic load t(l) due to the traffic from source node s to destination node d is denoted by

t(sd)(l). If one or more lightpaths exist from node i to node j in the virtual topology, the

traffic carried by those lightpaths is denoted by tij . The component of this load due to

traffic from source node s to destination node d is denoted by t
(sd)
ij . In our formulation, we

forbid a traffic component to be carried completely around the ring before being delivered

at the destination, thus each traffic component can traverse a given link at most once.

This is reasonable because carrying the traffic component around the ring consumes more

bandwidth, and is likely to require more logical hops.

In our formulation we allow for multiple lightpaths with the same source and

destination nodes. We denote the lightpath count from node i to node j by bij , taking its

value from {0, 1, 2, · · · ,W}. We also define the potential lightpath set for a link to be the

set of lightpaths that would pass through a given link, and denote it by B(l) = { (i, j) |
lightpath (i, j), if it existed, would pass through link l }.

With the above notation, we can now formulate the problem of designing a virtual



49

topology for a ring network such that the total amount of electronic routing at the ring

nodes is minimized. The following formulation as an Integer Linear Problem (ILP) consists

of O(N4+N2W ) constraints and O(N4+N2W ) variables, where N is the number of nodes in

the ring, and W the number of wavelengths. It follows the general formulation we provided

in Section2.2.1, other than the enhancements mentioned above. In addition, the lightpath

routing variables and constraints are missing, since the lightpath routing subproblem is

effectively eliminated in the unidirectional ring topology: only a unique physical route is

available to a lightpath with a given source and destination.

Given:

The physical topology, a unidirectional ring R of N nodes

The traffic matrix T = [t(sd)], s, d ∈ {0 · · · (N − 1)}
t(sd) ∈ {0, 1, 2, · · ·}
t(ss) = 0,∀s

The wavelength limit W which is the number of distinct wavelengths each fiber link

can carry.

Find:

Virtual topology, in terms of lightpath indicators bij , lightpath wavelength indicators

c
(k)
ij , and the traffic routing variables t

(sd)
ij .

Subject to:

Traffic Constraints

t
(sd)
ij ≤ t(sd)(i), ∀(i, j), (s, d) (4.1)

t
(sd)
ij ∈ {0, 1, 2, · · ·}, ∀(i, j) (4.2)∑

(i,j)∈B(l)

t
(sd)
ij = t(sd)(l), ∀(s, d), l (4.3)

tij =
∑

sd t
(sd)
ij , ∀(i, j) (4.4)

tij ≤ bijC, ∀(i, j) (4.5)
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∑
j

t
(sd)
ij −

∑
j

t
(sd)
ji =




t(sd), s = i

−t(sd), d = i

0, s �= i, d �= i



∀i, (s, d) (4.6)

Wavelength Constraints

∑
(i,j)∈B(l)

bij ≤ W, ∀l (4.7)

∑
k

c
(k)
ij = bij , ∀(i, j) (4.8)

∑
(i,j)∈B(l)

c
(k)
ij ≤ 1, ∀l, k (4.9)

To minimize:

min


 ∑

s,d,i,j∈{0···(N−1)}
t
(sd)
ij −

∑
s,d∈{0···(N−1)}

t(sd)


 (4.10)

In the above, the traffic constraint (4.1) ensures that a lightpath can carry traffic

for a source-destination node pair only if it is in the physical route of the traffic component.

Constraint (4.3) states that the physical traffic on a link due to a source-destination node

pair must be equal to the sum of the traffic on all lightpaths passing through that link

due to that node pair. Constraints (4.4, 4.5) define the total traffic on a lightpath and

relate it to the lightpath count, respectively. Because of the definition of the quantities

t(sd)(l), the constraints (4.1, 4.3) together ensure that no traffic component can be routed

completely around the ring before being delivered at the destination node. Constraint (4.6)

is an expression of traffic flow conservation at lightpath endpoints. Among the wavelength

constraints, constraint (4.7) expresses the bound imposed by number of wavelengths avail-

able, (4.8) relates the wavelength indicators to the lightpath counts, and (4.9) ensures that

no wavelength clash can occur.

The framework we present below is based on the above formulation we have cho-

sen, but this formulation is not essential for it. The framework can be adapted to many

variations that are possible in the formulation. There may be multiple fiber links be-

tween successive nodes, and the nodes may be equipped with wavelength routers instead

of WADMs. Hardware for wavelength conversion, limited or otherwise, may be available

at the nodes [26]. A physical hop limit for lightpaths may be imposed on feasible topolo-

gies, due to physical fiber characteristics or OAM issues. The ring may be bidirectional,
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either with some simple routing strategy (such as shortest-path, as in [32, 15]) that allows

us to consider it as two unidirectional rings, or the lightpath routing (either clockwise or

counter-clockwise) may be integrated as part of the optimization process (as in [21]). In all

these cases, the grooming objective may be to minimize electronic routing. The framework

we present may be extended, in a straightforward manner for some of these cases, and with

some enhancements in others. When the objective is not an additive function as in our

formulation but some other function such as a min-max type (minimize electronic routing

at the node with maximum electronic routing) or a quantified version (minimize number of

wavelengths added/dropped, number of SONET ADMs, etc.) our framework can also be

adapted to obtain bounds for the optimal value of the objective function.

4.2 Path Decomposition of a Ring Network

4.2.1 Definition of Decomposition

We consider a ring R with N nodes labeled 0 · · · (N − 1), in order, and traffic matrix T .

We define a segment of length n, 1 ≤ n ≤ N , starting at node i, 0 ≤ i < N , as the part of

the ring R that includes the n consecutive nodes i, i⊕ 1, i⊕ 2, · · · , i⊕ (n− 1), and the links

between them.

We define a decomposition of ring R around a segment of length n starting at node

i as a path P(i)
n that consists of n + 2 nodes and n + 1 links as follows: the n nodes and

n − 1 links of the segment of ring R of length n starting at node i, a new node S and a

link from S to i, and a new node D and a link from node i ⊕ (n − 1) to D. We also refer

to P(i)
n as an n-node decomposition of ring R starting at node i. Figure 4.2 shows such a

decomposition.

Associated with the decomposition P(i)
n is a new traffic matrix TP(i)

n
=

[
t
(sd)

P(i)
n

]
,

s, d ∈ {i, i⊕ 1, · · · , i⊕ (n− 1), D, S}, derived from T , the original traffic matrix, as follows:
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Figure 4.2: An n-node decomposition: (a) original ring R with N nodes, and (b) a decom-

position P(i)
n of the ring around a segment of length n starting at node i

t
(sd)

P(i)
n

=




t(sd), if i � s ≺ d � i⊕ (n− 1)∑
j /∈{i,i⊕1,···,d�1} t

(jd), if s = S, i � d � i⊕ (n− 1)∑
j /∈{s⊕1,s⊕2,···,i⊕(n−1)} t

(sj), if d = D, i � s � i⊕ (n− 1)

tpass−thru(i, n), if s = S, d = D

0, if




s = d or

s = D or

d = S or

i � d ≺ s � i⊕ (n− 1)
(4.11)

where tpass−thru(i, n) denotes the traffic of the original matrix T that passes through the

segment of length n starting at node i, i.e., traffic on ring R that uses the links of the

segment but does not either originate or terminate at any of the nodes in that segment.

We call this the pass-through traffic. The amount of this traffic can be readily obtained by

inspection of traffic matrix T . We have used s ≺ d in the above expression to denote that

node s precedes node d in the decomposition and s � d to denote that node s precedes and

may be the same as node d in the decomposition.

The traffic matrix for the decomposition is defined such that the traffic flowing
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from a node s to another node d, such that s ≺ d, in the segment is the same as that in the

original ring for the corresponding nodes (see the first expression in (4.11)). Thus any traffic

component the path of which is entirely in the segment is unchanged in the decomposition.

The decomposition is effected by the introduction of the two nodes S and D together with

the links connecting them to the segment. In the decomposed network, node S acts as the

source of all traffic components in the original matrix T originated at a node outside the

segment and destined to any node in the segment (refer to the second expression in (4.11)).

Node S also acts as the source for all traffic components that pass through the segment, as

the fourth expression in (4.11) indicates. Similarly, node D is the sink for traffic originating

at any node in the segment and terminating at a node outside the segment in the original

ring (see the third expression in (4.11)), as well as for pass-through traffic. Finally, any

traffic components in the original matrix T that do not originate or terminate at nodes of

the segment, or do not traverse any links of the segment, are not included in the traffic

matrix for the decomposition. This is captured by the last expression in (4.11) where it is

shown that no traffic flows from node D to node S in the decomposition.

Because of the way the traffic matrix for the decomposition is defined in (4.11),

from the point of view of any node k, i � k � i⊕ (n− 1) in the segment, the traffic pattern

in the new path P(i)
n is exactly the same as in the original ring. The new nodes S and

D are introduced in the decomposition to abstract the interaction of traffic components

between nodes in and outside the segment. Specifically, the new node S hides the details

of how traffic sourced at ring nodes outside the segment and using the links in the segment

actually flows over the rest of the ring, by providing a single aggregation point for this

traffic. Similarly, the new node D provides a single aggregation point for traffic using the

links of the segment and destined to nodes outside the segment, hiding the details of how

this traffic flows in the rest of the ring. Finally, the fact that P(i)
n is a path (i.e., that there

is no link from node D to node S) means that the details of traffic in the original ring that

does not involve any nodes or links of the segment are hidden in the decomposition.

4.2.2 Solving Path Segments in Isolation

Consider the traffic matrix TP(i)
n

=
[
t
(sd)

P(i)
n

]
of the decomposition P(i)

n of a segment of length

n starting at node i in the ring R, as given in (4.11). This matrix can be thought of as

representing the traffic demands in a ring network consisting of nodes S, i, . . . , i⊕(n−1), D,
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0 n-11 2 n-2

Figure 4.3: A unidirectional n-node path network

where there is simply no traffic flowing over the link from node D to node S. Consequently,

the ILP formulation we presented in Section 4.1 can be used to obtain a virtual topology

that minimizes electronic routing for this ring with traffic matrix TP(i)
n

. Since the ILP

formulation disallows traffic routing that carries a traffic component beyond its destination

and all around the ring, no lightpaths can be formed to carry traffic over the link from D

to S that is absent in the decomposition. Thus, the topology obtained in this manner can

be directly applied to the path P(i)
n . When we use the ILP to find an optimal topology for

path P(i)
n we will say that we solve the n-node segment in isolation.

The topology obtained by solving an n-node segment in isolation does not take

into account the details of the original ring outside of the n-node segment. Such a topology

will only be optimal with respect to this n-node segment, in the sense that it will minimize

the amount of electronic routing within the segment, but without considering the effects

that doing so would have on the amount of electronic routing at nodes of ring R outside

the segment. In fact, this topology may not be optimal for the ring as a whole. In other

words, it is possible that, for any optimal topology for the ring as a whole, the subtopology

corresponding to the n-node segment will be different than the topology obtained by solving

the ILP for P(i)
n in isolation. Thus it may not be possible to combine optimal solutions to

different segments in isolation into a (near-)optimal topology for the original ring R. Our

contribution is in proving a looser result: that it is possible to combine optimal solutions

to different segments in isolation to obtain lower and upper bounds on the optimal solution

to the ring R as a whole.

Our motivation for using the path decomposition described in this section is two-

fold. First, as the number n of nodes in a segment starting at some node i increases, the

resulting decomposition P(i)
n will more closely approximate the original ring. As a result, the

bounds we obtain will be tighter with increasing n. Second and more importantly, a path

decomposition significantly alleviates the problem of exponential growth in computational
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requirements for solving the original ILP for an n-node network. This result is a direct

consequence of the following lemma.

Lemma 4.2.1 A wavelength assignment always exists for a feasible virtual topology on a

unidirectional path network, and it can be obtained in time linear in the number of links

and the number of wavelengths W per link.

Proof. Consider a path network with n nodes as shown in Figure 4.3. Consider any feasible

virtual topology on this network, that is any topology for which the number of lightpaths

crossing any link is no more than W . If there is any link with less than W lightpaths,

we add as many single hop lightpaths on that link as necessary to make the number of

lightpaths on that link equal to W . Now we can assign wavelengths to all the lightpaths in

a straightforward manner. At the first link from node 0 to node 1, we have W lightpaths

to which we can assign W wavelengths in any arbitrary fashion. We then examine these

lightpaths in some particular order. Consider a lightpath assigned wavelength w on the first

link from node 0 to node 1. If the lightpath continues onto the second link from node 1 to

node 2, we assign the wavelength w to this lightpath on the second link. If the lightpath

terminates at node 1, we know that another lightpath originates at node 1, since the load

on each link is the same. We pick one such lightpath, breaking ties arbitrarily, and assign

it wavelength w. We continue in this manner, assigning wavelengths to the lightpaths on

each link until we reach the last node and have colored all the lightpaths. We are guaran-

teed to be able to reach node n − 1 on each of the W wavelengths, because no lightpath

passes through or originates at node n − 1. Now we have assigned a wavelength to all the

original lightpaths of the feasible virtual topology we started with and can discard the sin-

gle hop lightpaths (if any) that were added to bring the number of lightpaths at each link

to W . Since all feasible topologies have a wavelength assignment so does the optimal one.

In solving the decomposed problem, we are merely interested in the optimum value

of the objective, since this is the value from which we will obtain the bounds. Since we

know that a wavelength assignment is always possible and we are not interested in the

details of the wavelength assignment, we can eliminate the wavelength assignment from

our formulation altogether. This implies that we can eliminate the wavelength assignment

subproblem from the list of subproblems we enumerated in Section 2.2.2. Thus, we eliminate

the wavelength variables c
(k)
ij and the constraints (4.8) and (4.9). The number of variables
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in the formulation remains O(N4), but N2W variables are eliminated, and the number

of wavelength constraints is reduced from O(N2W ) to O(N), though the total number

of constraints remains O(N4). This creates a formulation that is smaller and requires

dramatically less computation to solve. In practice, we have found that eliminating the

wavelength assignment subproblem can result in a reduction in computation time by several

orders of magnitude. For instance, completely solving a six-node ring network using the

original formulation (with wavelength assignment) requires between 60 and 90 minutes on

a Sun Ultra-10 workstation. However, solving a six-node path network using the simplified

formulation (no wavelength assignment) requires only a few seconds. In both cases, we used

the LINGO scientific computation package which utilizes branch-and-bound algorithms to

solve the ILP.

A further improvement to the ILP formulation that reduces the running time for

path networks may be obtained by explicitly forbidding any lightpaths that traverse the

link from D to S, that is, by fixing the values of some lightpath counts to zero:

bij = 0, ∀ bij ∈ B(D,S) (4.12)

where i, j refer to nodes in the decomposition.

We have devised a way to further reduce the computational efforts required to solve

the ILP for a path segment; the tradeoff is an increase in the complexity of the formulation.

In this approach, we customize the formulation to include information about combinations

of lightpath variables that can produce feasible solutions, eliminating combinations we know

are not consistent by application of problem-specific logic. We can also prune the search

space by a large factor by creating a space that we know contains exactly one optimal

solution. The formulation has to be customized for each value of n, where n is the number

of nodes in the decomposed segment. The amount of logic and extra information to be

included in such a custom formulation increases rapidly with n. We have carried out such

customizations for 2- and 3-node decompositions (the case for a single-node decomposition is

trivial). The gain in computational effort appears to be more than offset by the complexity

of the formulation beyond this point, and as such, this method was not carried out any

further.
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4.2.3 Interpretation of the Optimal Value for Decomposed Paths

We denote the optimal objective value for the decomposition P(i)
n by φ

(i)
n . That is, φ(i)

n is the

amount of electronic routing performed by the optimal virtual topology on the decomposi-

tion P(i)
n . In the decomposition, n of the n + 2 nodes which are the same as in the original

ring see the same traffic pattern locally as they do in the original ring, as we remarked above.

The two additional nodes S and D, by the construction of the decomposition, do not have

any traffic passing through them at all, and hence they do not contribute any electronic

routing in any feasible virtual topology on the decomposition. Thus, the optimal objective

value φ
(i)
n for the decomposition P(i)

n is contributed only by the n nodes abstracted from the

ring. Since the traffic pattern seen by these nodes is the same as when they are included in

the ring, φ(i)
n also represents the locally best (lowest) amount of electronic routing at this set

of nodes when considered as part of the ring. In other words, the electronic routing at this

set of nodes is minimized, irrespective of how much electronic routing has to be performed

at other nodes of the original ring as a result.

It might appear that as we include more and more nodes in the decomposition,

the optimal solution to the original problem will be obtained when all N nodes have been

represented in the decomposed network (that is, when we have a decomposition consisting

of N + 2 nodes). However, because we convert the ring to a path, some information is not

taken into account at the point where we “open up” the ring when considering an N node

decomposed network. As a result, solving an N -node decomposition does not provide the

optimal solution for the N -node ring. This is clear from arguments related to this topic in

[26, 21], for convenience we present the argument in the current context here. Consider the

decomposition of an N -node segment starting at node i. Now note that the decomposed

path P(i)
N contains all nodes and links of the original ring except the link from node i� 1 to

node i; this is where the ring is “opened up” to introduce the new nodes S and D. Consider

a lightpath in the original ring that originates at a node s ≺ i�1 and terminates at a node d

such that i ≺ d, and therefore uses the link i�1 (from node i�1 to node i) in the ring. Any

such lightpath will be represented by two lightpaths in the decomposition P(i)
N : one from

the new node S to node d, and one from the new node D to node s. Since these lightpaths

are not constrained to use the same wavelength in the decomposed network, a wavelength

assignment for the N -node decomposition may not be feasible for the N -node ring. Thus,

the optimal solution to the decomposition may not be possible to translate to a solution
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Figure 4.4: A single node decomposition of a ring: (a) original ring, and (b) single node

decomposition P(i)
1 around node i

to the original ring, and we still have an optimal value φ
(i)
N for the N -node decomposition,

rather than an optimal value for the ring R.

4.3 Bounds

In this section we describe how we can combine the φ
(i)
n values we get from n-node decom-

positions to obtain lower as well as upper bounds on the total amount of electronic routing

performed in the optimal case by a virtual topology on the original ring. The method of

combination is different for lower and upper bounds. We first discuss the case where we

only consider single-node decompositions, then move on to the general case where larger

decompositions are available.

4.3.1 Bounds Based on Single-Node Decompositions

A decomposition of an N -node ring around a single node i is shown in Figure 4.4. The next

two sections show how to obtain lower and upper bounds, respectively, on the optimal ILP

solution for the ring as a whole by appropriately combining the optimal ILP solutions φ
(i)
1

for the possible single-node decompositions P(i)
1 , i = 0, · · · , (N − 1).
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Lower Bound

Recall that φ
(i)
n represents the locally best amount of electronic routing at the nodes in the

segment of length n starting at node i. In particular, φ(i)
1 represents the locally best amount

of electronic routing that can be achieved at node i considered in isolation. There may or

may not be an optimal (or even feasible) virtual topology for the ring R that achieves this

value of electronic routing at node i, but there can be no topology which achieves an even

lower value. Thus, φ(i)
1 is a lower bound on the amount of electronic routing performed at

node i for any feasible virtual topology, and in particular, for the optimal virtual topology.

Since φ
(i)
1 represents contribution to the electronic routing only by node i, we can

add the contributions together for each node to obtain a lower bound on the total electronic

routing performed for all nodes in a feasible virtual topology. We call this lower bound Φ1:

Φ1 =
N−1∑
i=0

φ
(i)
1 (4.13)

The quantity Φ1 is a lower bound on the objective value (total electronic routing)

for any feasible virtual topology, and in particular, for the optimal virtual topology for the

ring R.

Upper Bound

We first note that the value of the objective function for any feasible virtual topology sets

an upper bound on the optimal value, since it corresponds to an actual solution and the

optimal solution can only be better than or as good as this solution. Thus, we consider

different achievable topologies and we obtain upper bounds from them.

First we consider an upper bound we can obtain directly from the traffic matrix,

without recourse to decompositions. This bound corresponds to the simplest virtual topol-

ogy possible, namely, the topology consisting only of single-hop lightpaths. Consider node

i. In this topology, single-hop lightpaths from node i� 1 carrying all traffic to node i and

beyond terminate at node i. Node i electronically switches all traffic for which it is not the

destination, combines it with its own outgoing traffic, and sources a number of single-hop

lightpaths (up to W ) that carry this traffic to node i⊕1. We will call this the no-wavelength-

routing topology, since no wavelengths are optically routed at any node and each lightpath

spans exactly one physical link. (This type of topology is called a PPWDM ring in [16].) In

such a topology, each node i performs the maximum possible amount of electronic routing,
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Figure 4.5: Virtual topology with alternating single-node decompositions and opaque nodes

which we denote by ψ(i). Quantities ψ(i), i = 0, · · · , (N − 1), can be readily obtained from

the traffic matrix T . We let Ψ0 denote the total electronic routing performed under the

no-wavelength-routing topology:

Ψ0 =
N−1∑
i=0

ψ(i) (4.14)

Since this is a feasible topology, Ψ0 is an upper bound on the optimal electronic routing,

In general, Ψ0 is a rather loose upper bound. We now consider how we might utilize

single-node decompositions to improve upon the no-wavelength-routing topology and hence

obtain a tighter upper bound. To this end, let us refer again to Figure 4.4(b), which shows

a single-node decomposition around node i. Recall now that, in deriving the best local

electronic routing φ
(i)
1 at node i, we made the assumption that all traffic passing through

node i is originated by node S and terminated by node D. Assuming for the moment that

nodes S and D are actual nodes in the ring, this is equivalent to saying that no lightpaths

are optically routed at either node S or node D, and, consequently, both nodes have to

perform the maximum amount of electronic routing possible.

Let us call opaque nodes those nodes which do not perform any optical forwarding

(i.e., lightpaths do not pass through them). Since they terminate and originate all light-

paths, we alternatively call them concentrate nodes. In the no-wavelength-routing topology,
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every node is an opaque node, and according to our discussion in the last paragraph, nodes

S and D can be viewed as opaque nodes in the single node decomposition. Carrying this

line of thought one step further, we are led to consider a new virtual topology such that

every other node is an opaque node (performing the maximum electronic routing possible,

ψ(i)) while the remaining nodes perform the minimum electronic routing possible, φ(i)
1 . This

topology is illustrated in Figure 4.5, where the even-numbered nodes are opaque nodes.

We now note that, based on which nodes in the ring we select to be the opaque

nodes, we obtain different virtual topologies which yield potentially different values for the

total amount of electronic routing. If the number of nodes N in the ring is even, we have

two possible topologies, depending on whether even-numbered or odd-numbered nodes are

opaque. If N is odd, any virtual topology constructed in the manner described above will

have two opaque nodes next to each other at one position in the ring, as illustrated in

Figure 4.5(b). Since there N ways of selecting the position of these two opaque nodes,

there are N possible virtual topologies when N is odd. We take the smallest value of total

electronic routing we can obtain from these topologies as the upper bound. This bound is

indicated by Ψ1, and in the general case, it can be expressed as:

Ψ1 = min
j∈[0,N−1]


 ∑

k∈{0,2,4,···,2(	(N−2)/2
)}
φ

(j+k)
1 +

∑
k/∈{0,2,4,···,2(	(N−2)/2
)}

ψ(j+k)


 (4.15)

Since this is a feasible topology which incurs the maximum electronic routing only at the

opaque nodes while it incurs less at the others, the upper bound set by the objective value

of this topology must be at least as strong as Ψ0; thus we also have that

Ψ1 ≤ Ψ0 (4.16)

4.3.2 Bounds Based on Larger Decompositions

In this section we consider how we may combine decompositions containing more than a

single node from the ring to obtain a sequence of bounds similar to those obtained in the

last section.

Lower Bound

In obtaining the bound Φ1 above, we remarked that we can add the various φ
(i)
1 quantities

together since they each represented electronic routing at node i only. Consider the quantity
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Figure 4.6: Partitions of the nodes of a ring into (a) segments of no more than 2 nodes, and

(b) segments of no more than 3 nodes

φ
(i)
2 : it represents the minimum possible amount of electronic routing (best case) at node i

and node i⊕ 1 taken together. We cannot add φ
(i)
1 or φ

(i⊕1)
1 to this quantity and still have

something that is guaranteed to be a lower bound on the amount of electronic routing these

nodes together perform in any feasible topology, because we are potentially counting the

traffic routed by a single node twice. However, we can add φ
(i)
2 and φ

(i⊕2)
1 , since the two

quantities involve sets of nodes that are disjoint and therefore there is no potential double

counting of electronic routing. Generalizing this notion, we find that we can add the φ
(i)
n

values for any set of decompositions that involve segments that are disjoint in the ring,

and we are still guaranteed to obtain a lower bound on the objective value for any feasible

topology. We formalize this in the following lemma:

Lemma 4.3.1 Let σn be a set of segments of ring R which partition the nodes of the ring

in segments of length n or smaller. Let lk, lk ≤ n, denote the length (number of nodes) of

segment k, k = 1, · · · , | σn |, and let ik denote its starting node. The quantity

Φ(σn) =
|σn|∑
k=1

φ
(ik)
lk

(4.17)

is a lower bound on the objective value for any feasible virtual topology on the ring R, and
therefore on the optimal objective value.



63

We now define Φn as:

Φn = max{Φ(σn)} (4.18)

where the maximum is taken over all partitions of the ring which contain segments with n

or less nodes. Figure 4.6 shows two partitions of the same ring, the first containing only 1-

and 2-node segments, and the second containing only 1-, 2- and 3-node segments.

Because of the definition (4.18), in computing bound Φn+1 we must consider all

partitions (and bounds derived therefrom) considered to compute Φn, and, additionally,

all partitions which include one or more (n + 1)-node segments. Specifically, the set of

partitions σn+1 we consider for Φn+1 is a proper superset of the set of partitions σn we

consider for Φn. Since we draw the maximum bound from each set as per the definition in

Equation 4.18, this allows us to draw the general conclusion that:

Φn+1 ≥ Φn ∀n ∈ {1 · · · (N − 1)} (4.19)

As a result, the sequence Φ1,Φ2, · · · ,ΦN , is a strong sequence of bounds in which each is

at least as tight as the previous one. We note that our definition of Φ1 in Section 4.3.1 is

consistent with our general definition above. We were able to express Φ1 in a simpler and

more explicit form because there is only one possible partition of the nodes of a ring into

single-node segments.

We discuss some details of the computation of Φn after we describe the upper

bounds in the next section. In Appendix A we briefly discuss why a more straightforward

combination of decompositions with less combinatorial growth would not yield a strong

sequence of bounds.

Upper Bound

It is now straightforward to obtain a strong sequence of upper bounds along the same

lines. In Section 4.3.1 we obtained the upper bound Ψ1 by creating a topology in which

single-node segments (where electronic routing is minimized) alternate with opaque nodes.

Similarly, we now define Ψn as the lowest objective value we obtain for all topologies which

are created by alternating opaque nodes with segments no larger than n nodes in size. We

can once again consider this in light of partitions of the nodes of a ring. Now, however, the

partitions are constrained not only to use segments of n-nodes or less, but every alternate

segment must contain exactly one node. These alternate single-node segments are used as
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(a) (b)

Figure 4.7: Two partitions of a ring into alternating opaque nodes and segments of no more

than 3 nodes

opaque nodes in the topology we create, rather than as single-node decompositions. Once

again, the form of this upper bound is an alternate sum of φ
(i)
x and ψ(i) values, similar to

expression (4.15) for Ψ1; but for Ψn the value of x is not restricted to 1 as for Ψ1, instead it

can take on any value from 1 to n. Figure 4.7 shows two ways we can partition a ring using

no larger than 3-node segments, thus creating two topologies among the ones we would

consider in computing Ψ3.

We note that the bounds Ψ0 and Ψ1 we obtained in Section 4.3.1 are consistent

with this framework. We also note that since every decomposed segment has to alternate

with an opaque node, we can only use up to N − 1 node decompositions, and cannot use

N -node decompositions as for the lower bounds. As before, the set of all topologies we

consider in obtaining Ψn+1 is a superset of the set of all topologies we consider in obtaining

Ψn, therefore we may assert that:

Ψn+1 ≤ Ψn ∀n ∈ {0 · · · (N − 2)} (4.20)

giving us a strong sequence of upper bounds.

Because the bounds {Ψn} are based on actual feasibly topologies, they also provide

us with a useful series of heuristic solutions to the ring. In the next section we derive a result

which shows the tightness of the bounds and thus the goodness of the heuristics, and we

see in Section 4.4 that even the first few solutions of the series can outperform a simplistic
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heuristic. The later solutions in the series can compare favorably with some heuristics

reported in literature. Specifically, ΨN−1 must be as good or better than a single-hub

architecture [16, 8, 5], because it considers all topologies with a single opaque node (which

is equivalent to a hub node). For a similar reason, Ψk, k ≥ 
N/2� must be as good or better

than a double hub design, if the hubs are constrained to be diametrically opposite in the

ring.

Tightness of Bounds

Consider the value ψ(i) − φ
(i)
1 for each node of a ring, which is the difference between the

minimum and maximum traffic the node can route in any virtual topology. Let the node

for which this difference is minimum be node j, and let the corresponding difference be ζ(j),

so that:

ζ(j) =
N−1
min
i=0

(ψ(i) − φ
(i)
1 ) (4.21)

Consider the topology in which node j is an opaque node and the rest of the nodes

follow the optimal topology for the (N − 1)-node decomposition P(j⊕1)
N−1 . The amount of

electronic routing performed by this topology is an upper bound on the optimal objective

value for the ring. We denote it by Ψ′ and note that Ψ′ = ψ(j) + φ
(j⊕1)
N−1 . Since this is a

topology using a segment of N − 1 nodes alternating with an opaque node, we must have

Ψ′ ≥ ΨN−1 (4.22)

Now we consider the partition of the ring into the single node j and the (N − 1)-

node segment comprising all the other nodes again, but this time with a view to obtaining

a lower bound. We denote this lower bound by Φ′ and it is found by simply adding the

objective values for the two corresponding decompositions, so that Φ′ = φ
(j)
1 +φ

(j⊕1)
N−1 . Once

again, this is one of the partitions in the set of all partitions of the nodes of the ring into

segments of N − 1 nodes or less, so that we have

Φ′ ≤ ΦN−1 (4.23)

However, from the definition of Ψ′ and Φ′ above, we know that

Ψ′ − Φ′ = ζ(j) (4.24)
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Combining the above results (4.22, 4.23, 4.24), and considering the definition of ζ(j), we

can assert that:

ΨN−1 − ΦN−1 ≤
N−1
min
i=0

(ψ(i) − φ
(i)
1 ) (4.25)

Of course, depending on the value of N and the computational power available, it

may or may not be practical to compute ΨN−1 and ΦN−1; however, this is the theoretical

limitation on the tightness of the framework of bounds we present.

Computational Considerations

The bounds Φn (and Ψn) for successive values of n incorporate progressively more infor-

mation about the problem and as such require progressively more computational effort to

determine. This increase in computational effort manifests itself in two ways:

1. the calculation of the φ
(i)
n values required for a given bound, and

2. the evaluation of all partitions of the ring in segments of length at most n by an

appropriate combination of the φ
(i)
n values.

In the discussion that follows, we focus on the sequence {Φn} of the lower bounds, but the

observations we make are equally applicable to the sequence of upper bounds.

The computation of a bound utilizing a certain size of decompositions requires

knowledge of decompositions of all lower sizes as well. Thus, computing Φx would require us

to compute φ
(i)
n for all values of i ∈ {0 · · · (N −1)}, and all values of n ∈ {1 · · ·x}. However,

the incremental computation of decompositions required to determine Φx consists only of

determining φ
(i)
x for all nodes i, since φ

(i)
n for n < x would already have been computed when

determining Φx−1. Naturally, as x increases, this incremental effort required also increases;

as we have noted before the number of variables and constraints increase as O(n4). Thus

the maximum value of n for which we can determine the corresponding bound is limited by

this computational effort.

Regarding the second factor that affects the computation time required to obtain

the bound Φn, we note that a straightforward approach would require us to enumerate all

possible partitions of an N -node ring into segments of length at most n. While evaluating

each partition (i.e., computing the lower bound for it) takes time linear in the number

of segments of the partition (assuming that the individual φ
(i)
x , x ∈ {1 · · ·n}, values are

available), the number of possible partitions increases with n. The total number of partitions
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is maximum when n = N , and this number is easily seen to be 2N − 1 (because each link

of the ring can be broken to form partitions or not, with the single case where no link is

broken being excluded). For smaller values of n, the total number is smaller but still very

large. We note that assuming node i is the first of a segment in the partition (and thus

excluding some partitions), the total number of segments in such a partition must always

be at least 
N/n� for a given value of n, and since each segment can consist of 1, 2, · · · , n
nodes the total number of such partitions is at least n
N/n�. Considering n = 2, we can set

a lower limit on this value, and thus say that for 2 ≤ n ≤ N , the total number of partitions

is between 2
N/2� and 2N − 1, and is thus exponential in N . Thus the incremental number

of partitions to consider for a given value of n is also exponential in N in the worst case.

Thus a straightforward approach to combine decompositions into bounds would severely

limit the maximum value of N for which we can determine the corresponding bounds.

However, by exploiting the particular characteristics of φ
(i)
n , we have developed a

polynomial-time algorithm to compute Φn, assuming that the appropriate φ
(i)
n values are

available. The algorithm is based on incrementally building the best sum of φ(i)
n around the

ring, and following only the best partial sum at an intermediate node. This algorithm is

presented as a dynamic programming problem in Appendix B, and requires O(n2N) time

to find Φn given all φ(i)
x values for x = 1, · · · , n. For the largest number of total partitions

in the case n = N , this corresponds to O(N3) instead of O(2N ) time, and in fact becomes

linear in N for a small given value of n.

We can achieve an improvement also by using the properties of φ(i)
n values formal-

ized in the following lemma. These properties introduce a constant factor of improvement

to the dynamic programming algorithm described in Appendix B.

Lemma 4.3.2 An (x+ y)-node decomposition yields at least as large an objective value for

the decomposed network as the sum of objective values of the x-node and y-node decom-

positions it exactly contains. That is, φ
(i)
x+y ≥ φ

(i)
x + φ

(i+x)
y , if x and y are positive and

x + y < N .

Corollary 4.3.1 An x-node decomposition yields at least as large an objective value for

the decomposed network as the sum of objective values of any combination of smaller de-

compositions it can be partitioned into. That is, φ(i)
x ≥ φ

(i)
y1 + φ

(i+y1)
y2 + φ

(i+y1+y2)
y3 + · · · +

φ
(i+y1+y2+···+yn−1)
yn , if x = y1 + y2 + · · · + yn.
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Proof of Lemma 4.3.2. Let us first consider the special case x = y = 1. Consider a two-

node decomposition for nodes i and r = i⊕ 1 in the original ring network R. This yields a

value of φ(i)
2 for the node pair decomposed. Now consider a new ring network R′ with four

nodes, which has the same structure as the decomposed network above and has a traffic

matrix identical to the traffic matrix TP(i)
2

in the above decomposition. It is easy to see that

the optimum value of total electronic routing for this new network is φ
(i)
2 , since this is the

best value for nodes i and r, and nodes S and D do not have any pass-through traffic and

hence cannot route any traffic electronically. Now consider a single-node decomposition of

this new network R′, yielding φ
(S)′
1 , φ(i)′

1 , φ(r)′
1 and φ

(D)′
1 as the best case electronic routing

for the four nodes. Once again, since nodes S and D have no pass-through traffic, φ
(S)′
1

and φ
(D)′
1 are bound to be zero. Now the single-node decomposition matrix for node i,

TP(i)
1

, is the same no matter whether the decomposition is made from the original network

or the new network. Thus, the single node best case electronic routings of the node i is

the same in either case, in other words φ
(i)′
1 = φ

(i)
1 . Similarly, φ

(r)′
1 = φ

(r)
1 . Since the sum

φ
(S)′
1 + φ

(i)′
1 + φ

(r)′
1 + φ

(D)′
1 is known to form a lower bound on the optimum value of the

electronic routing for the new network, we can say that φ
(i)
1 + φ

(r)
1 ≤ φ

(i)
2 .

Although in the above argument we have used special values of 1 for each of x and

y, and hence 2 for x + y, the arguments retain their validity if any other values are used.

Thus, the lemma is true.

The corollary follows immediately from the lemma by repeated application within

the same decomposition, and allows us to discard partitions in which a small segment follows

another. Specifically, if we are computing Φx, we can discard a partition in which a y1-node

segment is followed by a y2-node segment if y1 + y2 ≤ x, because the partition we obtain by

replacing these two segments by a single (y1 +y2)-node segment must yield a higher bound,

and we are only interested in the maximum bound.

The above methods allow us to compute the {Φn} bounds by combining the φ
(i)
n

values in an insignificant fraction of the time taken to compute the φ
(i)
n values themselves.

In practice, we found that computing the φ
(i)
n values took minutes and hours for increasing

n, while combining them to form the {Φn} bounds took milliseconds. We conclude that the

limiting factor in determining how many of these bounds can be computed in a reasonable

amount of time is the effort required to solve the ILP for n-node decomposition in order to
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compute each of the N φ
(i)
n values.

Similar observations apply to the sequence of bounds {Ψn} as the value of n

increases, and a similar algorithm can be used to compute efficiently each bound Ψn given

the φ
(i)
n values.

4.4 Numerical Results

In this section, we present the results of using our framework for different traffic matrices.

First, we discuss the criteria we used to construct traffic matrices and to group results by

these criteria; the results are presented next.

4.4.1 Traffic Patterns

We first create the distinction between symmetric and asymmetric traffic patterns. The

term symmetric applies to the ring, rather than the traffic matrix itself. We call a traffic

pattern symmetric if the traffic pattern from any node to the others is repeated for all the

nodes. In other words, for a symmetric traffic matrix T we have

t(sd) = t(s⊕x,d⊕x) ∀i, j ∈ {0 · · · (N − 1)}, 1 ≤ x ≤ N − 1 (4.26)

This type of traffic pattern is of interest since the traffic pattern looks similar from different

nodes on the ring. If the above relation holds exactly, the optimal topology is likely to be

a regular topology. Rather than confine our attention to those traffic matrices in which

(4.26) holds strictly, we consider the general case where traffic components of the form

t(s⊕x,d⊕x) for a given s and d are all drawn from the same distribution. If the variance of

this distribution is zero, then (4.26) holds exactly, and we call the resulting traffic pattern

strictly symmetric, otherwise we call it statistically symmetric. If a traffic matrix is highly

asymmetric, so that the traffic patterns seen by different nodes of the ring are very different,

then the optimal topology is likely to perform well in the sections of the ring where there

is less congestion and poorly in the sections of high congestion. This is also likely to be the

case for any feasible topology, in other words, the difference between the best and worst

may be comparatively less. For this reason, we have chosen to concentrate on statistically

symmetric traffic matrices for all our results.

Having said that the traffic pattern looks similar from each node, we turn our

attention to what it looks like from a given node. We consider three simple cases which are
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Figure 4.8: Different traffic patterns.

represented schematically in Figure 4.8. First, the traffic from a given node i to all other

nodes may be the same; we refer to this as uniform traffic. For a strictly symmetric matrix,

this results in each element of the matrix having the same value (other than the diagonal

elements, which must be zero). When the traffic components to all the other nodes are not

the same, we can speak of a falling traffic pattern in which the traffic from node s to node

s ⊕ x decreases linearly as x increases. Similarly we speak of a rising pattern. Again, we

introduce the concept of statistical variation so that actual matrix elements vary from these

patterns statistically and do not vary strictly linearly as in Figure 4.8.

In order to have a good basis for comparison for the above three types of traffic

patterns, we focus on the concept of characteristic physical load of the traffic matrix. Given

a traffic matrix, we can compute the total traffic flowing over a given link of the ring in a

straightforward manner. For the problem instance to be feasible, this traffic must be less

than or equal to WC, where W is the number of wavelengths and C is the capacity in units

of traffic of each wavelength. If the matrix is statistically symmetric, the load on each link

will all be close to some value, because the traffic pattern is the same looking from any node

or link. We call this value the characteristic physical load of the matrix and obtain it by

taking the average of the physical load on each link, and express it as a percentage of WC.

For the same pattern, the characteristic load scales with the matrix elements. For example,

by multiplying each element of a matrix of characteristic load 50% by a factor of 1.5, it is

converted into a matrix of characteristic load 75% but of the same pattern.
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4.4.2 Results

We present results pertaining to 8-node and 16-node rings. For most of our results, the

value of W was taken to be between 16 and 20 and the value of C around 48. We used

randomly generated statistically symmetric traffic matrices for all the runs. A discrete uni-

form probability distribution was used for all traffic generation. We focus on characteristic

physical load values of 50% and 90%.

Because of different traffic patterns and different characteristic load values, the

absolute values of the different bounds plotted are not easy to compare. It is necessary

to express them in terms of some characteristic of the problem that makes it sensible to

compare them. We concentrate on the quantity Ψ0, which denotes the amount of electronic

routing performed by a topology that does not employ optical forwarding at all. This is

often actually used in networks at transitory stages in which the fiber medium is employed

with WDM, but no wavelength routing is employed [11, 25]. We can consider this case to

correspond to no grooming, that is, no effort has been made to groom individual traffic

components into lightpaths. The other extreme (not necessarily achievable) is complete

grooming, in which all traffic is groomed into lightpaths and no electronic routing is per-

formed. The actual amount of electronic routing performed by any feasible topology falls

between these limits and may be expressed as a fraction of Ψ0 to indicate the effectiveness

of grooming. Thus 1 indicates that all the traffic has been left ungroomed, while 0 corre-

sponds to the best situation in which no traffic is left to be groomed. The values {Ψn}
expressed as such ratios indicate the upper bounds on the optimal grooming effectiveness

and themselves represent the grooming effectiveness of the heuristic solutions created. The

values {Φn} represent lower bounds on the grooming effectiveness that can be reached in

principle, that is, in the optimal case. In our plots, we normalize each set of results to

the corresponding value of Ψ0 and plot the grooming effectiveness ratios as above. Other

quantities in the plot which we discuss below are similarly normalized.

We present two broad sets of data. In the first, or detailed section, we present Φn

and Ψn for values of n upto 7, for N = 8, 16, for the two characteristic loads and statistically

uniform, rising and falling patterns. Figures 4.9 - 4.14 present the data for 8-node rings

and Figures 4.15 - 4.18 present the data for 16-node rings. For N = 8, the rising and falling

matrices were so generated that the lowest traffic component in a row (traffic to nearest

node for rising pattern, traffic to farthest node for falling pattern) are close to zero. For
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Figure 4.9: Detailed results for N = 8, Statistically uniform pattern, 50% load
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Figure 4.10: Detailed results for N = 8, Statistically uniform pattern, 90% load



73

0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Decomposition Size n

G
ro

om
in

g 
E

ffe
ct

iv
en

es
s

Ψ
n
                         

Φ
n
                         

Lightpath Endpoint             
Node−specifc Lightpath Endpoint
2−hop lower bound              

Figure 4.11: Detailed results for N = 8, Statistically falling pattern, 50% load
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Figure 4.12: Detailed results for N = 8, Statistically falling pattern, 90% load
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Figure 4.13: Detailed results for N = 8, Statistically rising pattern, 50% load
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Figure 4.14: Detailed results for N = 8, Statistically rising pattern,90% load
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Figure 4.15: Detailed results for N = 16, Statistically falling pattern, 50% load, falling to

end
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Figure 4.16: Detailed results for N = 16, Statistically falling pattern, 90% load, falling to

end
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Figure 4.17: Detailed results for N = 16, Statistically falling pattern, 50% load, falling to

N/2
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Figure 4.18: Detailed results for N = 16, Statistically falling pattern, 90% load, falling to

N/2
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Figure 4.19: Ensemble results for N = 8, Statistically uniform pattern, 90% load, electronic

routing
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Figure 4.20: Ensemble results for N = 8, Statistically uniform pattern, 90% load, (normal-

ized)
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Figure 4.21: Ensemble results for N = 8, Statistically falling pattern, 50% load, (normal-

ized)
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Figure 4.22: Ensemble results for N = 8, Statistically falling pattern, 90% load, (normal-

ized)
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Figure 4.23: Ensemble results for N = 8, Statistically rising (step) pattern, 50% load,

(normalized)
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Figure 4.24: Ensemble results for N = 16, Statistically uniform pattern, 50% load, (nor-

malized)
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N = 16, we present data only for two types of falling traffic patterns. One is a statistically

falling matrix in which the traffic falls to zero at the farthest node as with the 8-node case.

We also have a data set in which the traffic from node s falls to zero at node s ⊕ 8, that

is, halfway around the ring. Such a pattern could be of interest if a bidirectional ring is

decomposed into two unidirectional rings by adopting shortest path routing for all traffic

components a priori, as we mentioned in Section 4.1. No data set for a rising pattern or

uniform pattern is included for N = 16.

Figures 4.9, 4.10 show the results for 8-node rings, statistically uniform traffic,

50% and 90% characteristic load respectively. Figures 4.11, 4.12 similarly show the results

for statistically falling traffic, 50% and 90% load, and figures 4.13, 4.14 the results for sta-

tistically falling traffic, 50% and 90% load, respectively. We observe that all the figures look

similar. There is a sharp decrease from Ψ0 to Ψ1 and more moderate decrease thereafter. In

all cases, there is a marked decrease for ΨN−1, and the grooming effectiveness for ΨN−1 is

between 0.1 and 0.2 in all cases. The growth of Φn is comparatively less. Figures 4.15, 4.16

show detailed results for 16-node rings, statistically falling traffic, falling to zero at the end

of the ring, 50% and 90% characteristic load respectively. Figures 4.17, 4.18 show similar

results for statistically falling traffic, falling to zero at a point halfway around the ring.

These show similar characteristics as the results for 8-node rings. Even though the largest

value of n for which Ψn is obtained, 7, is now less than half of N , we observe that Ψ7

once again represents grooming effectiveness between 0.1 and 0.2 in all the cases. Thus we

generally observe that we get good grooming effectiveness and that the lower bounds are

comparatively less in magnitude. This validates our approach of describing the values of

the bounds with respect to the no-optical-forwarding case rather than the optimal value,

because it indicates that a high value of electronic routing for some feasible topology is

more likely to result from lack of grooming (and can be corrected by proper grooming) than

being the inevitable consequence of a high optimal value.

In this detailed section, we also plot three other quantities (these do not vary with

number of nodes like Φn and Ψn). The first is a lower bound computed after the fashion

of the Moore bound found in literature (for example, [27]) by considering the number of

lightpath endpoints available to traffic, while the second is based on a per-node consideration

of the lightpath endpoints, derived after the fashion of [27]. Bounds of this type have been

developed by consideration of general topologies and it is expected that our bounds, derived

for the special case of the ring, will be tighter. In fact we see that, in most cases, we obtain
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only the trivial value of 0 for these bounds. However, for the 16-node ring in the case

where traffic falls to zero at the end of the ring, (figures 4.15, 4.16) the first bound has a

comparable value to the largest Φn we have obtained (in one case it is nearly equal and in

the other case distinctly larger).

Finally, we plot an easy to compute lower bound on the performance of a simple

heuristic which is based on solving the problem optimally but using only single-hop and two-

hop lightpaths. For even values of N , the simplicity of this heuristic is especially attractive

since a wavelength assignment is always possible and thus need not be performed, a result

for which we omit the formal statement and proof here. A lower bound on the performance

of such a heuristic is easy to obtain by considering that a traffic component from node s to

node s ⊕ m must be electronically routed at least �(m − 1)/2� times, for m > 2. We call

this bound the 2-hop lower bound. Since Ψ0 and Ψ1 are obtained from topologies that can

by definition contain no lightpaths longer than two hops, the objective value of the optimal

two-hop topology will by definition be equal to or less than these. This is borne out by the

results. However, in each case we see that all Ψn values for n > 1 are lower than the 2-hop

lower bound. Thus even the first few solutions provided by our framework can outperform

simplistic heuristics such as the two-hop optimal topology.

In the second set of data, we present different runs in each of which results are

plotted for 30 traffic matrices of the same pattern and same value of N (either 8 or 16).

For each matrix, Φn and Ψn are plotted for values of n upto a maximum, the 2-hop lower

bound is also plotted. Figures 4.19 - 4.24 present these results. Only the Ψn values which

produce appreciable improvements over the previous ones are labeled for improved read-

ability. Similarly, only the highest Φn value obtained is plotted. The 2-hop lower bound is

also plotted.

Figures 4.19,4.20 both plot the results for the same ensemble, 8-node rings with

statistically uniform traffic of 90% characteristic load. Figure 4.19 shows the actual values of

electronic routing while figure 4.20 expresses the same data normalized to produce grooming

effectiveness values as described above. All the rest of the figures use the normalized values.

Figures 4.21, 4.22 represent ensembles of 8-node rings, statistically falling traffic matrices

of 50% and 90% characteristic load values respectively. Figure 4.23 shows the results for

an ensemble of 8-node rings, 50% load; the traffic pattern is statistically a step rise, traffic

to near nodes being the same on average, while the traffic to further nodes is again the

same but a higher value. Figure 4.24 represents an ensemble of 16-node rings, statistically
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uniform traffic with 50% load. For the last two ensembles the highest value of n for which

Φn and Ψn are plotted is 5, for the earlier one it is 6.

The ensemble results confirm the detailed results we obtained earlier. Because

we have obtained bound values upto a smaller value of n, we do not see the low values

of grooming effectiveness we encountered in the detailed results, but the values of the

earlier bounds indicate that the same characteristic are likely to emerge. We note from the

normalized graphs that Ψ1 is likely to achieve a grooming effectiveness of around 0.5, and

this is likely to be the case irrespective of the characteristic load or traffic pattern at least

in the range we have varied them. Later Ψn values produce decreasing benefits. We note

both from the detailed as well as ensemble results that several Ψn values before (but not

including) ΨN−1 are likely to produce little incremental benefit. The ensemble results also

confirm that Ψ2 is likely to outperform the two-hop optimal topology heuristic for most

cases.
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Chapter 5

Star Networks

In this chapter, we concentrate on networks with the physical topology of a star,

that is several nodes connected to a single hub node, but not to each other. We adopt

the same strategy of characterizing achievability bounds on the electronic routing for the

network, and obtaining a series of bounds and heuristic solutions gaining increasing accuracy

with increasing amount of computational power spent.

Our main results are as follows. First, we prove that in WDM networks with a

star topology, wavelength assignment can be performed in polynomial time for any feasible

logical topology (i.e., any logical topology in which the number of lightpaths crossing a

link in a given direction does not exceed the number of wavelengths available on that link).

This result allows us to eliminate the wavelength assignment subproblem and concentrate

on obtaining feasible logical topologies. Next we obtain a sequence of strong lower and

upper bounds on the objective function which permit a tradeoff between the quality of the

final solution and the computational requirements. We then show that the sequence of

upper bounds yields an approximation algorithm for the traffic grooming problem. We also

consider a simple greedy heuristic, and we present results which indicate that its average

case behavior is quite good.
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Figure 5.1: (a) A 5-node star, (b) a logical topology on it

5.1 Problem Formulation

5.1.1 Assumptions and Notation

We consider a physical network topology in the form of a star S with N + 1 nodes, as

shown in Figure 5.1(a). There is a single node, which we refer to as the hub node, which

is connected to every other node by a direct physical link. There are no other physical

links. The nodes are numbered as follows: the N nodes other than the hub are numbered

from 1 to N in some arbitrary order, and the hub node is numbered 0. Each physical link

consists of a fiber link in each direction along the physical link. Each fiber can support W

wavelengths. Thus the undirected graph of the star gives rise to a directed graph with one

pair of oppositely directed arcs for each undirected edge; this is the physical topology of the

network. The traffic demands and other input parameters are assumed to form an instance

of the traffic grooming problem as before.

We again assume that no traffic component can traverse the same physical link

more than once in either direction. This assumption makes for simplicity and also ensures

that bandwidth is not used up without bound by a single traffic component. Under this

assumption, no node except for the hub node will switch traffic, either electronically or

optically. In other words, the hub node is the only node which sees traffic neither originated

by nor destined to it. The hub node is equipped with an OXC with N incoming and N

outgoing ports. Thus there will be only two kinds of lightpaths in the logical topology. The

first kind consists of single-hop lightpaths which either originate at a non-hub node and

terminate at the hub node, or vice versa. The second kind consists of two-hop lightpaths

that originate and terminate at non-hub nodes, and are switched optically at the hub node.
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Figure 5.1(b) shows one possible logical topology on a star network with two wavelengths.

To allow for the most general traffic matrices under these assumptions, in our formulation

we allow for multiple lightpaths between the same source and destination nodes.

In general logical topology problems [11] it is not always trivial to find out whether

a given problem instance is feasible or not. However, in the star topology under study, every

traffic component takes a unique path in the physical network that consists of a single link

from the hub to another node, a single link from another node to the hub, or a combination

of the two. Thus it is trivial to determine how much traffic will flow over each fiber for

a given traffic matrix. If this aggregate traffic is more than the total bandwidth (WC) of

the fiber at any of the links, the problem instance is obviously not feasible. Conversely, if

the aggregate traffic originating and terminating at each non-hub node is at most equal to

the capacity of a fiber, then the traffic can always be carried by a logical topology which

implements W single hop lightpaths on each direction of each physical link, with no two-

hop lightpaths; thus the problem instance is feasible. We call this the completely opaque

topology, since all the traffic between any two nodes must be electronically switched at the

hub node.

While the completely opaque topology can be used to carry any feasible traffic

demand, it has several drawbacks that severely affect the cost and scalability of the network.

First, requiring that all traffic components be electronically switched at the hub introduces

huge demands in the processing and buffering capacity of the hub node. Second, terminating

all NW wavelengths at the hub means that the node must be equipped with an equal number

of LTE’s. Since LTE’s are one of the most expensive components in optical networks,

realizing the completely opaque topology may be prohibitively expensive. (Note that each

non-hub node must be equipped with a sufficient number of LTEs to handle the traffic

originating/terminating at the node, but these LTEs are required regardless of the topology,

opaque or transparent.) Finally, the completely opaque topology is not scalable, since

upgrading the network (by adding more nodes or more wavelength per fiber) requires adding

more capacity (processing and buffer) and more LTEs at the hub node.

As before, we consider the problem of traffic grooming in star networks in order

to minimize the network cost. Since, as we discussed above, the network cost is directly

related to the total amount of electronic switching performed at the hub node, the objective

of our work is to minimize the amount of non-hub traffic that is switched at the hub. In

other words, we are interested in logical topologies, other than the completely opaque one, in
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which traffic between pairs of non-hub nodes is carried on two-hop lightpaths directly to the

destination. While, due to physical constraints such as the available number of transceivers

and the number of wavelengths, it may be impossible to establish lightpaths between all

pairs of non-hub nodes, two-hop lightpaths enhance the transparency of the network and

reduce cost by allowing traffic to bypass the hub node. Note also that electronic switching

involves electro-optic conversion, adding to the processor load at the intermediate hub node

and increasing the delay of traffic. Thus, in addition to producing logical topologies that can

be implemented cost-effectively, the objective of minimizing the total amount of electronic

switching at the hub also contributes to improved network performance.

Mathematical Formulation

The traffic grooming problem described in the previous subsection can be precisely formu-

lated as an integer linear program (ILP). The formulation is given below, and it uses the

same notation as before.

Given:

The physical topology, a star S of N non-hub nodes numbered {1, · · · , N)} and

a single hub node numbered 0

The traffic matrix T = [t(sd)], s, d ∈ {0 · · ·N}
t(sd) ∈ {0, 1, 2, · · ·}
t(ss) = 0,∀s

The wavelength limitW , which is the number of distinct wavelengths each fiber

link can carry.

The capacity C of each wavelength, which is the number of traffic components

of unit size each wavelength can carry.

Find:

Virtual topology, in terms of lightpath indicators bij , lightpath wavelength in-

dicators c
(k)
ij , and the traffic routing variables t

(sd)
ij .

Subject to:

Traffic Constraints

t
(sd)
ij ∈ {0, 1, 2, · · ·}, ∀(i, j) (5.1)

tij =
∑

sd t
(sd)
ij , ∀(i, j) (5.2)

tij ≤ bijC, ∀(i, j) (5.3)
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∑
j

t
(sd)
ij −

∑
j

t
(sd)
ji =




t(sd), s = i

−t(sd), d = i

0, s �= i, d �= i



∀i, (s, d) (5.4)

t
(sd)
iN = 0, ∀(s, d),∀i �= s (5.5)

t
(sd)
Nj = 0, ∀(s, d),∀j �= d (5.6)∑

d

t(sd) =
∑
j

tsj , ∀s ∈ {1, · · · , N} (5.7)

∑
s

t(sd) =
∑

i

tid, ∀d ∈ {1, · · · , N} (5.8)

Wavelength Constraints

bij ∈ {0, 1, 2, · · ·} (5.9)

c
(k)
ij ∈ {0, 1} (5.10)∑

j∈{0,···,N}
bij ≤ W, ∀i ∈ {1, · · · , N} (5.11)

∑
i∈{0,···,N}

bij ≤ W, ∀j ∈ {1, · · · , N} (5.12)

∑
k

c
(k)
ij = bij , ∀(i, j) (5.13)

∑
j∈{0,···,N}

c
(k)
ij ≤ 1, ∀i ∈ {1, · · · , N)},∀k (5.14)

∑
i∈{0,···N}

c
(k)
ij ≤ 1, ∀j ∈ {1, · · · , N)},∀k (5.15)

To minimize:

min


 ∑

i,j∈{0,···,N}
tij −

∑
s,d∈{0,···,N}

t(sd)


 (5.16)

In the above, constraints (5.2) and (5.3) define the lightpath traffic to source-

destination traffic components, and relate it to the lightpath count respectively. Con-

straint (5.4) ensures conservation of traffic flow both at lightpath endpoints as well as the

intermediate hub node. Equations (5.5) and (5.6) ensure that no node other than the hub

node will route traffic, and constraints (5.7) and (5.8) assert that lightpath endpoints at

non-hub nodes account for all traffic ordinating or terminating at those endpoints. The rest

of the constraints are related to wavelength assignment. Constraints (5.11) and (5.12) im-

plement the bound on the number of wavelengths supported by the fibers. Constraint (5.13)
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relates the lightpath wavelength indicators to the lightpath indicators, and constraints (5.14)

and (5.15) ensure that no wavelength clash can occur.

Logical topology problems are generally computationally intractable. Even though

the star is a simple topology, the problem remains sufficiently general so that we conjecture

that the full problem remains NP-hard.

5.2 Wavelength Assignment

In general, wavelength assignment is a hard subproblem for the virtual topology problem.

It has been shown in the literature for different virtual topology design problems that the

wavelength assignment subproblem is itself NP-hard, as we remarked before. However, for

certain virtual topology design problems, wavelength assignment may be trivial or straight-

forward. In Chapter 4, we have shown that wavelength assignment is trivially simple for

path networks. Below, we state a proposition that shows that wavelength assignment is

straightforward for star networks as defined above. As far as we know, no propositions of

this form have been made in relevant literature; accordingly, we also submit an original

proof for this proposition.

Proposition 5.2.1 A valid wavelength assignment using no more than W wavelengths ex-

ists for any set of lightpaths on a star physical topology as described in Section 5.1.1 that

does not require more than W lightpaths to traverse any given physical link. It can be found

in time polynomial in N and linear in W .

Proof. Consider the OXC at the hub node. There are N input and N output ports. The

given set of lightpaths can include both two-hop and single-hop lightpaths. We concen-

trate on coloring (that is, assigning wavelengths to) the two-hop lightpaths, which must be

switched optically through the hub node. Once that is done, the single-hop lightpaths can

always be colored, provided the physical loading is less than W for each fiber link.

Since the incoming and outgoing directions along a given physical link are com-

pletely independent as far as wavelength clash is concerned, we can represent the wavelength

routing requirement at the hub node by a bipartite multigraph with N vertices in each part.

The arcs of the bipartite graph represent the two-hop lightpaths in the given set of light-

paths. They can be considered undirected since directivity does not change the following

argument. Because of the physical loading requirement, there can be at most W two-hop
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lightpaths originating at or destined to any node. Thus, the degree of any vertex in the

bipartite graph is at most W . To obtain a valid wavelength assignment for the given set of

lightpaths, we need to color the arcs of the bipartite graph using no more than W colors,

such that no node has more than one incident arc of a given color.

By a corollary of Hall’s matching theorem, every W -regular bipartite multigraph

(W > 0) has a complete matching. The proof can be found in any standard text on graph

theory, such as [31]. It follows that every W -regular bipartite multigraph also has a valid W

edge coloring as described above. This is because the arcs included in a complete matching

can be colored using one color, and removing them leaves a (W − 1)-regular graph; so

the technique can be applied repeatedly until no more arcs remain, using only W colors.

It remains to observe that fictitious arcs can be added to any bipartite multigraph with

maximum vertex degree W (and equal number of vertices in either part) to convert it into

one in which every vertex has degree exactly W , that is, a W -regular bipartite multigraph.

Once a coloring is obtained, the fictitious arcs can be removed again. Thus, a wavelength

assignment always exists for a set of lightpaths as described above.

Standard matching algorithms can be used to find the complete matching, in par-

ticular [31] includes an algorithm that requires O(N3) time. The addition and deletion of

fictitious arcs takes no more than O(N2) time. Since a complete matching must be found

W times, a valid wavelength assignment can be found in O(WN3) time.

Note that the above admits arcs representing lightpaths from a node to itself.

Because of our specific problem, we do not expect such lightpaths, because there would

be no traffic for such a lightpath to carry; however, the wavelength assignment scheme is

sufficiently general to include them.

The implication of Proposition 5.2.1 is that once a feasible topology that mini-

mizes electronic switching has been obtained for a star network, assigning wavelengths to

the lightpaths can be performed in polynomial time. Thus, the lightpath indicator vari-

ables c
(k)
ij and corresponding constraints can be removed from the ILP formulation of the

traffic grooming problems for star networks without affecting the value of the objective

function at optimality. While the traffic grooming problem is conjectured to remain NP-

hard, Proposition 5.2.1 makes the development of bounds on the objective function and

heuristic algorithms a bit easier since they allow us to eliminate the wavelength assignment

subproblem from consideration.
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5.3 Heuristic and Bounds

Because of the intractable nature of the traffic grooming problem, we need algorithms to

produce good if not optimal solutions. The search space of the problem is quite large: for N

nodes other than the hub, there are N(N−1) traffic components each of which may be either

electronically switched at the hub or optically bypass it, giving rise to an overall space of

2N(N−1) combinations that a brute-force algorithm would have to evaluate. Many of these

would not be valid solutions, since there are only W wavelengths available to carry the

traffic on each fiber link. In this context, we use the term “valid” to denote solutions which

do not violate any wavelength or traffic constraints, and hence can actually be implemented

as a virtual topology. A partial solution (i.e., one which defines some lightpaths and traffic

routing, but leaves others indeterminate) is called valid if there is at least one valid complete

solution of which the partial solution is a subset.

In this section we present an algorithm which builds possible solutions incremen-

tally, visiting each possible solution exactly once while avoiding any invalid solution. Fur-

ther, we employ pruning techniques to further reduce the search. While the average case

is improved, the worst case running time of the algorithm, of course, remains very large.

However, the incremental nature of the algorithm allows practical benefits to be obtained

even without completing the exhaustive search. We demonstrate how increasingly good

bounds, both upper and lower, may be obtained with successively more computation. Such

bounds are useful in evaluating the performance of heuristic approaches. As a consequence

of our results in the previous subsection indicating that any solution otherwise valid will

have a valid wavelength assignment, we concentrate on finding a solution in terms of the

virtual topology and traffic routing only.

5.3.1 Examining Solutions

Our strategy is to examine partial or complete solutions to a given problem instance in the

form of a traversal of a tree formed by the partial solutions. Different pruning methods are

applied on this tree to reduce the search space, as in standard tree searches and branch-and-

bound methods. However, the key idea of our approach is to construct the tree in a manner

that significantly reduces the search space. Specifically, only valid solutions (complete or

partial) are allowed to appear in the tree. Among these, our aim is to examine more of

those which are maximally useful.
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To simplify what follows, we first reduce the traffic matrix T so that all elements

are less than the capacity C of a single wavelength, by assigning whole lightpaths to traffic

components between a given source-destination pair that can fill up a lightpath completely.

To do this, we repeatedly subtract C from any traffic component which is greater than or

equal to C until we have a value strictly less than C for that traffic component. The available

wavelengths from and to every non-hub node must also be decremented by the number of

lightpaths thus assigned. This procedure in effect determines some lightpaths and routing of

traffic over these lightpaths, thus constraining the space of possible solutions to the problem

instance. Since breaking such lightpaths would increase the electronic routing by C, and

since any benefit we can get by having that wavelength available for grooming traffic cannot

exceed C, this procedure does not affect the feasibility of a given problem instance, and

does not preclude us from reaching an optimal solution. Since a given traffic matrix is not

guaranteed to have any specific number of such traffic components, this procedure does

not affect the tractability of the problem. We continue using the notation specified above

for the traffic matrix and traffic components, but in what follows they stand for the same

variables after the reduction process.

Consider an N × N mask matrix M = [m(sd)], the rows (respectively, columns)

of which correspond to the N rows (resp., columns) of the traffic matrix T other than the

row (resp., column) that includes traffic components originating (resp., terminating) at the

hub. In the mask matrix, every element outside the diagonal has one of two values: “E”

or “O.” (Since the traffic from a node to itself is always zero, the diagonal elements can

never indicate actual traffic; therefore, we can ignore them for the purpose of the mask

matrix, such as by assigning an “Inapplicable” value to them.) A mask matrix stands

for a proposed solution to a given problem instance. A value of “E” for m(sd) indicates

that the corresponding traffic component t(sd) is carried on two single-hop lightpaths to

its destination in this solution, and thus, it is electronically switched at the hub. On the

other hand, a value of “O” indicates that the traffic component is carried directly to its

destination node on a two-hop lightpath and is optically routed by the OXC at the hub.

Since every element may have either of the two values, there are 2N(N−1) possible

mask matrices for a given traffic matrix. In order to create a natural progression in which

candidate solutions may be examined, we introduce the concept of mask matrices represent-

ing partial solutions. We introduce a third possible value of “U” (for “unassigned”) that

the mask matrix elements may take, which simply indicates that the partial solution does



92

not specify whether the corresponding traffic component should be electronically switched

or optically routed.

It may appear that we have actually made the problem harder, by increasing the

search space considerably to a total of 3N(N−1), rather than making it easier. However, this

actually allows us to create an efficient search algorithm; since a partial mask matrix stands

for multiple complete solutions (all combinations of “E” and “O” for the “U” elements),

pruning such a matrix due to infeasibility or suboptimality, as described below, can prune

a large number of complete solutions. The search algorithm is described in detail next.

Creating the Search Tree

We traverse a binary search tree in which each vertex is a mask matrix, such as the one

shown in Figure 5.2. All vertices other than leaf vertices represent partial mask matrices,

whereas the leaf vertices are complete mask matrices. (Due to pruning, some non-leaf

vertices may become complete mask matrices as well, as explained below.) We start with a

mask matrix in which all elements have the value “U”, or unassigned (with the exception of

the diagonal elements which are “Inapplicable”) - this matrix forms the root of the search

tree, as seen in Figure 5.2. At each level of the tree, we generate the next level by picking

a single traffic component and generating two children for each vertex at that level, one for

which the corresponding element of the mask matrix is set to “E” and one for which it is set

to “O”. For instance, in Figure 5.2, mask matrices B and C (the second level of the tree) are

derived from matrix A (the root of the tree) by changing the element in the first row and

second column of matrix A from “U” to “E” and “O,” respectively. Thus, each level of the

tree is generated by letting a particular traffic component take up each of the two possible

values it can have. Let Πt denote the ordering (t1, t2, t3, · · ·) such that level i of the search

tree is generated by setting the mask element corresponding to ti. A complete search will

always generate a full binary tree of depth N(N − 1), and will generate all possible mask

matrices as leaves, no matter what Πt is. However, as we have mentioned above, we may

wish to stop before generating the tree fully and extract partial information in the form of

bounds; also, as we show below, pruning will allow us not to generate all the leaves even for

an exhaustive search. In these cases, changing the ordering Πt would change the bounds

we obtained, or the amount of pruning possible; thus the search is characterized by Πt.
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Figure 5.2: Generating the search tree for a star network.

Pruning for Invalidity

If we assign values to different mask matrix elements independently, we shall encounter

some mask matrices that represent invalid solutions to the problem instance. For example,

if a mask matrix has W elements of the same row set to “O”, it indicates that W two-hop

lightpaths are to be set up from the corresponding node to other non-hub nodes. But if

even one of the other N + 1 − W traffic components sourced by that node is greater than

zero, then such a solution is clearly invalid because there is now no wavelength left over to

carry this traffic. Specifically, for each non-hub node i of the star network, the following
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conditions (which are a consequence of the formulation given in Section 5.1.1) must be

satisfied for any valid mask matrix M :

 ∑

d∈{1,···,N},d�=i

I
(id)
O (M) t(id)


 + t(i0) ≤


Wo(i) −

∑
d∈{1,···,N},d�=i

I
(id)
O (M)


C , i = 1, · · · , N

(5.17)
 ∑

s∈{1,···,N},s �=i

I
(si)
O (M) t(si)


 + t(0i) ≤


Wt(i) −

∑
s∈{1,···,N},s �=i

I
(si)
O (M)


C , i = 1, · · · , N

(5.18)

In the above expressions, we have used I
(sd)
O (M) and I

(sd)
O (M) for indicators of whether the

mask element m(sd) is “O” or not. More specifically, I(sd)
O (M) is 1 if msd is “O”, and it is 0,

otherwise; I(sd)
O (M) is its inverse indicator. We have also used Wo(i) ≤ W and Wt(i) ≤ W to

denote the number of wavelengths available for node i to originate and terminate lightpaths,

respectively, after the reduction process mentioned in Section 5.3.1. The term in parentheses

in the right-hand side of (5.17) represents the number of wavelengths that are available at

non-hub node i to source traffic after accounting for the reduction process (the term Wo(i))

and the two-hop lightpaths already specified in matrix M (the sum within the parentheses).

Therefore, the right-hand side of (5.17) is the available outgoing traffic capacity on the link

from node i to the hub. The left-hand side of (5.17) is the traffic demand out of node i

that has not been assigned to a two-hop lightpath in matrix M , including the traffic to the

hub node. Clearly, this total traffic demand must be at most equal to the capacity of the

available wavelengths for matrix M to represent a valid partial solution. Expression (5.18)

is similar, but refers to the traffic demands and capacity to (rather than from) node i.

As we generate the search tree, we can avoid generating the invalid cases by ap-

plying the above two equations. Whenever we generate a new mask matrix by changing the

status of a traffic component ti from “U” to “O”, it may be the case that another element

tj (which currently has the value of “U”) cannot be set to “O” as well without violating the

above conditions, irrespective of what the other “U” mask elements are set to. (Note that

only other elements in the same row or column as the mask element ti need be examined.)

In this case, ti being set to “O” forces some tj in the same row or column to be “E”, because

there is no valid solution in which both these traffic elements are “O”, and we set the mask

element tj to “E” accordingly. Returning to Figure 5.2, we note that matrix C is generated

by changing the element in the first column and second row of matrix A to “O” from “U”.

Assuming an appropriate problem instance, changing this element to “O” forces two other
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elements, one in the same row and another in the same column to be changed to “E”; thus,

matrix C differs from matrix A in three positions rather than one. In doing so, in effect we

prune the part of the search tree which contains partial mask matrices with ti set to “O”

and tj either “O” or “U”. This can be done in quadratic time for each time we set a mask

element to “O”, because there are 2(N − 1) other elements to examine, and the conditions

above can be evaluated for each of them by summing N elements. A mask element being

set to “E” does not force any other traffic element, so there is no corresponding pruning in

that case.

We consider the traffic components in the order Πt. If, while making the pass

for traffic component tj , we encounter a partial mask matrix in which tj has already been

forced to be “E” by some earlier traffic component ti chosen to be “O” in that subtree, we

simply replicate that mask matrix to form its only child, since there can be no child with

tj set to “O”. Thus the search tree no longer remains strictly binary.

There is one special case of this pruning which can be applied at the very root of

the search tree. There may be some traffic elements that cannot be assigned to two-hop

lightpaths in any valid solution. For these, the conditions above will be violated even when

none of the other elements are set to “O.” Thus we can set the corresponding mask elements

to be “E” at the very beginning, and start with the resulting mask matrix at the root of

the search tree, instead of one with every element set to “U”.

Pruning for Suboptimality

Following the above method, we would create a search tree in which only mask matrices

corresponding to valid solutions would appear. Every valid partial mask matrix would

actually appear in the search tree, and if the tree were fully generated, every valid complete

mask matrix would appear as a leaf. In this section, we outline two methods of pruning the

search tree of certain suboptimal mask matrices, further reducing the search space.

In general, at any intermediate vertex of the search tree, the partial mask matrix

has some elements still set to “U”. In most cases, all of these elements cannot be set to “O”

without violating the conditions (5.17) and (5.18). Thus we need to generate more levels

of the tree to determine which traffic components can be electronically switched and which

can be routed optically. However, if the partial mask matrix is “close” to a solution in the

sense that most resource conflicts have been already resolved in it, then it may be possible
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to set all “U” elements to “O”. This is equivalent to pruning the entire subtree rooted at

the vertex representing the partial mask matrix, and replacing it with the leaf vertex of

that subtree which yields the optimal solution within that subtree. For each vertex of the

tree, this check can be made in quadratic time. An example of this pruning in Figure 5.2

is in going from matrix B to matrix D.

The second method of pruning suboptimal solutions is related to the extraction

of bounds as described in the next section, and is the most ordinary and familiar kind of

pruning. Given the search tree at any intermediate point of generation, let L denote the set

of vertices for which no children have been generated yet. We can extract upper and lower

bounds on the value of the best (lowest) value of electronic routing that can be obtained

in the portion of the search tree rooted at any vertex v ∈ L. Since we are interested in

the globally best (lowest) value, we can safely prune the subtree rooted at a vertex v if the

lower bound obtained from v is greater than the upper bound obtained from at least one

other vertex in L.

The operation of the algorithm using the above procedures is illustrated in Fig-

ure 5.2. We show the search tree generated up to three levels. In this example, N = 4 and

the first three traffic elements of the ordering Πt are t(12), t(13), t(14). The mask matrix A

is the starting mask with no mask element assigned and forms the root of the search tree.

Mask matrices B and C are generated from A by setting the mask element m(12) (i.e., the

one in the first row and second column) to “E” and “O” respectively. In C, this forces two

other mask elements m(14) and m(42) to become “E”, due to pruning for invalidity. The

same kind of pruning is observed when generating E from B and G from C respectively, at

the next level; in both these cases, m(13) is set to “O”, which forces two traffic components

to be set to “E” in mask E and one in G. D is generated from B by setting m(13) to “E”;

this results in a partial matrix which yields a valid mask when completed optimistically,

i.e., when all remaining “U” elements are set to “O.” This new mask matrix replaces D due

to pruning for suboptimality. The next level is generated by the traffic element t(14); all

four partial masks D, E, F and G produce a single child identical to themselves because the

mask element m(14) is already set in each of them.
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5.3.2 Bounds

The above tree search and pruning procedures provide an efficient method of searching

for the optimal solution, but for any given problem instance, the computation required to

complete the exhaustive search may still be intractably large. The benefit of the incremental

method used to generate the search space is that partial information can be extracted from

intermediate states of the computation. The methods we describe can be used to extract

lower and upper bounds on the optimal value of electronic routing from any intermediate

state of the tree. For ease of discussion, we assume that the intermediate trees are those

resulting from generating the tree fully up to a given level and no further. That is, we

consider only partially generated trees in which every vertex in the set L defined above has

the same depth from the root.

Upper Bounds

Consider the mask matrix at the search tree vertex v ∈ L. In general, this matrix will have

some elements set to “E” and “O”, and some “U”. We make the observation that we can

always generate a valid solution from any such matrix by converting all the “U” to “E”.

Since such a completed mask matrix represents a valid solution, the best solution in the

subtree rooted at v cannot be any worse than this. (In fact this completed mask matrix is

the leaf representing the worst solution in the subtree rooted at v.) Let us denote the value

of electronic routing obtained from this “pessimistic” solution as q(v):

q(v) =
∑

s,d∈{1,···,N},s �=d

t(sd)I
(sd)
O (v) (5.19)

Then q(v) is an upper bound on the best (lowest) amount of electronic routing that can

be obtained from the solutions in the subtree rooted at v. Let us denote by Li the set L
obtained after generating the tree completely up to level i. Then we can define a series

{Qi} of upper bounds as follows:

Qi = min
v∈Li

q(v) (5.20)

It is obvious that since the different q(v) are objective values of valid solutions, taking the

best (minimum) of them will still yield a bound on the global optimal value. Since q(v) is

a pessimistic bound, we know that upon generating more levels we shall not need to refine

that value upwards. This is clear from the following consideration: let uE and uO be the
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two children of v, uE is the mask matrix in which the traffic component generating the new

level is set to “E” and uO the one in which it is set to “O”. We denote the mask element

corresponding to the traffic component generating this level by mi. There are three possible

cases:

1. mi was set to “U” in v, therefore both uE and uO are present; in this case q(uE) = q(v),

and q(uO) < q(v).

2. mi was set to “E” in v because of an earlier pruning for feasibility; in this case only

uE is generated, and q(uE) = q(v).

3. mi was set to “O” in v because of an earlier pruning for suboptimality; in this case

only uO is generated, and q(uO) = q(v).

Based on the above observations, we can assert that min{q(uE), q(uO)} ≤ q(v).

Since every vertex v ∈ Li generates children to form Li+1, we can assert that

Qi+1 ≤ Qi, ∀i ∈ 1, 2, · · ·N(N − 1) − 1 (5.21)

Thus, {Qi} is a strong sequence of upper bounds.

Lower Bounds

We derived an upper bound on the best objective value we can obtain from the solutions

in a subtree rooted at v by taking the most pessimistic completion of v. We can similarly

obtain a lower bound on the best objective value under v by taking the most optimistic

completion of v. In other words, we complete v by turning every “U” into a “O”, and note

that no complete valid solution in the subtree rooted at v can yield a lower objective value.

In keeping with our terminology above, we use I
(sd)
E (M) and I

(sd)
E (M) for indicators

of whether the mask element m(sd) is “E” or not. Thus I
(sd)
E (M) is 1 if msd is “E”, and 0

otherwise; I(sd)
E (M) is its inverse indicator. Using this, we can now define the lower bound

as the optimistic objective value p(v) as:

p(v) =
∑

s,d∈{1,···,N},s �=d

t(sd)I
(sd)
E (v) (5.22)

Note that, whereas q(v) represents a valid solution and therefore is an objective

value that can actually be attained, p(v) in general is not an attainable value. In fact,
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because of the pruning for suboptimality, any partial mask v that yields a valid mask

when completed optimistically is actually replaced by the completed mask. The value p(v)

represents an attainable value only in these cases when v is already a complete mask. In

all other cases, p(v) is strictly lower than the best objective value to be found under v.

The global optimal solution is guaranteed to lie in the subtree rooted at one of

the nodes v ∈ L. Thus if we take the most optimistic case we can obtain from all of these

nodes, then we are certain to bound the global optimum from below. As before, we choose

to define our series of bounds based on intermediate states of the search tree which are

completely generated up to a level i, and define {Pi} as follows:

Pi = min
v∈Li

p(v) (5.23)

The sequence of bounds {Pi} is a strong sequence of bounds from arguments similar

to those made for {Qi}. In essence, we observe that at most one traffic component changes

from v to uE , from “U” to “E” (uE may be identical to v because the traffic component

generating the current level may have already been set in v), thus p(uE) ≥ p(v). Similarly,

if (uO) is not identical to v, then one traffic component which was “U” in v is changed to

“O” in uO (which does not change the optimistic sum), and this may force other traffic

component to “E” (which increases the optimistic sum), thus p(uO) ≥ p(v). Hence we can

assert that:

Pi+1 ≥ Pi, ∀i ∈ 1, 2, · · ·N(N − 1) − 1 (5.24)

Thus, {Pi} is a strong sequence of upper bounds.

Tightness of Bounds

While it depends on a given problem instance how fast the upper and lower bounds will

approach each other, we can make some comments regarding how closely we may expect

to approach the optimal solution using bounds derived from a given level i of the search

tree. Consider any node v ∈ Li. Now p(v) is obtained by setting all the “U” elements of

v to “O”, while q(v) is obtained by setting the same elements to “E”. Thus, the difference

between these two quantities is equal to the sum of the traffic components corresponding

to the mask elements which are set to “U” in v. At level i, the first i traffic components

in Πt have already been used to generate the tree, thus the corresponding mask elements

cannot be “U” in v. (The other elements may be “U”, but this is not guaranteed because
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of the pruning methods we follow.) We use σi(Πt) to denote the sum of the first i elements

of Πt, i = {1, 2, · · ·N(N − 1)} and let σ0(Πt) = 0. Then we have:

q(v) − p(v) ≤


 ∑

s,d∈{1,···,N},s �=d

t(sd)


 − σi(Πt) (5.25)

Consider the search tree vertex vP which determines the value of Pi, that is, p(vP) = Pi.

The above equation holds for vP , and we also note that since Qi is defined to be the

minimum of all q(v) values, we must have Qi ≤ q(vP). Combining these observations, we

assert that:

Qi − Pi ≤


 ∑

s,d∈{1,···,N},s �=d

t(sd)


 − σi(Πt) (5.26)

Thus, for the fastest convergence in general, we should choose Πt to be an ordering of the

traffic components from the largest to the smallest, ties being broken arbitrarily. In that

case,

σi(Πt) ≥
i

N(N − 1)

∑
s,d∈{1,···,N},s �=d

t(sd) (5.27)

and we can rewrite the guarantee (5.26) as:

Qi − Pi ≤
(

1 − i

N(N − 1)

) 
 ∑

s,d∈{1,···,N},s �=d

t(sd)


 (5.28)

Thus, the sequence of bounds we present also provides an approximation scheme

using the valid solutions which produce the upper bounds.

5.3.3 Heuristic Approaches

As we mentioned in the last section, the series of feasible solutions we generate to derive the

successive upper bounds form a series of heuristic solutions as well. Each heuristic solution

is guaranteed to approach the optimal to a certain degree, but the computation required

for heuristic solutions with better guarantees is progressively larger.

This framework of upper bounds set by these feasible solutions also allow us to

evaluate other heuristic solutions, both as to how closely they approach the optimal, and the

relative amounts of computation needed. In Section 5.4 we use this framework to evaluate

the performance of a greedy heuristic, which we describe below.

We start by reducing the traffic matrix as described above in Section 5.3.1. We

then create an ordering Πt of the traffic components in which the traffic components are
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sorted in order of magnitude, from largest to smallest, ties broken arbitrarily. The greedy

algorithm then consists of attempting to assign lightpaths to traffic components in this

order. A traffic component is assigned a lightpath if it is possible without violating the

constraints (5.17, 5.18), otherwise it is not. The algorithm terminates when each traffic

component has been considered. By arguments similar to those in Section 5.3.1, the greedy

algorithm needs low polynomial time, specifically O(N3). Thus it is cheap to compute the

greedy solution.

By combining the framework of upper bounds we propose with the greedy approach

above, we can create a scheme which will practically have better performance than the

upper bounds themselves, though it is not straightforward to characterize the amount of

improvement. The key observation is that the greedy approach described above can be

carried through starting from any partial solution. To start with, the pure greedy algorithm

as described above assumes that no decision regarding electronic or optical routing has been

made for any traffic component. This is the equivalent of starting with a mask matrix in

which every element is “U”. However, it is possible to modify the greedy algorithm so that

it starts with a matrix in which some elements are “O” or “E”, and the greedy algorithm

simply skips attempting to decide the routing for the corresponding traffic components.

In other words, we can complete a partial mask matrix by using the greedy al-

gorithm. Since the “pessimistic” completion described in Section 5.3.2 sets all unassigned

mask elements to electronic routing, the greedy completion can do no worse and may possi-

bly do better. Since the greedy completion of the partial solution corresponds to a feasible

solution, the value of total electronic routing obtained is still an upper bound on the opti-

mal. We define a series of upper bounds {Q(g)
i } based on this idea. As before, we choose

to define our series of bounds based on intermediate states of the search tree which are

completely generated up to a level i, and define :

Q(g)
i = min

v∈Li

q(g)(v) (5.29)

where q(g)(v) denotes the electronic routing value obtained from the greedy completion of

a partial mask matrix v, just as q(v) denoted the electronic routing for the pessimistic

completion of the same. By a similar argument as used for {Qi}, {Q(g)
i } is also a strong

sequence of bounds.
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5.4 Numerical Results

5.4.1 Traffic Conditions

In the star network, every non-hub node is in a similar position with respect to the hub

node. There is no ordering or grouping inherent in the star network as we have defined it.

Thus it is not sensible to designate traffic patterns to be rising or falling as we had done

in Section 4.4.1. However, without any ordering being inherent, we still might distinguish

between traffic conditions as to how much the total traffic is with regard to the maximum

bandwidth available in the network, and whether some traffic components dominate the

traffic matrix.

We characterize a traffic matrix by its loading, which as before is the total traffic

it contains, expressed as a percentage of the total bandwidth of the network (that is the

total bandwidth of all the fiber links). Obviously, for very low values, the network is not

interesting as it is likely that every traffic component can be given a lightpath. The network

is also severely underutilized. For 100% loading, only traffic components equal to C can be

given lightpaths, all other traffic components must be electronically routed. The interesing

(as well as most realistic) operating condition is when loading is only a little below 100%,

so that opportunities for grooming exist without the problem being trivial.

The total traffic in the traffic matrix may be roughly uniformly distributed among

the N(N−1) traffic components. It is more realistic to assume that some traffic components

are significantly larger than others. We distinguish between two kinds of non-uniformity.

The first one can be called the “local groups” pattern. This indicates that the non-hub

nodes are divided into two or more groups, and a given large percentage of the total traffic

occurs entirely within one group or another. Thus the traffic is largely local, only a little

traffic exists which communicates between groups. The other kind of restriction is that of

“dominating” traffic components. This describes the case when a small number of traffic

component (say 10% of the total), otherwise not related, contains a large fraction (say 70%)

of the total traffic in the matrix. This characteristic may also be expressed as a metric for

a traffic matrix by noting how much of the total traffic is contained in a given top fraction

of traffic components.

As before, we introduce the concept of statistical variation so that when we speak

of a large number of traffic matrices with the same characteristics, we imply that the

characteristics are statistical descriptions of the ensemble, not that each characteristic is
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precisely the same for every traffic matrix.

5.4.2 Results

We concentrate on traffic patterns with an average loading of 90%, for the reasons given

in the last section. Also, we recognize that local grouping reduces the difficulty of the

problems. In the extreme case where groups have exactly zero traffic to each other, the

problem instance can be exactly decomposed into star networks of smaller size which can

be solved with much less effort. The case of dominating traffic components does not reduce

the problem difficulty to that extent, because the coupling of the variables that makes

grooming a difficult problem remains. However, our greedy algorithm as well as the bounds

obtained by the methods described above work on an ordering of the traffic components

from the large to the small. Thus domination by some traffic components will tend to help

these algorithms, showing a better performance in the early stages of algorithm execution.

Hence we conclude that a nearly uniform traffic matrix will challenge our method most,

and choose to concentrate on uniform traffic patterns.

We introduce a slight enhancement in our description of the uniform traffic pattern.

It is obvious that the traffic to and from the hub node to the other nodes is important from a

grooming point of view because it shares the bandwidth, but it is not routed and hence does

not contribute to the objective function. When we speak of a statistically uniform traffic

matrix, we will mean that all traffic components among the non-hub nodes are drawn from

one distribution, and that all traffic components to and from the hub are drawn from

another. This allows the means of the two distributions to be different and we can describe

this inequality by noting what fraction (on the average) of the total traffic on each link is

accounted for by traffic to and from the hub. In what follows we indicate call this metric

“hub traffic”. When the hub traffic is zero, the hub node is a pure routing node, and there

is the largest opportunity for grooming traffic. As the hub traffic increases, we expect that

grooming will become slightly easier since there is less contention for lightpaths.

Obviously, a traffic pattern which is strictly uniform has a peculiar structure which

can be exploited easily to get good solutions, though our algorithms do not do so. As such,

we employ statistically uniform traffic patterns. We generate traffic patterns by fixing

the total loading and the hub traffic, and then generating a uniform matrix by the above

definitions. Individual traffic matrices are then generated by introducing random variations
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in each traffic component.

Below we present some of the results we have obtained by applying the methods

we have described above to the resulting traffic matrices. While only a few results are

presented, they are representative of the much larger volume of results we have gathered.

All the networks were given values of W = 24 and C = 16, which are within representative

limits of current technology as well as making for reasonably challenging traffic grooming

problems. All the quantities, including the initial value of the upper bound, refer to values

after the matrix has been reduced as described in Section 5.3.1. Figures 5.3-5.12 represent

the bounds and heuristics obtained, for stars of different sizes and different values of hub

traffic. The first three represent results for star networks with 6 non-hub nodes. We are able

to traverse the entire search tree for these cases. As we see, the results are as expected from

our discussion above. In these cases, the upper bound appears to converge to the optimal

before the lower bound, though its rate of convergence is slower. But the rest of the figures

(for larger number of nodes) show that these are not general characteristics, in fact the

tendencies are reversed in the latter cases. It is tempting to conclude that the convergence

behavior of the bounds change with increasing size of the star network. However, we also

note that the optimum value is lower in the latter cases, leaving more room for the upper

bound to converge and thus making for a higher rate of convergence. Also, the lower

bound in the latter cases still does not converge much before the upper bound. It seems

more reasonable to conclude that the lower bound simply is more sluggish in reaching the

optimal. This is to be expected when we recall that the lower bound depends on largely

unattainable and unduly optimistic solutions. We also note that variation in hub traffic

does not appear to create a significant difference in the performance.

As we see from Figures 5.6-5.8, we are able to solve the star network completely for

8- and 10-node stars. Figure 5.9 shows a particularly intransigent instance of a 10-node star,

in which we cannot reach the optimal solution. In this case the computation was terminated

after examining roughly a million candidate solutions while traversing the search tree. For

most 10-node stars, the optimal solution was reached before this limit, taking a few minutes

of computation on a Sparc-10 SUN workstation each.

Figures 5.10-5.12 show results for 20-node networks. We are able to reach the

solution only in the last case, which is not representative because the initial bounds are very

close, indicating a particularly easy instance. For the large part, we are unable to reach

the optimal solution, but the results indicate that the general behaviour of the bounds is
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the same as that observed for the smaller networks, and that with more computation, we

would approach the optimal more closely as expected from theoretical considerations.

From all of the above, we make the important observation that the upper bound

enhanced by the greedy heuristic is not only a good heuristic algorithm, but one that closely

approaches the optimal early. In other words, the greedy enhancement of the upper bound

provides a way to obtain a good solution to the star network with very little computation.
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Figure 5.3: Star network result: N = 6, 0% hub traffic
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Figure 5.4: Star network result: N = 6, 0% hub traffic
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Figure 5.5: Star network result: N = 6, 60% hub traffic
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Figure 5.6: Star network result: N = 8, 60% hub traffic
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Figure 5.7: Star network result: N = 10, 60% hub traffic
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Figure 5.8: Star network result: N = 10, 30% hub traffic
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Figure 5.9: Star network result: N = 10, 0% hub traffic

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Search tree level

G
ro

om
in

g 
E

ffe
ct

iv
en

es
s

Upper bound    
Lower bound    
Greedy enhanced

Figure 5.10: Star network result: N = 20, 0% hub traffic
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Figure 5.11: Star network result: N = 20, 60% hub traffic
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Figure 5.12: Star network result: N = 20, 60% hub traffic
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Chapter 6

Tree Networks

A star topology as described above can be viewed as a special case of the more

general tree topology. In this chapter, we extend our observations on the star network to

networks with the physical topology of a tree, and obtain results for the tree network by

applying the results for the star network.

6.1 Problem Formulation

We consider a physical topology in the form of a tree T with N nodes. We distinguish

between leaf nodes which have degree one and interior nodes which have degree greater

than one. As with the star, the physical topology of the network is obtained by assuming

that each edge of the undirected tree consists of two fiber links, one in each direction along

the physical link. The number of wavelengths W , the capacity C, and the traffic matrix T

have similar significance as for the ring and star networks.

We make the similar assumption that a traffic component is allowed to traverse the

same physical link at most once and in only one direction. Since the underlying topology is

that of a tree, and hence without cycles, this assumption implies that a traffic component

from a given source node to a given destination node will follow a unique path through the

tree. Interior tree nodes are equipped with OXCs, and are the only nodes that switch traffic,

electronically or optically. Leaf nodes are similar to non-hub nodes in the star network in

that they never handle any traffic other than that originated or terminated by them.

Because of the unique routing for any given traffic component, it again follows

that feasibility of a problem instance can be determined in a straightforward manner by
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summing up the traffic components flowing over each directed link. If this total exceeds

the capacity WC for any fiber, then the problem instance is not feasible; otherwise, it is

feasible because it can be carried by the completely opaque topology obtained by creating

W single-hop lightpaths over each physical link in each direction.

We can create an integer linear program formulation for the problem of grooming

traffic in order to minimize total amount of electronic switching in the tree. The formulation

is similar to that given above for the star, but the constraints are more involved, and it

is somewhat more like the formulation for the general virtual topology problem, such as

that given in Chapter 2. Because the star topology is a special case of the tree topology, it

follows that the full virtual topology problem is intractable for the tree topology as well.

6.2 Wavelength Assignment

We note from the proof for Proposition 5.2.1 that any colors can be assigned to any complete

matching, so different valid wavelength assignments can be obtained from the same sequence

of complete matchings obtained during the execution of the algorithm given in Section 5.2.

We utilize this in proving our next proposition, regarding wavelength assignment in tree

networks.

Proposition 6.2.1 A valid wavelength assignment using no more than W wavelengths ex-

ists for any set of lightpaths on a tree physical topology as described in Section 6.1 that does

not require more than W lightpaths to traverse any given physical link. It can be found in

time polynomial in N and linear in W .

Proof. We prove the proposition by demonstrating that a constructive algorithm exists

to perform the wavelength assignment. The algorithm is based on viewing a given node in

the tree and the nodes adjacent to it as a star, and utilizing Proposition 5.2.1 to obtain a

valid wavelength assignment for it. This is done successively at all parts of the tree and it

is shown that a consistent wavelength assignment can always be obtained.

Arbitrarily choose a node and designate it as the root of the tree. This establishes

a parent-child relationship of adjacent nodes throughout the tree. Consider the star network

obtained by including the root of the tree as the hub node, and every child of the root in the

tree as a non-hub node, together with the links between them. All lightpaths that traverse

any of the links included are also included in the star. Lightpaths which have endpoints at



113

(b)(a)

b d

a

g h j

d’c’b’

a’

c

e f

e’
f’ g’

b’

h’ j’

c’

a’ a’

Figure 6.1: Replacing a tree by stars for wavelength assignment. (a) A tree network with

some lightpaths, (b) three of the stars obtained from it.

nodes of the tree other than those included in the star are replaced with lightpaths which

traverse the same set of fiber links in the star but are terminated at the non-hub nodes

of the star, as shown in Figure 6.1. The star so obtained will not have any more than W

lightpaths traversing any of the links because the original tree did not. By Proposition 5.2.1,

a wavelength assignment can be found for it. We choose such a wavelength assignment for

the lightpaths in the star and assign the corresponding wavelengths to the corresponding

lightpaths in the tree.

Now consider each of the children of the root in the following way. Form a star

with that node as the hub, its children as non-hub nodes, its parent (the root) as an extra

non-hub node, the links between them, and all lightpaths that traverse those links. Such

a construction is shown for two of the root’s children in Figure 6.1. Lightpaths traversing

other links of the tree than those included in the star are replaced by lightpaths which

traverse the same links inside the star but are terminated at the nodes included in the

star, as before. Using the same algorithm as before, we can obtain W disjoint complete

matchings from the set of lightpaths (possibly augmented with fictitious arcs), to which we

can assign the W wavelengths in any fashion. We concentrate on the links between the

hub node and its parent. Because there is a single link in each direction, each complete

matching we have obtained may contain at most one of the lightpaths traversing either of

these links. We use the colors already assigned to these lightpaths (i.e., when coloring was
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performed in the star that had the parent node as the hub) to color the complete matchings

they are contained in. If any complete matchings remain, we assign them the remaining

colors in any arbitrary fashion.

This procedure can be carried out for all the children of the root, then continued

for all their children, in a breadth-first traversal of the tree. Thus a valid wavelength assign-

ment may be obtained for any set of lightpaths obeying the physical loading requirement.

If there are N nodes in the tree, none of the stars we generate may have more than N

nodes, and wavelength assignment can be performed for each star in polynomial time. We

consider at most N −2 stars, because there can be no more interior nodes in the tree. Thus

the time required for the wavelength assignment remains polynomial in N and linear in W .

Propositions 6.2.1 provides us with the same freedom in designing feasible topolo-

gies for tree networks as with star networks. allowing us to eliminate the wavelength

assignment subproblem from consideration.

6.3 Heuristic and Bounds

In this section we show how we can derive results regarding a tree network by utilizing the

results for star networks derived above. We can derive a number of star networks from

a single tree network using the same kind of transformation we used in Section 5.2, and

combine the results for the individual star networks as obtained above.

6.3.1 Decomposition into Star Networks

The leaf nodes of a tree network do not route traffic either electronically or optically.

Accordingly, we concentrate on the interior nodes of a tree network. Consider an interior

node p of the tree T , and the set of nodes {q0, q1, · · · qn−1} which are adjacent to p in T .
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We define the (n + 1) × (n + 1) matrix T (Sp) = [τ (p)
ij ] as follows:

τ
(p)
ij =




∑
t(sd) over (s, d) : s �= p, d �= p, t(sd) traverses the directed links (qi, p), (p, qj),

∀i, j ∈ {0 · · · (n− 1)}, i �= j∑
t(sp) over s : s �= p, t(sp) traverses the directed link (qi, p),

∀i ∈ {0 · · · (n− 1)}, j = n∑
t(pd) over d : d �= p, t(pd) traverses the directed link (p, qj),

∀j ∈ {0 · · · (n− 1)}, i = n

0, otherwise
(6.1)

It is easy to see that this traffic matrix represents the traffic seen in the tree T from the

point of view of the interior node p. Now consider T (Sp) as the traffic matrix for a star

network Sp. By the definition of the traffic components, the hub node of this star network

sees exactly the same traffic scenario as that seen by the interior node p in the tree network.

As such, we speak of the star network as being the “decomposed star network” for node p.

In the star network, no node other than the hub node does any electronic or optical

routing. Thus the optimal value of electronic routing for the star denotes the optimal

(minimum) value of the electronic routing by the hub node of the star only. Since the node

p is locally in the same traffic scenario as the hub node of its decomposed star network,

this is the minimum amount of electronic routing that the node p can perform in the tree

T under any virtual topology and traffic grooming solution. We denote this quantity by

φT (p), thus φT (p) is the value of electronic routing that would be obtained by solving the

decomposed star Sp optimally, and is the locally best amount of electronic routing that can

be performed by interior node p in the tree T .

We note that {Pi} and {Q(g)
i } for the star Sp are upper and lower bounds on its

optimal electronic routing value and hence on φT (p).

6.3.2 Combination for Lower Bounds

The quantity φT (p) gives us a straightforward method of computing a lower bound on the

optimal electronic routing performed for the tree network. By the definition of φT (p), it

is a lower bound on the amount of electronic routing performed by the node p in the tree,

in any virtual topology. Since the amount of electronic routing performed by the different

interior nodes of the tree are disjoint quantities, the quantity
∑

p φT (p) is a lower bound on
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the amount of total electronic routing performed in any virtual topology, and hence on the

optimal value of electronic routing in the tree.

As we mentioned above, solving the star network may not be practically possible

for any given decomposed star. In that case the quantity φT (p) is not available. However,

using our method of successively better approximations, we can obtain as good a lower

bound on φT (p) as the computation required makes practical. Let us denote the actual

lower bound used on φT (p) by φ
(i)
T (p). This quantity is chosen out of the quantities {Pi}

for the decomposed star network of the node p. The closeness with which we approach

φT (p) may be different for every p. Now the quantity
∑

p φ
(i)
T (p) is still a lower bound

optimal electronic routing for the tree T , though in general a weaker one. However, such

a bound requires much less computation to determine. Thus we can consider the lower

bounds {∑p φ
(i)
T (p)} to be a sequence of bounds on the optimal electronic routing for the

tree network, where each φ
(i)
T (p) = Pi for the decomposed star of p is an increasingly better

lower bound on φT (p). Since {Pi} for the star network is a strong sequence of bounds, so

is the sequence of bounds for the tree that we have described.

6.3.3 Combination for Upper Bounds and Heuristic Solutions

We now combine the results for the star networks to obtain an upper bound for the tree

network. We take the same approach as before, that is, we obtain a feasible solution to the

tree network using the solutions for the star network. Since we have a feasible solution, the

amount of electronic routing performed in the optimal case cannot be any worse than with

our feasible solution. Thus our solution provides an upper bound to the optimal, and also,

as before, a heuristic approach.

As we noted in Section 5.1.1, a trivial (and likely to be non-optimal) solution

to the star network is for the hub node to be opaque, not performing any optical routing

at all. Similarly an interior node of the tree network may be opaque, routing all traffic

electronically. (Conversely, if a node performs optical routing without any restriction other

than traffic and wavelength constraints, we call it a transparent node, in the following.)

As with the star (or any other topology for that matter), we can create a feasible virtual

topology in which no node routes any traffic optically. All traffic at all interior nodes is

routed electronically, creating a completely opaque topology as before. Since this is a feasible

topology, the amount of electronic routing performed in this topology is an upper bound on
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the optimal, in fact it is the loosest such bound because there is no virtual topology in which

more electronic routing will need to be performed. Let the amount of electronic routing an

interior node p does as an opaque node in the tree be ψT (p). Then the completely opaque

upper bound is given by ΨT =
∑

p ψT (p).

However, realistically we would like to use the optical routing capability of the

nodes and create a solution to the tree network in which the amount of electronic routing

to be performed is reduced from the maximum at least at some nodes. As we observed

above, φT (p) is the best (minimum) amount of electronic routing node p can do locally.

However, to attain this value, the traffic to/from other nodes from/to node p must be

groomed according to the optimal solution to S(p). For two interior nodes p and q which

are adjacent, it will not in general be possible to simultaneously attain φT (p) and φT (q) as

electronic routing values, because the optimal solutions of the two decomposed stars will in

general require the same traffic component in the tree to be differently groomed. For this

reason, the lower bounds we derived in the last section will in general be unattainable.

To examine what combinations of star decompositions may nevertheless be useful

in creating feasible solutions for the tree network, consider a decomposed star network for

an interior node p. The hub node corresponds to p, whereas the other nodes of the star

correspond to the nodes of the tree that are adjacent to p in T . Some of these nodes may be

leaf nodes of the tree, in which case the solution to the decomposed star may be transferred

to the tree without any change. However, in general some of the non-hub nodes of the star

will be other interior nodes of the tree, and will have their own star decompositions. To

create a feasible solution to the tree network, we must adopt some method of reconciling

the star solutions for adjacent interior nodes of the tree. Below we propose two methods of

doing this.

For simplicity, and without loss of generality, we assume that a similar “reduction”

of the traffic matrix as for the star network is carried out before applying either of the

procedures described below. That is, traffic components which are equal to or larger than

C are given dedicated lightpaths and the wavelengths available are adjusted accordingly. As

with the star networks, it is easy to see that this does not affect the optimality of solutions

obtained.
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Solution with Opaque Nodes

An opaque node electronically routes all traffic that passes through it. While this is wasteful

in terms of electronic routing, it has the characteristic that such an opaque node optically

terminates and originates all traffic, routing them electronically, so that the traffic com-

ponents can be rearranged and reassigned to lightpaths arbitrarily. (It is because of this

characteristic of terminating and originating all traffic in the optical domain that we also

called these nodes “concentrator” nodes in Chapter 4.) It is easy to see that the conflict

between star solutions to adjacent interior nodes does not arise if the decomposed star for

one of the interior nodes is solved optimally while the other one is left as an opaque node.

In other words, we interpose at least one opaque node between every two transparent nodes

of the tree (for which we solve the decomposed star optimally), then there is no problem in

combining the solutions.

In such a solution, each node p performs either φT (p) amount of electronic routing

(the best possible), or ψT (p) (the worst). For the best topology which utilizes a combination

of transparent and opaque nodes, we would like to choose the nodes such that we get greatest

benefit in terms of electronic routing. Ideally, we would like to find the set of nodes Nt to be

designated as transparent nodes, (composed of pairwise non-adjacent interior nodes) such

that
∑

p∈R(ψT (p)−φT (p)) is maximized. However, this is a problem equivalent to finding a

maximal independent set in a graph, which is known to be NP-complete, as can be verified

from any standard text on the subject [refer to Garey-Johnson here]. Thus we need an

easy way to pick Nt. A simple way to do so is to utilize the level ordering of the tree T .

Designate any interior node r as the root of the tree. We partition the interior nodes of the

tree into two sets, N0 and N1, such than N0 contains all interior nodes which are at even

depth of the tree from the root r (including r itself), and N1 contains all interior nodes at

odd depth. Now either of the sets N0 and N1 may be used as the set Nt of transparent

nodes, and the other as the set of opaque nodes. Since every adjacent node to a node p ∈ N0

is from N1 and vice versa, it is obvious that any choice for the root r will yield the same

two sets N0 and N1, albeit possibly exchanged.

This may seem like a quite arbitrary method of determining Nt, but actually this

is a fairly good approximation algorithm. To see this, consider that if N0 is designated

to be Nt, each node pt in N0 will perform electronic routing to the amount of φT (pt)

only, representing a benefit of
∑

pt∈N0
(ψT (pt) − φT (pt)) for the whole set N0. We call this



119

�
�
�
�

(b)(a)

Figure 6.2: Feasible solutions to a tree using (a) opaque nodes (shaded), (b) semi-opaque

nodes (shaded, root is hatched)

the “benefit” of the set of nodes N0 and denote it by B(N0), similarly we define B(N1).

Now the completely opaque solution incurs electronic routing to the amount of ΨT as

defined above, and the lower bound we derived in Section 6.3.2 (possibly unattainable)

shows that the maximum saving in electronic routing for the entire tree is bounded by∑
p(ψT (p) − φT (p)) = B(N0) + B(N1). Thus by choosing Nt to be the set with the larger

benefit (arbitrarily if the two benefits are equal) we are guaranteed to approach the optimal

at least by 50%.

Solution with Semi-Opaque Nodes

While we obtain a good solution by solving the tree with alernating opaque and transparent

nodes, intuitively it appears that we lose opportunities to groom traffic at the opaque nodes.

Moreover, the amount of electronic routing is distributed unevenly among the tree nodes,

maximum possible for some and minimum possible for others. This may be undesirable in

many practical cases. In this section we propose another approach which does not share

these characteristics. The key observation is that if we are determined to impose the solution

obtained from a decomposed star for a node p in the tree, another interior node q adjacent

to p in the tree needs to be opaque in the solution to the tree with respect to p, but not

necessarily to other nodes.

Designate an interior node r as the root of the tree. Let r be a transparent node,
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and impose the solution of the decomposed star Sr on the tree network. For each child p of

r, create a decomposed star after the fashion of Section 6.3.1, with the following difference:

every traffic component to and from the non-hub node corresponding to r to any other

non-hub node q is constrained to be electronically routed at the hub node. For example, a

traffic component in the tree which would normally be represented by a traffic component

from q to r in the star decomposition for p is now represented by two traffic components,

each of the same magnitude as the original, one from q to the hub p and another from p to r.

It is obvious that in the optimal solution to such a star, there will be no lightpaths formed

to/from r that pass optically through p, because there is no traffic for such a lightpath to

carry. At the same time, the traffic scenario locally seen by node p has been preserved,

under the assumption that the traffic to/from node r cannot be optically routed. We call

this the star decomposition of node p constrained by node r, and we refer to the node p

as a semi-opaque node in this situation. The optimal solution to such a star network can

be implemented without any conflict with the optimal solution for the decomposed star

for r in the tree network. Similarly, we would create star decompositions for each child q

of p constrained by p, and so on down the tree. All the constrained star networks will be

consistent, that is, it will be possible to implement the solutions in the tree network without

conflict. For illustration purposes, Figure 6.2 shows two topologies that might be created

on the same tree by the two algorithms; Figure 6.2 (a) shows a solution using opaque nodes,

Figure 6.2 (b) shows a solution with semi-opaque nodes.

Although this solution with semi-opaque nodes is likely to distribute the electronic

routing load more evenly through the tree, it is difficult to characterize the total amount

of electronic routing performed and set meaningful bounds on the improvement over the

completely opaque topology. We note that the choice of the root r characterizes the solution

(because r is the only interior node that is transparent, the others being semi-opaque). Thus

the algorithm can be repeated with each interior node designated as a root and the best

solution adopted, increasing the algorithm complexity by a linear factor.

In both algorithms, we require the optimal amount of electronic routing for the

decomposed star (possibly constrained by another node) to be available. If the amount of

computation required precludes determining the optimal value for a star network, then the

best available upper bound from the sequence of bounds {Qi} or {Q(g)
i } may be used instead

in the above algorithm. For obvious reasons, the solutions obtained for the tree network

will still be feasible, and the total electronic routing values will still represent upper bounds
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(though less tight). As tighter and tighter upper bounds for the optimal star solutions are

used (at progressively greater computational costs), the upper bound obtained for the tree

network will also grow tighter in a strong sequence.

6.3.4 Greedy Heuristic

In this section we describe two greedy heuristics to obtain feasible solutions to the tree net-

work. Because the sequence of feasible solutions we have proposed above get progressively

more costly to compute, easy to compute greedy heuristics would be valuable; and becuase

they never form lightpaths of more than two hops, greedy heuristics have a good chance of

outperforming them in specific cases.

Both heuristic algorithms start by reducing the traffic matrix as described in Sec-

tion 6.3.3, then ordering the reduced traffic elements in descending (greedy) order and

attempting to optically route the traffic components in this order. In the first algorithm,

which we call “Greedy-A”, we attempt to route the traffic component optically at each

intermediate node along its path. If this fails for a traffic component (because there is not

sufficient bandwidth at some intermediate link to accomodate the rest of the traffic that

must flow over than link, if this traffic component is given a lightpath), then we abandon

that traffic component, consigning it to be electronically routed at each intermediate node,

and go on to the next traffic component in the greedy ordering. The algorithm terminates

when all traffic components have been examined.

The second algorithm, called “Greedy-B’, does not abandon a traffic component

if it cannot be optically routed at every intermediate node, but rather takes a “best-effort”

approach, optically routing it whenever possible, electronically routing it otherwise. Thus

if a traffic component cannot be optically routed along its entire path, Greedy-A will leave

it to be carried on single hop ligthpaths on each of the links it traverses, but Greedy-B

may form some lightpaths covering part of the path. It may appear that Greedy-B makes

more of an effort to optically route traffic and is guaranteed to give the better results, but

this is not true. When Greedy-A leaves a traffic component not optically routed at an

intermediate node that Greedy-B would have routed it, some extra grooming bandwidth

remains that may lead to more efficient grooming for some traffic components later in the

greedy ordering. Thus either algorithm might outperform the other.
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6.4 Numerical Results

6.4.1 Traffic Conditions

Since we view the tree network as a generalization of the star network, we carry over the

concepts we concentrated on for star network traffic matrices to the traffic matrices for

tree networks. Accordingly, we consider traffic matrices which are described in statistical

terms, that is, the characteristics such as total loading and traffic fractions are statistical

descriptions of ensembles of traffic matrices and not exact descriptions of a given traffic

matrices. We concentrate on traffic matrices with high total loading because these are of

interest, as before. However, it is difficult to characterize traffic matrices of a given total

loading without taking into account the topology of the tree network. Accordingly, we

concentrate on the method of traffic distribution, and for a given traffic distribution, adopt

the traffic matrices with loading just lower than those in which feasibility is lost.

Since different traffic components in the tree travel paths of different lengths,

drawing all traffic components from the same distribution to create a statistically “uniform”

traffic matrix is no longer reasonable. Since the longer traffic components contribute more

to the loading and make grooming more difficult, if the shorter components have similar

magnitude they will not impact the grooming problem significantly. Conversely, if the

shorter traffic components are large enough to affect the grooming, the longer components

are likely to render the problem instance infeasible. Accordingly, the longer components

were drawn from distributions with means inversely proportional to the path length.

In the star networks, we distinguished between hub traffic and other traffic. The

leaf nodes of the tree network may be thought to be the generalization of the non-hub nodes

of the star network, in that they do not route traffic and represent the network edge. Then

the corresponding quantity to traffic other than hub traffic would be traffic that flows from

one leaf to another. On the other hand, the characterization of the hub traffic was that it

did not need to be routed and could not contribute to the objective function; accordingly,

the hub traffic should correspond to only single hop traffic components in the tree network.

We choose to concentrate on the former, for the following reasons. First, the tree network

is inherently more complicated than the star network. Taking the latter interpretation

of hub traffic would require us to set aside a certain fraction of the total traffic to single

hop components, which would be roughly equal due to the statistical uniformity of the

traffic matrices we concentrate on. This would merely give rise to a tree problem with
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reduced bandwidth on all links. In other words, the one-hop traffic would not represent

anything related to the tree network, merely an overall reduction of bandwidth. Secondly,

the categorization of traffic into traffic which flows from one leaf node to another (which we

call “leaf traffic” and express as a percentage of the total traffic) and that which flows among

interior nodes or between an interior node and a leaf node represents a realistic distinction.

In a realistic tree network, the leaf nodes are likely to represent end customers while the

interior nodes represent routing elements of the transport network. Thus leaf traffic may

represent the payoff traffic, while other traffic indicates overhead or OAM. Accordingly, we

concentrate on tree networks with high leaf traffic.

Also in keeping with the attitude that the leaf nodes may be the important traffic

endpoints, we have concentrated on trees that are dense rather than sparse. Thus the

number of leaf nodes are expected to be a large fraction of the number of total nodes.

Specifically, every interior node was constrained to have between 2 and 7 adjacent nodes in

the tree networks that were generated.

6.4.2 Results

Some of the results we have obtained is presented in deail in Table 6.1. All the traffic

matrices were generated with a value of W between 70 and 200, and C between 16 and 48,

which are realistic values with today’s technology. The first three columns of the table show

the number of nodes other than the root in the tree, the number of nodes which are leaf

nodes, and tl, the leaf traffic fraction for the matrix, expressed as a percentage. The next

two columns show the lower bound and the completely opaque upper bound respectively.

The results of the two combinations of star network values to obtain feasible solutions to

the tree network are shown in the next two columns. Lastly, the result of applying the

two greedy heuristics described above are shown in the last two columns. All quantities

(including the completely opaque upper bound) are derived after reduction of the traffic

matrix, to make them comparable. In the Figures 6.3, 6.4, 6.5, 6.6, we present results

for a large number of tree networks. Only the completely opaque upper bound ΨT , the

two feasible solutions using star decompositions, and the two greedy solutions are plotted.

Figures 6.3 and 6.5 present the raw data. In Figures 6.4 and 6.6, the same data has been

normalized, with the completely opaque upper bound scaled to 1.0 in each case. In other

words, we plot the grooming effectiveness, as defined in Chapter 4 for these figures. The
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N leaves tl ΦT ΨT Opaque Semi-opaque Gdy-A Gdy-B

63 43 78 0 67643 28213 50019 48085 34452

60 41 80 58 68281 28059 51820 50374 38186

49 33 76 0 43607 18078 33619 20027 15803

50 37 82 0 45066 17782 32247 24064 17946

60 40 73 0 40555 19072 31152 18646 11619

57 44 75 0 92013 39203 67670 52309 39960

56 40 77 0 38630 16952 30316 14385 10373

58 42 82 193 59584 25362 42664 39700 29186

Table 6.1: Tree Network Results

lower bound is not plotted as it is quite weak in most cases. Figures 6.3 and 6.4 show results

for tree networks for which the wavelength capacity C was set to 16, and Figures 6.5 and 6.6

show results for C = 48.

These results demonstrate the working of the algorithms we have provided. As ex-

pected, the combination of star networks using opaque nodes reduces the electronic routing

by at least half. Surprisingly, the combination using opaque nodes consistently outperforms

the combination using semi-opaque nodes. The greedy heuristics perform very well in all

cases. Since the greedy heuristics are both based on giving full lightpaths to individual traf-

fic components, it is not surprising that with a larger granularity of traffic to be groomed,

the greedy heuristics start to show less advantage over the decomposition methods, which is

able to groom different traffic components into the same lightpath. That is, the extra com-

putation required to compute the feasible solutions combining star networks is likely to be

justified by a greater gain in grooming as the granularity increases and the grooming prob-

lem becomes more difficult. Greedy-B is seen to consistently outperform Greedy-A. This

result may be expected in light of the fact that Greedy-B generally requires a significantly

larger amount of computation than Greedy-A.
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Figure 6.3: Ensemble of tree networks, C = 16
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Figure 6.4: Ensemble of tree networks, grooming effectiveness, C = 16
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Figure 6.5: Ensemble of tree networks, C = 32
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Figure 6.6: Ensemble of tree networks, grooming effectiveness, C = 32
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Chapter 7

Conclusion and Future Work

We have exmained the problem of virtual topology design for traffic grooming in

ring, star and tree networks. In each case, our emphasis has been on providing a framework

that would allow us to bound the optimal solution both from above and below, and evaluate

heuristic solutions to these problems. We also provide heuristic solutions that concentrate on

obtaining progressively better solutions with more computation, which is useful in realistic

situations.

While significant computation is required for most of our feasible solutions, this

must be seen as a trade-off between quality of solution obtained and amount of computation

performed. As we point out for the ring network, significantly less computation will allow

solutions to be obtained, but only at the cost of making assumptions or imposing restrictions

on the problem. Thus under more general assumptions these solutions will not perform

well. Conversely, our formulation of the problems are more general and do not impose

severe restrictions upon the traffic pattern or make otherwise restrictive assumptions. Our

framework allows better solutions to be computed in much more general scenarios, with

an increase in the computation necessary, but still less computation than the impractical

amounts necessary for an exact solution.

We are not aware of traffic grooming studies with similar approaches to ours in

the literature, especially for the star and tree networks. We point out that this approach is

valuable not only for the above reasons, which allow us to treat the important topologies of

ring, star and tree networks. It is also valuable because more general mesh topologies can

be thought of as combinations of subnetworks in these forms. This is a highly attractive

area for the future extension of this research, which we discuss next.



128

7.1 Future Work

As we have mentioned above, topologies with the specific forms of ring, star and tree are

important. However, in real situations, it might often be necessary to cosider physical

topologies of more general forms. In general, any physical topology may be viewed as a

partial mesh graph, and we should be able to address such networks as well. The present

work needs to be extended to such general topologies.

Just as we were able to decompose a ring network into more tractable path net-

works, and tree networks into the more tractable star networks, it should be possible to

decompose more general networks into path, ring, star and tree networks. In this thesis we

have concentrated on describing the exact capability of a network, in terms of wavelength

assignment and achievability bounds, and hence described methods to obtain good heuristic

solutions. We can apply the same techniques to more general networks, using the results in

this thesis as a blueprint and building blocks.

Another attractive possibility is in wide area networks designed with the virtual

topology in mind. Many current such networks are in the form of rings, stars and trees,

and more are likely to be built. However, because of the larger sizes of networks being

now envisioned, as well as for ease of administration, physical topologies with heirarchical

structures are already being built and are likely to receive more attention in the future.

Two examples that are already proposed in commercial literature are the “ring of rings”

and the “tree of rings” topologies. Topologies of such particular structure are likely to be

very amenable to analysis using the building blocks we have provided in this thesis.

For the topologies considered in this thesis, as well as more general topologies, the

traffic grooming problem may become more tractable when some assumptions are changed

or constraints relaxed. In such cases, the problem may nevertheless be profitably addressed

by using generalizations of some of the concepts we have introduced in this thesis, such as

opaque nodes, semi-opaque nodes, partial solutions, or sequence of bounds. In some cases,

with proper utilization of these concepts, it may be possible to obtain straightforward

solutions for problems which are nevertheless of practical importance. For example, the

traffic pattern in a tree network may be constrained to have traffic originated to or destined

for only a designated root or the leaf nodes. This is of practical importance since tree

networks which are used to consolidate end-user traffic, such as today’s cable network, will

have this characteristic. It is likely that a much better solution can be obtained for such a
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specific problem if the methodologies we have used in this thesis are specifically applied to

it.

With the advent of higher and higher speed at the last mile of networking, as well

as rapidly growing demand for bandwidth from the end-user, some of the techniques now

used for wide area network may soon become appropriate for access or distribution networks

as well. While maximum demand will continue to increase rapidly, minimum demands on

networks may not increase as fast. Thus the traffic grooming problem is likely to retain

its importance and indeed gain in importance greatly. We feel that in this thesis we have

created a solid basis for research which is useful in itself and also enables further important

research for tomorrow.
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Appendix A

Obtaining a Strong Sequence of

Bounds for Ring Networks

When deriving total upper and lower bounds from single node decompositions in

Section 4.3, we were able to combine them in a straightforward manner without any com-

binatorial considerations. This is because we had only one kind of decomposed segments at

hand, and simply traversed the nodes in order with such segments, alternating with concen-

trator nodes in the case of the upper bound. It might appear that we could have followed

this approach to obtain successively stronger bounds (even if each bound is not as strong

as with the combinatorial approach), without recourse to the combinatorial complications,

for each value of x resorting to segments with less than x nodes only to complete the ring.

We note in this appendix that such an approach would not give us a strong sequence of

bounds.

We denote a total lower bound formed using only n node segment decompositions

(with at most one smaller segment) as Φ′
n, and a total upper bound formed similarly as

Ψ′
n. When two node decomposition values are available, we can partition the ring into

segments of two adjacent nodes. If N is even, there are two ways we can form this partition

(0 − 1, 2 − 3, · · · orN − 0, 1 − 2, 3 − 4, · · ·). If N is odd, we can form �N/2� two node

decompositions, and use a single node decomposition for the last node. Depending on

which node we choose as the singleton one, there are N possible ways to partition the ring.

In general, if n-node decomposition values are available, there are n possible partitions of

the ring into n-node decompositions if N is a multiple of n, and N possible partitions into
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�N/n� decompositions of n nodes each and one smaller one if N is not a multiple of n.

In each case we can sum all the corresponding φ
(i)
n values to obtain a total bound for the

ring. For any n, Φ′
n is the largest sum of φ(i)

n from these possible decompositions, and Ψ′
n is

similarly the lowest sum obtained from only n-node segments alternating with concentrator

nodes, with at most one smaller segment.

If x is a multiple of y, and N is a multiple of x, we are guaranteed that Φ′
x is at

least as strong as Φ′
y. This follows from Lemma 4.3.2 because we can take the partition of

the ring into y-node sets that result in Φ′
y, then obtain a partition into x-node sets simply

by combining x/y adjacent y-node sets to obtain each x-node set. Now the sum must be at

least as large, because φ
(i)
x for each x-node set must be at least as large as the sum of φ

(i)
y

values for the y-node sets it contains. For upper bounds, similar considerations exist except

that the characterization of the relationships between bounds is a little more complex. For

a bound derived from x-node decompositions to be stronger than one derived from y-node

decompositions, x must exactly include a number of y-node sets as well as the concentrator

nodes between them, and this can be translated into a criterion for the total upper bound

to be at least as strong.

But this type of argument cannot be applied in the general case where we move

from n-node decompositions to (n+1)-node decompositions, because n+1 is in general not

a multiple of n, and the above criteria for upper bounds is generally not fulfilled. In fact

lower and upper bounds formed simply as above do not possess the desirable characteristic

that each successive bound is at least as strong as the previous one. For example, consid er

the two traffic matrices:
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T1 =




0 45 30 20 0 0 0 0 0 0 0 0

0 0 35 20 0 0 0 0 0 0 0 0

0 0 0 25 47 31 0 0 0 0 0 0

0 0 0 0 45 21 0 0 0 0 0 0

0 0 0 0 0 37 55 10 0 0 0 0

0 0 0 0 0 0 43 10 0 0 0 0

0 0 0 0 0 0 0 35 51 20 0 0

0 0 0 0 0 0 0 0 45 10 0 0

0 0 0 0 0 0 0 0 0 53 41 20

0 0 0 0 0 0 0 0 0 0 45 20

20 20 0 0 0 0 0 0 0 0 0 40

30 0 0 0 0 0 0 0 0 0 0 0




T2 =




0 45 30 0 0 0 0 0 0 0 0 0

0 0 35 0 0 0 0 0 0 0 0 0

0 0 0 25 47 0 0 0 0 0 0 0

0 0 0 0 45 0 0 0 0 0 0 0

0 0 0 0 0 37 55 0 0 0 0 0

0 0 0 0 0 0 43 0 0 0 0 0

0 0 0 0 0 0 0 35 51 0 0 0

0 0 0 0 0 0 0 0 45 0 0 0

0 0 0 0 0 0 0 0 0 53 41 0

0 0 0 0 0 0 0 0 0 0 45 0

20 0 0 0 0 0 0 0 0 0 0 40

30 0 0 0 0 0 0 0 0 0 0 0




In both cases, N = 12, W = 10, C = 16. For T1, we have Φ′
3 < Φ′

2, and for T2 we

have Ψ′
2 > Ψ′

1. Specifically, for T1, Φ′
2 = 24 and Φ′

3 = 19; for T2, Ψ′
1 = 0 and Ψ′

2 = 75.

Thus we do not necessarily get a progression of bounds in which each is at least as

strong as the last when we use successively larger decompositions, even though we utilize

more information in computing the successively larger decompositions. The reason for this is

that in deriving Φ′
n and Ψ′

n we constrain ourselves to using only the n-node decompositions.

This means that in computing Φ′
x and Ψ′

x we are forced to ignore any structure in the given
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traffic matrix which exists at a scale y smaller than x, if x is not a multiple of y, as in the

above examples. However, we can get a strong progression of bounds in which each is at

least as strong as the last if we merely increase the scope of the cases we consider when

forming the bounds as we use successively larger decompositions, rather than constraining

ourselves as above. This is the reason for adopting the combinatorial approach.
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Appendix B

Combining Ring Partitions to

Obtain Best Case

Let Dn(j, k) denote the largest sum of φ
(i)
x values obtained by partitioning the

segment of the ring R comprised by the nodes j, j ⊕ 1, · · · , j ⊕ k � 1 into smaller segments

no larger than n nodes, which we refer to as subsegments. That is, we consider the set

of partitions of the nodes from j to j ⊕ k � 1 inclusive of the ring into subsegments no

larger than n nodes. For each partition we sum the objective values of the decompositions

obtained from the subsegments, and use Dn(j, k) to denote the maximum of these over all

the partitions we consider. The first subsegment is constrained to start with the node j and

the last subsegment is constrained to end with the node j ⊕ k� 1. For any value of j, valid

values for k are 1, 2, · · · , N , in addition we define Dn(j, 0) = 0 for notational convenience.

Thus Dn(j, k) are partial best sums of φ
(i)
x values. We obtain a total bound by extending

these partial sums completely around the ring as below.

By definition, Dn(j, 1) = φ
(j)
1 . We now consider how to obtain Dn(j, k+1) given all

the values Dn(j, 1), Dn(j, 2), · · · , Dn(j, k). We note that all partitions we need to consider

to obtain Dn(j, k + 1) end with a segment which itself must end with the node j ⊕ k.

This last segm ent can be comprised only of between 1 and n nodes, giving us n classes of

partitions we have to consider. The number of classes is smaller if k < (n− 1), because we

are constrained to start our partition from node i. For each class, we need only consider

the partition yielding the best sum of φ(i)
x values, and add a single φ

(i)
x value to it to extend
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the partition to node j ⊕ k. This allows us to write the recurrence relation:

Dn(j, k + 1) = max
0≤r≤min{n−1,k}

(
Dn(j, k � r) + φ

(j⊕k�r)
r+1

)
(B.1)

Now Dn(j,N) denotes the maximum bound that can be obtained from all partition

s of the ring that are constrained to have node j as the first node of a segment . To consider

other partitions in which node j is not the first of a segment, we note that node j can only be

the second, third, . . .n-th of a segment. Hence it suffices to consider the n sums Dn(j,N)

for n successive values of j to be sure that all possible partitions have been considered.

Any n successive nodes can be used, we assume without loss of generality that the nodes

N − n,N − n + 1, · · · , N − 1 are used, and make the statement:

Φn = max
i∈{0···(n−1)}

D(N − n + i,N) (B.2)

To determine the complexity of this method to determine Φn, we first assume that

we already have the values φ
(i)
x for x ∈ {1 · · ·n} and i ∈ {0 · · · (N − 1)}. In that case, to

find Dn(j, k+1), we need at most n additions and n comparisons as evident from (B.1). To

obtain Dn(j,N) for any given value of j thus needs a total of O(nN) time. Finally, we need

to repeat this n times as per (B.2), thus needing a total of O(n2N) time for this algorithm.


