
ABSTRACT

ILIA BALDINE. Dynamic Recon�guration in WDM Networks. (Under the direction of Dr.
George N. Rouskas and Dr. Yannis Viniotis.)

In this research we study the problems associated with dynamic recon�guration of

broadcast WDM networks. Adaptability to the changing tra�c conditions is viewed as one

of the key features of multiwavelength optical networks, and this is the �rst comprehensive

in-depth study of this problem area. Our contribution consists of identifying the three main

questions related to network recon�guration: a) how to balance the load across multiple

wavelengths; b) deciding when it is best to recon�gure the network and c) performing the

actual recon�guration in an e�cient manner, that minimizes cell losses. We provide novel

solutions to each of these problems. Our solutions consist of an algorithm we call GLPT,

which balances the cell load across wavelengths, an optimal recon�guration policy, derived

from representing the problem as a Markovian Decision Process, and a class of retuning

strategies that allow us to recon�gure the system. In addition, we perform a simulated

comparison of static and dynamically recon�gurable networks in order to verify the validity

of our approach. The simulation also provides us with valuable insights into the behavior

of an adaptable optical network.
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Chapter 1

Introduction

In this work we propose a novel architecture for all-optical networks that allows

them to recon�gure in response to changes in the tra�c pattern. Having communications

networks dynamically adjust themselves to the predominant tra�c conditions has been

an outstanding problem for a number of years. Such capability o�ers the potential for

a much more e�cient use of network resources and, as a result, a higher overall network

throughput. Given that currently the new bandwidth is consumed as fast as it is o�ered,

novel architectures capable of using it more e�ciently promise to alleviate the congestion

that the present-day networks are experiencing.

In this work we discuss the problems associated with the dynamic recon�guration

of single-hop WDM networks in response to changes in the tra�c pattern. These problems

include

1. Deciding when the change in the tra�c pattern warrants a recon�guration or what

we call a Recon�guration Policy.

2. Balancing the packet load across wavelengths by using recon�gurable elements, such

as retunable optical receivers.

3. Performing the actual recon�guration in the most e�cient manner possible with the

use of a Retuning Strategy.

The following sections will briey summarize our work on each of the problems.
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1.1 Recon�guration Policy

Our solution to this problem is based on Markovian Decision Processes and the

associated optimal policies. We �rst present the problem as an MDP and then use the

existing algorithm for calculating such optimal policies to come up with a Recon�guration

Policy which can be used in a real network.

1.2 Load Balancing

At the heart of this problem lies the need to create assignments of nodes to channels

in a way that the packet load is spread evenly across the channels. We also wish to create

such an assignment based on the previous assignment in a way that the the recon�guration

phase (problem area 3 above) is simpli�ed.

To this end we present an algorithm called Generalized LPT (or GLPT), which

allows us to create assignments of nodes to optical channels based on both the current tra�c

information and the preceding assignment of nodes to channels. The algorithm also allows

us to gauge the goal of balancing the load across channels as perfectly as possible against

the complexity of the following recon�guration phase.

1.3 Retuning Strategy

We assume that the network has made the decision to recon�gure according to the

Recon�guration Policy and have calculated the new assignment of nodes to channels. What

remains is to perform the actual recon�guration of the network in a way that the packet

losses during that phase are minimized. As a solution we present a greedy heuristic.

1.4 Thesis Organization

Chapter 2 will describe the history of optical networks and introduce the subject

of all-optical WDM networks. Chapter 3 will describe some of the previous work done in the

area of dynamic recon�guration of optical networks. Chapter 4 will present a system model

and introduce the novel architecture we propose. Chapters 5,6 and 7 will be dedicated to

the three problem areas described above. They will each introduce the problem and present
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our solution to it. Finally Chapter 8 will present our conclusions and some of the directions

this work can be taken in the future.
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Chapter 2

Optical WDM Networks

2.1 First-Generation Optical Networks

The need for higher and higher capacities in voice and data networks has been the

single driving force behind network design since their early emergence. What started as a

need to transmit analog voice signal over long distances became transformed into the need

to transmit huge amounts of digital information that includes voice and video in real-time

in addition to many kinds of other data. The merging of telephone and data networks in

the early 90's spurred the need not only for protocols that could successfully combine data

of di�erent types with di�erent quality of service requirements (e.g. ATM) but also for the

networks that could carry these increasingly large amounts of data. Traditional copper-

wire telephone networks gave way to optical �ber, which due to the width of the optical

spectrum can carry thousand times more data with low error-rates over long distances.

Phone companies were the �rst to utilize this property of the optical �ber, and up until

recently there was no need to deliver large bandwidth directly to the desktop, so the use

of �ber was limited to the long-distance telephone networks. However the emergence of

inexpensive fast and powerful PCs and their potential applications in everyday life created a

need to move large amounts of data between them, and this ever-growing need can no longer

be met by the traditional copper-based LAN technologies. In response to that computer

network designers started looking at the possibility of using optical �ber as the medium for

delivering these large amounts of information that modern-day PCs are able to process.

The �rst optical architectures were adaptations of well-known copper-based proto-

cols. For instance FDDI (Fiber Distributed Data Interface) was an extension to the optical
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domain of a commonly used token-ring protocol Later, as the need for high-throughput

protocols arose, �ber-speci�c protocols started to appear, such as SONET/SDH. They were

both adopted in order to allow the multiplexing of multiple data and/or voice streams over a

single �ber at speeds ranging from 51Mb/s (STS-1) to 9.953Gb/s (STS-192). The addition

of direct mapping of ATM (Asynchronous Transfer Mode) to Sonet/SDH made this tech-

nology especially important for data networking, as ATM is seen by many as the dominant

Layer 2 and 3 (Link and Network Layers) protocol for the near future.

2.2 WDM Networks

Since the time they �rst appeared it was clear that optical networks were the

solution to the bandwidth crunch problem that the telecommunications industry was headed

for. The low-attenuation regions of the optical �ber (the regions of light wavelengths, where

the optical signal experiences the least amount of attenuation, while traveling through the

�ber) contain a total of 50THz of bandwidth. However the initial applications of this

technology did not take full advantage of the properties of the optical signals and the

colossal bandwidth. First-generation optical networks transmitted and received data on a

single wavelength, which although providing a signi�cant amount of bandwidth compared

to the copper-based networks, in reality used only a fraction of the bandwidth that the

�ber o�ered. Due to the properties of the propagation of optical signals in the �ber it is

possible, in fact, to transmit several signals at the same time on di�erent wavelengths with

low interference. At the present state of optical technology it is possible to have about

30 separate wavelength channels in the �ber and transmit data through them at rates of

several gigabits per second, which is equivalent to the bandwidth extracted out of the entire

�ber by the state-of-the-art �rst-generation systems. In other words, using the same �ber it

is now possible to transmit 30-times more data. This technique of subdividing the optical

spectrum into channels is similar to the technique of Frequency-Division Multiplexing used

in wireless and copper-based signals, and because of that it is called Wavelength-Division

Multiplexing or WDM.

WDM is achieved by using lasers and optical �lters that can transmit and receive

optical signals only on a particular wavelength or channel. At the present state of technology

these channels have to be spaced 1 to 2nm apart to avoid crosstalk. Early examples of the

use of this technology can already be seen in several products currently on the market. One
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of them is an IBM 9729 Optical Wavelength Division Multiplexer, which provides up to 10

channels on each individual �ber up to 155Mb/s each. The channels are spaced 1nm apart

in the 1540-1559nm wavelength region. This product however is quite simple compared

to the systems currently under development at other companies. It provides a point-to-

point connection for two locations up to 30 miles apart. It's purpose is to help companies

that at present use optical �ber technology multiply the bandwidth in their point-to-point

connections without signi�cant investments in the infrastructure (i.e. get more bandwidth

out of the existing �ber).

In addition to increasing the amount of the utilized bandwidth in the �ber, WDM

also opens a way to the use of �ber-optics in Local Area Networks. It does so by breaking

up the huge available bandwidth into smaller pieces that can be \digested" by the desktop

computers, since no PC can at present hope to utilize the entire bandwidth o�ered by the

optical �ber. Several competing architectures have emerged that attempt to solve some of

the logistical problems associated with allowing multiple network nodes communicate over

the same �ber.

Most of the problems have to do with the need for the nodes to be able to transmit

and receive on several of the available channels, in order to communicate with one another

freely. If the nodes can talk and listen on a single channel only, than the network will

essentially be broken up into several subnetworks, one per channel, unable to communicate

with one another. This problem can be solved in a multitude of ways. Early solutions

proposed having arrays of lasers or optical �lters on each of the nodes, with each laser or

�lter tuned to a di�erent channel. This way a node can communicate with other nodes by

choosing one of the lasers or �lters in the array, and thus choosing a channel for transmission

or reception of data. This solution however has a signi�cant drawback of being expensive

and non-scalable. It is foreseen that the number of channels available on the �ber will

increase as the technology matures, and this means that these arrays of lasers or �lters

would have to grow as the number of channels grows.

As a result of the extensive research into the physics of lasers and optical �lters,

it is possible today to have these devices \tunable". That means a single device can utilize

several optical channels by modifying its physical characteristics. This possibility gave rise

to several competing architectures for WDM networks that are at present under study in

the industry and in academia.
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2.3 Wavelength-Routed Networks

One such network architecture is intended to be used in long-haul WANs and is

called \wavelength-routed" [19]. The main idea behind the wavelength-routed networks is

that of a \light-path" which carries data from one node to another. A light-path is realized

by allocating bandwidth on links connecting the origin and the destination nodes on a

single wavelength. A network may consist of many such light-paths. The main di�erence

from the traditional switching networks is that the data does not leave the optical domain

until it arrives to the destination node. In other words, if in traditional networks employing

optical �bers, the signal at every node has to be transformed from the optical form to the

electrical form to be processed and routed, so that it can be again transformed back into the

optical form and sent on the outgoing �ber, in the wavelength-routed networks the signal

remains in the optical form until it reaches its destination. This is achieved by routing the

optical signal based on its wavelength, hence the name \wavelength-routed". This removes

a signi�cant bottleneck which the electro-optical interfaces create in the present-day optical

networks, where the top speed of the the network is limited to the speed at which the

electro-optical interface can process the signals.

The other two competing architectures are more suited to be used in LANs and

MANs and will be described in more detail in the following section.

2.4 Broadcast-and-Select WDM Networks

In these types of networks a node is equipped with one �xed and one tunable

optical device device (a transmitter or a receiver). Each node is associated with a particular

channel, to which its �xed device is tuned to. The �rst of these architectures assumes that a

tunable device (a laser or a �lter) on a node can only tune to some of the available channels

but not all of them. This assumption is made based on the research that shows that as

the spectrum available to the device grows (it can tune to more channels) so does its cost.

This stipulation means that not every node is capable of communicating with every other

node, since some of them may \listen" or be capable of tuning to wavelengths unavailable to

others. The other architecture takes a more optimistic approach and assumes that a tunable

device can access all of the available channels, which means that any node can in principle

reach any other node. The networks of the �rst type were given the name \Multi-Hop",
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Figure 2.1: Physical vs. Logical Topology in a Multi-Hop Network

since in order for node A to reach node B , with which it has no common wavelength, it

might have to communicate through node C, which has available to it wavelengths common

to both A and B. The second type were given the name \Single-Hop" since any node can

communicate with any other node.

Within these two broad types of network architectures two di�erent subtypes of

WDM networks are de�ned, depending on whether the lasers or the optical �lters are

tunable. Networks in which the lasers are tunable and the �lters are �xed are called TT-

FR or \Tunable Transmitters - Fixed Receivers". Their counterpart is called FT-TR or

\Fixed Transmitters- Tunable Receivers". Regardless of the type, both architectures have

a star physical topology with multiple �bers connected to a device called \Passive Star

Coupler" (PSC) [24] which works as a multiplexer for every incoming link by splitting the

optical signal into all of the outgoing links and, in essence, broadcasting any input to all

the outputs, hence the name Boradcast-and-Select. As with wavelength-routed networks

the signal does not leave the optical domain until it reaches its destination, since the PSC

is an all-optical device and does not do any signal processing or routing of its own.

The chief di�erence between the architectures lies in the logical topologies they

impose on the network. The topology of a single-hop network can be represented by a

complete graph, since any node can communicate with any other node. On the other hand,

the topology of a multi-hop network depends entirely on the assignment of the devices on

the �xed side (transmitters or receivers) to particular wavelengths (see Figure 2.1).

For Single-Hop networks the particular assignment of the �xed devices to wave-

lengths is no less important than it is for the Multi-Hop networks, since each node needs
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to know which channel the other nodes can transmit or listen to, in order to communicate

with them (see Figure 2.2)

In this discussion we have not at all touched on the subject of the medium-access

(MAC) procedures in single- and multi-hop optical networks, nor did we mention the time

scale at which the retuning of the optical devices takes place. These two questions lie at

the heart of the research into the WDM networks and will be given special attention here.

When talking about \tunable" devices in the context of Single- and Multi-Hop

optical networks, what is usually meant is that the device is capable of switching from

one wavelength to another within the time comparable to the transmission time of a single

packet. This stipulation is very important for the MAC procedures, since if the \tunable"

device takes a very long time to retune, compared to a single packet transmission time, then

we cannot hope for high link utilization in such a network, since the devices will spend a

signi�cant proportion of time retuning, without transmitting or receiving packets. For this

reason in the following chapters we will refer to these devices as \fast-tunable" to emphasize

the fact that they are capable of switching from one wavelength to another within a short

time compared to packet transmission time. Such devices exist today, however their cost

rises dramatically as one tries to shorten the tuning time further and further.

Most MAC protocols proposed for use in WDM networks make an assumption that

\fast-tunable" devices are in use. Their main goal is to utilize the optical channels as much

as possible by masking the time spent on tuning through scheduling techniques. Despite this

common goal, these protocols vary drastically depending on the type of the architecture in

question. For instance, in multi-hop optical networks the medium-access protocol must be
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able to communicate to the nodes the topology of the network to facilitate data transmission,

while in single-hop optical networks the topology is not in question. Also, depending on

whether the architecture is TT-FR or FT-TR, the method of disseminating the necessary

information between nodes will be di�erent - it can be done either in broadcast mode or on a

speci�ed control channel. Since this work is only concerned with single-hop WDM networks,

the following section will more closely examine several of the existing MAC protocols for

this architecture.

2.5 MAC Protocols in Single-Hop WDM Networks

Early MAC protocols for WDM networks were created as extensions of already

existing MAC protocols for broadcast media, i.e. Aloha, Slotted Aloha. Many of them

made assumptions that did not allow to make use of the properties that make the WDM

architectures distinct from the existing network architectures. For instance in many early

protocols the number of nodes was assumed to be equal to the number of available chan-

nels. Given their signi�cant bandwidth, each channel is, in fact, capable of accommodating

multiple nodes, so granting a single node exclusive use of a channel is wasteful from the

point of view of bandwidth utilization.

Among these protocols were SA/SA and DT-WDMA. The former was a variant

of a well-known Slotted Aloha protocol, up to this point used in satellite communications.

For a network with N nodes it needs N +1 channels - 1 data channel for each of the nodes

with an additional control channel. The discipline used on both the data and the control
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channels is Slotted Aloha, hence the name Slotted Aloha/Slotted Aloha or SA/SA. The

basic operation of the protocol can be described as follows - whenever a node has a packet

to send, it sends a short control packet on the control channel and the data packet is sent

on the node's data channel immediately following the control packet. The delivery of either

the control or the data packet is not guaranteed - if another node starts transmitting in

the same slot, then both packets are corrupted and lost and the nodes have to retransmit

them (see Figure 2.3). If the control packet is not corrupted in transit, it is received by all

the nodes, including the destination node, which then knows to expect a data packet on its

preassigned channel. This scheme is intended for use with TT-FR networks.

The second MAC protocol - DT-WDMA was speci�cally developed for the WDM

networks, but it bears close resemblance to the SA/SA. It also uses N + 1 channels - N

data and a control channel, however, unlike SA/SA the data slots cannot overlap, and

the size of the data packet is N times the size of the control packet. Thus N control

packets are synchronized to a single data packet and each node has a preassigned slot

among these N available control slots. Whenever a node has a packet to send, it waits for

its slot on the control channel and transmits a control packet in it, with the data packet

following immediately in the next data slot. Each node listens on the control channel and

upon receiving a control packet indicating it is about to receive a packet, it can retune its

receiver to the wavelength indicated by the slot, in which the control packet was received,

and receive the data packet. In this scheme the collision of both data and control packets

is impossible, since control packets can only be transmitted by nodes in their preassigned

slots, and the data packets are transmitted on di�erent channels - the network architecture

used is presumed to be FT-TR (see Figure 2.4). Packet loss occurs when two or more nodes

send their packets to the same destination node in the same data slot - since a node can

only listen to one of the data channels within a single data slot, all other data packets are

lost.

Both these protocols su�er from low throughput (especially SA/SA) and high

packet losses under high loads (see [19]). Both these qualities are due to the tell-and-go

property they share - they attempt to transmit a data packet as soon as they have one.

Thus they give up on any possibility of scheduling packets for transmission themselves,

which might result in fewer collisions, and consequently in higher throughput. They also

make an assumption that the number of nodes and available data channels is the same,

which severely limits the number of nodes a network can have using current technologies



12

λ

λ

1

2

λ
3

Transmitter 1

Transmitter 2

Transmitter 3

Control
channel 1    2     3    4 1    2     3    4 1    2     3    4

22

Data packet
destination

3

To receiver 3

To receiver 2

To receiver 2

Collision

Figure 2.4: Collisions in DT-WDMA operation.

(as mentioned earlier, presently the number of channels is limited to 10-20).

Other protocols attempt to circumvent these di�culties by bu�ering the arriving

packets, until a signi�cant number of them accumulates and then collectively generating

collision-free transmission schedules. This group of protocols is called \reservation proto-

cols" because through the use of schedules they reserve bandwidth for the packets they

have ready for transmission ahead of time. Such protocols use the notion of a \Tra�c"

or \Backlog" matrix T . This matrix is dimensioned NxN , with N being the number of

nodes, whose element tij denotes the number of packets node i has for node j ready for

transmission. This matrix is used for calculating the transmission schedules. Packets are

usually bu�ered in the queues on a per-wavelength basis. Some of the protocols consider

only the head-of-line packets in the queues (FatMAC [25]), others consider multiple packets

for transmission per node to improve the overall utilization (DQMW [15]). Most however

share a common de�ciency - they schedule each packet independently and therefore incur

signi�cant tuning delays, since in the worst case a transmitter might need to be retuned for

each of the outgoing packets (in a TT-FR architecture).

One of the recently proposed schemes overcomes all of these di�culties by rear-

ranging the outgoing packets and grouping them by the outgoing wavelength. It also takes

into account and masks some of the necessary tuning delays. This protocol is called HiPeR-l

and it will be discussed in detail in the following section.
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2.6 Description of HiPeR-l

HiPeR-l was proposed in [26] and is based on the scheduling algorithm proposed

by the same authors earlier ([20]). The protocol has few restrictions - it allows for multiple

nodes per wavelength and there is no need for a special control channel. It achieves the

highest utilization when the tuning time of the transmitters or receivers (depending on

whether it is an FT-TR or a TT-FR con�guration) is close to the packet transmission

time, although the latter is not necessary for the operation of the protocol. Packets are all

assumed to be of equal length and not dissimilar to ATM cells in length and structure. The

protocol works as follows:

� Control packets are sent periodically on each of the wavelengths in order to update

the tra�c matrix T maintained by each of the nodes

� Each node posesses a copy of the same scheduling algorithm. Using this algorithm

a node calculates a transmission schedule, and since all the nodes use identical algo-

rithms on the identical tra�c matrices, they all use same transmission schedules and

thus avoid collisions

HiPeR-l's distinctive features are the lack of a control channel and its distributive

nature which allow for easy scalability. It can be used in both FT-TR and TT-FR con�gu-

rations with minor modi�cations, from now on, however, the TT-FR (Tunable Transmitter-

Fixed Receiver) con�guration will be assumed. It can also successfully hide the tuning

latencies of the transmitters or the receivers by overlapping the tuning time at one node

with the transmission of a number of packets by other nodes. The underlying scheduling

algorithm can construct schedules of near optimal length for a given tra�c (or backlog)

matrix T , so a high degree of throughput can be achieved by transmitting a number of

packets back-to-back on the same channel before retuning to the next. Also, the amount of

data sent in the control packets is small - it amounts to simply the number of packets each

node has waiting in each of its queues associated with the available channels. This keeps

the operational overhead of the protocol low.

Most of the work presented here is based on the assumption that the Single-Hop

network architecture we are studying employs HiPeR-l as its MAC protocol One of the

notions derived from the use of HiPeR-l, which will be used repeatedly here is that of

a \frame" - a collection of slots accommodating a single schedule. A typical frame length
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under moderate loads can be 400-500 cell slots. In Figure 2.5 we see a single frame of length

18, created for 5 nodes and 3 wavelengths. The transmitter tuning latency is equivalent to 2

cell slots. The notion of a frame is important because every time a frame is transmitted, the

tra�c matrix T is renewed, so the new schedule for the next frame needs to be calculated.

The performance analysis of HiPeR-l has resulted in several important observations

regarding the utilization of an optical network which employs HiPeR-l or a similar gated

protocol. These �ndings and their consequences for this work will be presented in the

following section.

2.7 Load Balancing in Single-Hop WDM Networks

We have emphasized from the start that increasing the utilization of an optical

network is the goal of this work. At this point we will provide the main justi�cation for our

research.

In the performance analysis of HiPeR-l two parameters of importance were intro-

duced:

� Degree of load balancing �b, which characterizes the upper bound on the number of

cells carried by a single channel, compared to the lower bound, when the cells are

distributed evenly across wavelengths.

� Scheduling guarantee �s, which characterizes the actual constructed schedule length

compared to the lower bound.
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Based on these two parameters the following stability condition for HiPeR-l was

arrived at (see [26]):

 <
C

(1 + �b)(1 + �s)
(2.1)

where  is the total cell arrival rate to the network and C is the number of available channels.

What this expression shows, is that minimizing the �b and the �s quantities will

have the e�ect of raising the arrival rate in the network, thus increasing the throughput.

And while �s depends purely on the scheduling algorithm used, and in the future will be

considered constant, �b depends on the number of cells accumulated for transmission on

each channel, and is a�ected by the particular assignment of the �xed receivers to the

channels. For instance, if the receivers are assigned to the wavelengths such that the load

is distributed evenly between wavelengths, we will see something similar to the diagram on

the left of Figure 2.6. If, however, several heavily-used servers are assigned to wavelength

2, while the other two wavelengths remain underutilized, we will see something similar to

the diagram on the right of Figure 2.6.

Clearly the degree of load balancing depends not only on the assignment of the

receivers to the wavelengths, but also on the number of packets that arrive for each of the

destinations in each node during a frame. This, in turn, will be governed by the predominant

tra�c pattern currently in e�ect. If we could �nd a way to lower the degree of load balancing

for the di�erent tra�c patterns by dynamically recon�guring the network, this would result

in the higher total cell arrival rate, and, in turn, in a higher throughput. To the best of our

knowledge this work is the �rst to consider this problem in Single-Hop optical networks.
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It has been, however, considered for the Multi-Hop networks and some of the proposed

solutions will be described in the following chapter.
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Chapter 3

Previous Work

3.1 Dynamic Recon�guration in Multi-Hop Networks

As was mentioned in the beginning of the previous chapter, Multi-Hop networks

di�er from Single-Hop in that the assignment of the �xed receivers or transmitters to the

particular channels dictates the logical topology of the network. If this assignment is allowed

to be changed dynamically, this property can be exploited in order to improve network

performance and reliability. Such dynamic networks hold a great promise over their static

counterparts in operating at higher utilization and having self-healing capabilities to help

cope with potential failures. This feature allows us to adapt the network topology to the

di�erent optimization goals we might be faced with. Two of the most popular goals are:

� Throughput Optimization - minimizing the maximum ow on each link, a problem

well-known in the world of circuit-switched networks.

� Delay Optimization - minimizing the maximum number of hops a packet has to tra-

verse to reach its destination.

Once the optimization goal is chosen, two following problems must be addressed:

1. Determine the best new topology for the new tra�c conditions given the optimization

goal (Tra�c Optimization see [14]).

2. Find a way to recon�gure the network from its original topology to the new one

(Recon�guration Management see [14]).
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Furthermore, when determining the new best topologies we can be limited to a set of

predetermined �xed topologies, or be able to use any arbitrary regular topology.

The following two sections will describe in more detail approaches used in solving

the two problems.

3.2 Optimizing the Topology

Both formulations of the problem depend on the state of the tra�c in the network

which is usually described as a NxN matrix

�T = f�Tstg1�s;t�N (3.1)

where �Tst is a measure of the amount of tra�c node s has for node t. Another parameter

of importance is the matrix representing propagation delays in the network

�T = f�Tijg1�i;j�N (3.2)

As mentioned above, the optimization can be done both over an arbitrary ([12],

[6]) and a �xed set of topologies ([21], [22]). Examples of �xed topologies could be the

Perfect Shu�e, de Bruijn Graphs, uni- and bi-directional rings, Manhattan Street Network

and hypercube. We will examine the two approaches separately below.

3.2.1 Optimization over Arbitrary Topologies

In this formulation it is important to describe the amount of tra�c, present on

each link due to a particular source-destination pair in order to come up with the best

topology. This is done by de�ning a number of ow variables f stij each describing the tra�c

on a link connecting node i to node j due to source-destination pair (s; t). To describe the

topology a set of connectivity variables zij is introduced. The values of zij are restricted to

f0; 1g and their values represent the actual connections in the network - 1 for when a link

connects node i to node j and 0 when there is no direct link.

These de�nitions allow us to represent the problem of optimizing the topology for a

particular goal as an integer programming problem. For instance, throughput maximization

can be done by minimizing the largest ow in the network (the so called min-max problem)

and can be formally presented as

F = max(i;j)f
X
s;t

f stij g (3.3)
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X
s;t

f stij � zijC (3.4)

where C is the link capacity. The resulting integer programming problem can be solved by

a variety of existing techniques like the simplex method, the Tabu search [7], or simulated

annealing. Other approaches include heuristic algorithms that attempt to improve the

existing topology through localized changes called branch-exchange operations (see Figure

3.1).

3.2.2 Optimization over Fixed Topologies

Since in this approach the topology is already known, the problem then becomes

that of assigning particular nodes to locations in the �xed topology. To that end the problem

formulation now includes assignment variables Xsi, whose values are limited to f0; 1g. They

represent the assignment of nodes to locations - 1 if node is s is assigned to location i and

0 otherwise. Also, for delay optimizations, yet another set of variables �ij can be added to

represent the shortest propagation delay between two nodes for a given topology.

As with arbitrary topologies, a variety of techniques exist that tackle this problem.

Some of them are based on integer programming techniques, while others attempt to reduce

the problem to other problems such as minimum cut linear arrangement and optimal linear

arrangement problem which happen to be NP -complete [23].

3.3 Recon�guration Management

Once the new topology, that is optimized to some set of parameters is determined,

the problem becomes that of transitioning the network from the initial topology to the new

one. Here the extremes are taking the network o�-line and performing the recon�guration in

one step, but sustaining high packet losses. Alternatively, we can perform the recon�gura-
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tion in small steps, thus minimizing the packet losses, but possibly degrading the long-term

performance due to the duration of the recon�guration period.

Authors of [13] consider the problem of constructing a sequence of previously

mentioned branch-exchange operations that transforms the network from the initial topology

into the new one. They propose polynomial-time algorithms that �nd minimal sequences

of such operations, so as to keep the recon�guration phase short.

This concludes the description of the previous work in the area of dynamic re-

con�guration of WDM networks. In the next chapter we will present our recon�gurable

architecture for single-hop networks, as well as the system model.
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Chapter 4

System Model

4.1 Recon�gurable Single-Hop WDM Networks

In the previous chapters we have de�ned the need for the dynamic recon�guration

capability in WDM networks. In short it means higher throughput and more optimal use

of network resources. In this section we will de�ne the architecture that posesses this

capability.

Traditional Single-Hop WDM networks, as mentioned before, have tunable device

only on one side - either the receivers or the transmitters (FT-TR vs. TT-FR). In the case

of a TT-FR (Tunable Transmitter- Fixed Receiver) con�guration, in order to communicate

with another node, a node must know the destination's receiver wavelength, so it can tune

its transmitter to it and send the cells. This architecture is incapable of recon�guration,

since its only dynamic aspect - the tunable transmitter, is used to provide for network

connectivity with a scheduling protocol such as HiPeR-l. What we require, is an architecture

where both the transmitter and the receiver are tunable, and an appropriate MAC protocol

capable of communicating changes in the con�guration to the nodes in the network. Earlier

we spoke of fast-tunable devices, as being traditionally used in WDM networks, and how

expensive they were. For this reason an architecture where each node is equipped with

a fast-tunable receiver and a fast-tunable transmitter will be prohibitively expensive, and

also unnecessary. The need for recon�guration will not be as frequent as the need to retune

from one wavelength to another while transmitting cells - it will happen on a signi�cantly

longer time-scale, and therefore a fast-tunable device is not needed. For this reason we

propose a novel architecture, in which the transmitters are fast- or rapidly-tunable, while
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the receivers are slowly-tunable or as we call it RTT �STR. Figure 4.1 shows the di�erence

in times scales of a single cell transmission time, the time it takes a transmitter to retune

or its tuning latency and the time it takes a receiver to retune.

This architecture retains the characteristics that make it suitable for use with an

e�cient scheduling protocol such as HiPeR-l, while allowing for dynamic recon�guration at a

moderate cost. Let's look at how its recon�guration capability can be put to our advantage.

Presume, that the tra�c conditions have changed so drastically that the cell load across

the wavelengths is very unbalanced as in Figure 4.2. If now, based on the changed tra�c

conditions we come up with a new assignment of nodes to channels, which allows for a better

balanced cell load as in Figure 4.3, and by using the retuning capability of the receivers we

implement that new assignment, the network should function more e�ciently according to

expression 2.1.

While in theory this looks very promising, there are several problems that need to

be faced:

1. We need to decide when the recon�guration is advantageous from the point of view
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of utilization and cell losses. While the network is recon�guring, some cell losses are

inevitable as receivers become unavailable while they retune.

2. We need to be able to determine what the new balanced assignment of nodes to

wavelengths is.

3. Having the initial and the new assignment of nodes to wavelengths we need a way to

e�ciently recon�gure the network from one to the other with minimal cell losses.

These are the problems (and the solutions to them) that we will be presenting

in the following chapters. However before we proceed, we must introduce several concepts

that de�ne our system model, which will be used throughout this work.

4.2 Network Model and Operation

We consider a packet-switched single-hop lightwave network withN nodes, and one

transmitter-receiver pair per node. The nodes are physically connected to a passive broad-

cast optical medium that supports C < N wavelengths, �1; � � � ; �C. Both the transmitter

and the receiver at each node are tunable over the entire range of available wavelengths.

However, the transmitters are rapidly tunable, while the receivers are slowly tunable (RTT-

STR).

Let �t (�r) denote the normalized tuning latency of transmitters (receivers),

expressed in units of cell transmission time. In the RTT-STR system under consideration,

we have that �r � �t � 1, where �t is a small integer, while �r takes values that may be
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signi�cantly greater than �t. The main motivation for employing slowly tunable receivers

vs. fast tunable ones is the signi�cant savings in cost that can be realized.

We distinguish two levels of network operation, di�ering mainly in the time scales

at which they take place. At the cell scheduling level, connectivity among the network

nodes is provided by reservation protocol such as HiPeR-` [26] that requires tunability

only at the transmitting end. The protocol schedules cells for transmission by employing

scheduling algorithms that can e�ectively mask the tuning latency of tunable transmitters

[16, 20, 2, 4, 18]. Since the receiver latency �r is signi�cantly long and cannot be overlapped

with cell transmissions, at this level of operation the receivers are considered to be �xed

tuned to a particular wavelength. Let �(j) 2 f�1; � � � ; �Cg be the wavelength currently

assigned to receiver j. We de�ne an assignment of wavelengths to receivers as a partition

R = fRc; c = 1; � � � ; Cg of the set N = f1; � � � ; Ng of nodes, such that Rc is the subset of

nodes currently receiving on wavelength �c:

Rc = fj j �(j) = �cg c = 1; � � � ; C (4.1)

In the future we will be referring to receiver wavelength assignment as WLA.

The ability of receivers to tune, albeit slowly, is invoked only at the resource

allocation level; in this work, the shared resource of interest is bandwidth. We note that a

partition R = fRcg in (4.1) implies an allocation of the available bandwidth to the various

receivers. The availability of tunable receivers allows this allocation to be optimized to

prevailing tra�c conditions. As the tra�c varies, a new assignment of receive wavelengths

may be sought that satis�es some optimality criteria. We will use the term \recon�guration"

to refer to the reallocation of bandwidth to receivers. Since this variation in tra�c will more

likely take place over larger scales in time, recon�guration is expected to be a relatively

infrequent event, and each assignment of receive wavelengths will be long lived relative to

the scheduling of cell transmissions by the media access protocol. Consequently, receivers

with a tuning time �r signi�cantly larger than the cell transmission time, will be acceptable

at the resource allocation level as long as �r is small compared to the mean time between

successive recon�guration events.

Intuitively, receive wavelengths should be assigned so that the tra�c load be bal-

anced across the C channels. In Chapter 2 we mentioned parameter �b - the degree of load

balancing which was introduced as part of the stability condition for HiPeR-l 2.1. We for-

mally de�ne it such that no channel carries more than (1+�b)
C

times the total tra�c o�ered to
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the network. In other words, �b is a measure of the degree of load balancing of the network;

under perfect load balancing, �b = 0.

We represent the bandwidth requirements of source-destination pairs by a tra�c

demand matrix T= [tij ]. Quantity tij could be a measure of the average tra�c originating

at node i and terminating at node j, or it could be the e�ective bandwidth [17] of the

tra�c from i to j. Given matrix T, we can compute the total bandwidth requirement bj of

receiver j as the sum of the elements of the j-th column of T:

bj =
NX
i=1

tij j = 1; � � � ; N (4.2)

As mentioned in the beginning of this chapter, we distinguish three separate prob-

lems that need to be addressed in order for a network to go through the recon�guration

phase e�ciently:

1. Determining the balanced WLA for the new tra�c conditions (Chapter 5).

2. Determining when it is optimal to recon�gure the network by gauging the packet losses

associated with the recon�guration against the improvement in network e�ciency

achieved through a new WLA (Chapter 6).

3. Finding a way to optimally recon�gure the network from one WLA to another with

minimal packet losses (Chapter 7).

Even though in the previous section the problem of �nding the balanced WLA was stated

as number 2, we actually need to �nd a solution for it before we can address the other two

problems, since they both depend on the newly calculated balanced WLA.

The following chapters will discuss our proposed solutions to each of these prob-

lems.
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Chapter 5

Load Balancing in Single-Hop

WDM Networks

Based on our observations regarding load balancing, our objective is to assign

the receivers to the available channels such that the total bandwidth used in each channel

is approximately the same among di�erent channels. This problem is equivalent to the

multiprocessor scheduling problem [8], where given a set of tasks with a priori known

processing times and a number of processing units, the objective is to allocate the tasks

to the processors such that the overall �nish time is minimized. (This implies that the

total processing time of the various processors di�ers as little as possible.) In our case the

channels take the place of the processors, the receivers replace the tasks and the bandwidth

requirements bj replace the processing times.

The multiprocessor scheduling problem is NP-complete [9]. Two approximation

algorithms for this problem are MULTIFIT [5], with an absolute performance ratio of 1.22,

and LPT [10], with an absolute performance ratio of 1.33. Either of these two algorithms

may be used to obtain an assignment of receive wavelengths based on the receiver bandwidth

requirements bj ; j = 1; � � � ; N , such that tra�c is spread across the various channels as

evenly as possible. We now proceed to discuss what happens when, due to changes in the

tra�c pattern, the current wavelength assignment becomes suboptimal.
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5.1 The Transition Phase

Let R be an assignment of receive wavelengths based on tra�c matrix T and

the corresponding bandwidth requirements fbjg in (4.2). As tra�c varies over time, the

elements of matrix T, as well as the column sums fbjg, will change. Let T0 be a new

tra�c matrix, and fb0jg be the new receiver bandwidth requirements. If, due to these tra�c

changes, assignment R is no longer successful in balancing the load across the channels,

two actions are taken: a new assignment R0 is obtained, optimized for the new bandwidth

requirements fb0jg, and a number of receivers are tuned to new wavelengths as speci�ed by

R0.

In [13] it was assumed that the tra�c pattern is slowly and predictably changing

over time. In this case, an assignment of receive wavelengths may be precomputed for

the expected new tra�c conditions. If changes in the tra�c pattern are not predictable,

the network nodes (or a special node dedicated to managing the network) may monitor

packet transmissions on the various channels, and apply statistical techniques to determine

whether the overall conditions have changed in a way that signi�cantly a�ects the optimality

of the current wavelength assignment. The problem of determining when the wavelength

assignment needs to be updated will be considered in the following chapter. Instead here

we concentrate on the issues arising once a decision to recon�gure the network has been

taken based on a new tra�c matrix T0.

The recon�guration phase will take the network from the current assignment R to

some new assignment R0. We de�ne the distance D between two wavelength assignments

R and R0 as follows:

D(R;R0) = N �
CX
c=1

j Rc \R
0
c j (5.1)

The distance D(R;R0) represents the number of receivers that would need to be retuned in

order to take the network from wavelength assignment R to the new assignment R0.

There is a wide range of policies for recon�guring the network, mainly di�ering in

the tradeo� between the length of the transition period and the portion of the network that

becomes unavailable during this period (see [13] for a discussion on similar issues arising

in multihop networks). One extreme approach would be to simultaneously retune all the

receivers that are assigned new channels under R0. The duration of the transition period

is minimized under this approach (it becomes equal to �r), but a signi�cant fraction of
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the network may be unusable during this time. At the other extreme, an approach that

retunes one receiver at a time minimizes the portion of the network unavailable at any

given instant during the transition phase, but maximizes the length of this phase (which

now becomes D(R;R0)�r). Between these policies at the two ends of the spectrum lie a

range of approaches in which two or more receivers are retuned simultaneously.

Let us de�ne a step in the recon�guration phase as an interval of length �r during

which one or more receivers are retuned. Let k(p) be the number of steps required under

policy p, and let xn(p); n = 1; � � � ; k(p); be the number of receivers retuned during step

n for this policy. During the transition period, the network incurs some cost in terms of

packet delay, packet loss, packet desequencing, and the control resources involved in receiver

retuning. This cost is directly proportional to both the portion of the network that becomes

unavailable and the length of the transition period. A measure of this cost that accounts for

both these factors is the network unavailable fraction-unavailability length product, which

can be obtained as the sum
Pk(p)

n=1

�
�r

xn(p)
N

�
. But, for any recon�guration policy p, this

sum is equal to:
k(p)X
n=1

�
�r

xn(p)

N

�
= �r

D(R;R0)

N
8 p (5.2)

Thus, regardless of the policy used, the number of retuning operations D(R;R0) emerges

as an important parameter, one that determines the impact of the recon�guration phase on

the tra�c carried by the network.

The rest of the chapter considers the problem of minimizing the number of retuning

operations given an initial assignment R and a new tra�c matrix T0. As in [13], we also

ignore network speci�c issues such as how to coordinate the individual steps of the transition

phase and inform the nodes of which receivers to retune and when. Instead, we concentrate

on an abstract model that hides the details of operation but is applicable to a wide range

of network environments.

5.2 Determining the New Wavelength Assignment

Consider a network operating under wavelength assignment R optimized for tra�c

matrix T. As tra�c varies over time, the matrix is updated to reect the changes in the

tra�c pattern. Let T0 be the tra�c matrix at the instant recon�guration is triggered. Our

objective is to obtain a new wavelength assignment R0 such that:
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1. the new tra�c load, as speci�ed by matrix T0 is evenly spread across the C channels,

and

2. the number of retunings required to take the network from assignmentR to assignment

R0 is as small as possible.

We note that these requirements on R0 represent two conicting objectives: minimizing the

number of retunings alone would result in R0 being the same asR, which may be suboptimal

in terms of load balancing; while optimally balancing the load across the C channels might

produce a new assignment such that the distance in (5.1) be large.

We distinguish two approaches in constructing a new assignment R0, di�ering

mainly in whether the optimization procedure attempts to satisfy both objectives simulta-

neously, or one at a time:

� The �rst approach consists of two steps. The �rst step is to partition the set of re-

ceivers by solving the load balancing problem on matrix T0 independently of the initial

assignment R. The second step assigns the new subsets of receivers to wavelengths

so as to minimize the number of retunings required starting from R. This gives rise

to the Channel Assignment problem discussed in the next subsection.

� The second approach attempts to solve the load balancing problem on matrixT0, while

at the same time minimizing the number of retunings that have to be performed. We

will call this the Constrained Load Balancing problem.

We now study the two problems, starting with the channel assignment problem.

5.2.1 The Channel Assignment Problem

We consider an initial wavelength assignment R and a new tra�c matrix T0. The

�rst step in the recon�guration process is to run an approximation algorithm (such as

MULTIFIT or LPT) to obtain a partition S0 = fS0cg of the set of receivers into C sets

S0c; c = 1; � � � ; C. This partition S0 is such that the bandwidth requirements (as de�ned by

matrix T0) of the receivers in each set S0c is approximately the same among the C sets. We

note that the approximation algorithm does not distinguish among the various channels.

Thus, the output of the algorithm is simply a partition S0 of the set of receivers, not a

wavelength assignment as de�ned in (4.1); in other words, there is no association among

the receiver subsets S0c and the available wavelengths.



30

From S0 we may obtain a new wavelength assignment R0 by mapping each subset

S0c to one of the wavelengths, such that no two subsets map to the same wavelength. Since

our objective is to minimize the number of retuning operations during the recon�guration,

the problem of selecting a mapping that results in the least number of retunings arises. We

will call this the Channel Assignment (CA) problem; it can be formally stated as:

Problem 5.2.1 (CA) Given an initial wavelength assignment R = fRcg, and a new par-

tition S0 = fS0cg of the set of receivers, �nd a permutation (�1; �2; � � � ; �C) of f1; � � � ; Cg

such that for the new wavelength assignment R0 = fR0cg with R0c = S0�c ; c = 1; � � � ; C, the

distance D(R;R0) is minimum over all possible permutations.

Problem CA is an example of a bipartite weighted matching or assignment problem

[1], when given a weighted bipartite network it is required to �nd a perfect matching of

minimum weight. Several polynomial-time algorithms exist for the assignment problem [1].

The following lemma emphasizes the importance of employing an optimal algorithm for the

CA problem, by stating that using a simple scheme such as the identity permutation (i.e.,

letting R0c = S0c for all c) may result in an unnecessarily large number of retunings.

Lemma 5.2.1 Assume that the tra�c matrix has changed so that at least one retuning

is required under the optimal permutation. Then, the di�erence between the number of

retunings required by the identity permutation and that required by the optimal permutation

can be equal to N (the number of receivers) minus one, in the worst case.

Proof. See Appendix A. 2

Unfortunately, this approach to obtaining the new wavelength assignment does not

scale well with the size of the network. Even though the LPT orMULTIFIT algorithms can

successfully balance the tra�c load across the C channels, this approach performs poorly

in terms of the number of retunings required to change the network to the new wavelength

assignment. The next lemma states that, even under an optimal solution to the CA problem,

the number of retunings required may be very large.

Lemma 5.2.2 Let R and S 0 be the initial wavelength assignment and new partition, re-

spectively, of an arbitrary instance of the CA problem for a network with N nodes and C

channels. If the optimal solution to this instance yields wavelength assignment R0, N � C

is an upper bound on the number of retunings required, i.e.,

D(R;R0) � N � C (5.3)
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Proof. See Appendix B. 2

The main disadvantage of this solution is that it always satis�es the load balancing

objective at the expense of the number of retunings. Furthermore, all the algorithms for the

assignment problem are computationally expensive [1], making it di�cult to apply them in

dynamic high-speed environments. What is needed is a fast algorithm that looks at both

objectives at the same time, and which allows the designer to adjust the tradeo� among

them in favor of one or the other.

5.2.2 The Constrained Load Balancing Problem

We now consider a di�erent approach to obtaining a new wavelength assignment

R0, given an initial assignment R and a new tra�c matrix T0, one that attempts to simulta-

neously satisfy the two requirements for R0 discussed earlier in this section. This approach

gives rise to the Constrained Load Balancing (CLB) problem, which can be formally stated

as a decision problem:

Problem 5.2.2 (CLB) Given an initial wavelength assignmentR, a tra�c matrix T0, and

two positive integers K and L, is there a wavelength assignment R0 such that
P

j2R0

c
b0j �

K 8 c and D(R;R0) � L?

The CLB problem is NP-complete because for L � N it reduces to the multipro-

cessor scheduling problem which is NP-complete [9]. We now present a heuristic for the

CLB problem, which is based on LPT [10], an approximation algorithm for the multipro-

cessor scheduling problem. In describing the heuristic we will use the terminology of [10],

i.e., we will refer to processors, tasks, and execution times instead of channels, receivers,

and bandwidth requirements, respectively. This will be helpful in referring to the results of

[10] to prove certain properties regarding the performance of our heuristic.

Recall that LPT �rst sorts the N tasks in a list L = (�1; � � � ; �N) in decreasing

order of their execution times. Initially, each of the �rst C tasks in the list is assigned to a

di�erent processor to execute. Then, whenever a processor completes a task, it scans the list

L for the �rst available task to execute, and this procedure repeats until all tasks have been

executed. We modify LPT to take into accountR, the previous wavelength assignment (i.e.,

the previous assignment of tasks to processors), by introducing a parameter �; 1 � � � N .
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Algorithm Generalized LPT (GLPT)

Input: Initial wavelength assignment R = fRcg, and new receiver bandwidth requirements

b0j ; j = 1; � � � ; N , derived from the new tra�c matrix T0; �(j) denotes the receive wavelength

of j under R

Output: New wavelength assignment R0 = fR0cg

Parameter: �; 1 � � � N

1. begin

2. Initialize R0c = �; c = 1; � � � ; C

3. Order the receivers as (�1; � � � ; �N) such that b0�1 � � � � � b0�N

4. R0c  f�1g where �(�1) = �c // assign the �rst receiver to its previous channel

5. For j = 1 to N � 1 do

6. Order the channels as (��1 ; � � � ; ��C) such that
P

l2R0

�1
b0l � � � � �

P
l2R0

�C
b0l

7. Order the non-assigned receivers as (�1; � � � ; �N�j) such that b0�1 � � � � � b0�N�j

// If one of the �rst � receivers was assigned to ��1 under R, assign it to the same channel

8. For i = 1 to minf�;N � jg do

9. If �(�i) = ��1 then

10. R0�1  R0�1 [ f�ig

11. goto 5

// Otherwise, assign the �rst receiver to ��1

12. R0�1  R0�1 [ f�1g

13. end of algorithm

Figure 5.1: The Generalized LPT algorithm for the CLB problem

The new algorithm also orders the tasks in a list L in decreasing order of their execution

times. However, when a processor i searches for a new task to execute (initially, or after

the completion of a task) it does not immediately select the �rst available task in the list.

Instead, it considers the �rst � available tasks in the list (if there are less than � remaining

tasks, then all of them are considered). If at least one of these tasks was assigned to the

same processor i under the previous assignment R, then the processor starts executing the

larger such task, even if it is not the �rst one in the list of available tasks. Otherwise, if

no such task exists, the processor executes the �rst available task, as in LPT. There is one

exception to this rule, namely, the �rst task in the list L (i.e., task �1) is always assigned
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to its processor under R.

We will call the algorithm just presented the Generalized LPT (GLPT) algorithm;

its detailed description can be found in Figure 5.1. It can be easily veri�ed that, by imple-

menting appropriate data structures, the complexity of GLPT is O(N maxflogN;C; �g).

We note that GLPT reduces to pure LPT for � = 1. For higher values of �, it is more likely

that receivers will be assigned to the same channels as before, and the new wavelength as-

signment R0 will be closer to R; this may be achieved at the expense of load balancing. By

selecting a value for � between 1 and N when implementing GLPT, the network designer

can achieve the desired tradeo� between the two objectives: load balancing and number of

retunings.

The following lemma provides an absolute performance ratio regarding the behav-

ior of GLPT in terms of load balancing, regardless of the value of parameter �.

Lemma 5.2.3 Let ! denote the �nish time of a multiprocessor schedule constructed by

GLPT for any value of �, and let !? denote the optimal �nish time for the same set of

tasks. Then,
!

!?
�

3

2
�

1

2C
(5.4)

Proof. Let us choose the m; 0 � m � N longest tasks of the set of tasks to be executed

and arrange them in a list L which gives the optimal solution for these m tasks under this

strategy: upon completion of a task, a processor scans the list and starts executing the next

available task. Now let us extend L to include all the tasks by adjoining the remaining

N �m tasks arbitrarily to L, forming list L(m). Let !(m) denote the �nish time for the

N tasks when using the above strategy on L(m), and let !? denote the optimal �nish time

for all N tasks. From [10, Theorem 3] we have that:

!(m)

!?
� 1 +

1 � 1
C

1 + dm
C
e

(5.5)

Let L0 denote the corresponding list of tasks for GLPT. This list is not known a priori,

instead, it is formed dynamically during the execution of the algorithm. However, by

construction, the same strategy is followed on L0, namely, a processor that becomes idle is

always assigned the next available task on L0. Then, the result in (5.4) follows immediately

from (5.5) for m = 1, since, regardless of the value of the parameter �, list L0 is formed by
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concatenating some list of N � 1 tasks (as formed by the algorithm) to the list that gives

the optimal solution for the longest task �1. 2

Finally, we note that the CLB problem is a generalized version of the classical

multiprocessor scheduling problem [8], whereby it takes a non-negligible amount of time to

transfer tasks between processors, and that, because of Lemma 5.2.3, GLPT is an approxi-

mation algorithm for this new problem.

5.3 Numerical Results

We now compare the two approaches for obtaining a new wavelength assignment

R0, given an initial assignment R and a new tra�c matrix T0:

� The �rst approach is to run LPT [10] on the new receiver bandwidth requirements

fb0jg derived from matrix T0 to obtain a partition S0 of the set of receivers into C

subsets S0c; we then run the Shortest Augmenting Paths algorithm [1] to obtain a

solution to the CA problem, i.e., to map the subsets S0c to the actual channels. The

running time requirements of this approach are O(N logN +N4).

� The second approach is to run algorithm GLPT(�), shown in Figure 5.1, with R and

T0 as input, to directly obtain the new assignment R0; in our experiments, we have

used various values for parameter �.

The two performance measures of interest are load balancing and the number of receiver

retunings required. Since we do not have a polynomial time solution for the load balancing

problem, we compare the two approaches against the lower bound, obtained from matrix

T0 as

P
i;j

t0ij

C
; we note that, in general, this lower bound may not be achievable.

Figures 5.2 and 5.3 show the performance of the two approaches in terms of load

balancing and number of retunings, respectively, as we vary the number N of nodes in

the network; the number of channels remains constant, C = 10. Figures 5.4 and 5.5 show

results for the same performance measures as the number of channels varies while the

number of nodes is kept constant at N = 120. To obtain the results shown in Figures

5.2 { 5.5 we constructed random tra�c matrices whose elements were integers uniformly

distributed in the range 0 through 20. Each point plotted corresponds to the average of

100 random instances for the stated values of N and C; 95% con�dence intervals have also

been computed, but they are so narrow that they are not plotted in the �gures.
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Figure 5.2: Algorithm comparison on load balancing (C = 10 channels, random tra�c
matrices)
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Figure 5.4: Algorithm comparison on load balancing (N = 120 nodes, random tra�c
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Our �rst observation from Figures 5.2 and 5.4 is that the �rst approach (i.e., em-

ploying LPT for load balancing and then solving the channel assignment problem), provides

the best performance in terms of load balancing, as expected. However, algorithm GLPT

with � = 5 (GLPT(5)) performs almost identical to LPT, while GLPT(10) is also very close

to LPT. As � increases, GLPT starts behaving sub-optimally in terms of load balancing, as

expected. However, even when � is as large as 40, GLPT is never more than 14% away from

the lower bound, and in some cases it is as close as 3%. In fact, because of Lemma 5.2.3,

GLPT is guaranteed to always be within 50% from the optimal, regardless of the value of

parameter �.

Let us now turn our attention to Figure 5.3 which plots the average number of

retunings as a function of the size N of the network. We observe that the �rst approach

always requires the most number of retunings, and that its retuning requirements increase

linearly with the size of the network. Furthermore, the expected fraction of receivers that

need to be retuned increases with the number of nodes, from 50% when N = 20, to 75%

when N = 120. This behavior suggests that the approach is not scalable, since, for large

N , either the duration of the recon�guration phase, or the fraction of the network that

becomes unavailable, will be signi�cant. The behavior of this approach in terms of number

of retunings is in agreement with intuition: LPT is very successful in balancing the load of

the network, but it does not take into account the previous wavelength assignment. As a

result, the distance between the initial and target assignments tends to be large. We note

also that, for all values of N , the expected number of retunings is very close to the upper

bound in Lemma 5.2.2.

From the same �gure we see that, for small values of �, algorithm GLPT requires

a number of retunings which also increases linearly with the size of the network. However,

the rate of increase is much slower (for instance, when � = 5, about 50% of the receivers

are retuned for all values of N , while when � = 10, about 20% of the receivers are retuned

on average). As � increases, the behavior of GLPT improves dramatically. For � = 20, the

number of retunings does increase with N , but it is always less than 10, while when � = 40,

only about one receiver needs to be retuned, independently of the number N of nodes. In

fact, doubling the value of parameter � reduces the number of retunings to less than half

its previous value. As a result, it does not make sense to use a value of � that is, in this

case, larger than 40, since doing so may increase the running time requirements of algorithm

GLPT without any signi�cant e�ect on the number of retunings. This behavior of GLPT
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can be explained by noting that, for su�ciently large values of �, GLPT will assign most

of the receivers to their previous channels. Only a few of the receivers with the smallest

requirements will be assigned to new channels if it is necessary to do so in order to keep

the channels balanced. This feature of GLPT, namely, that the receivers with the smallest

requirements under the new tra�c pattern are more likely to be retuned, is highly desirable.

This is because it implies that the recon�guration will a�ect the part of the network that is

least utilized, minimizing the impact of the transition phase (in terms of packet loss, delay,

etc.) on the overall tra�c carried by the network.

In Figure 5.5 we plot the number of retunings required against the number of

channels, for N = 120. We note that the �rst approach always requires a number of

receivers to be retuned which is very close to the upper bound N �C of Lemma 5.2.2. On

the other hand, the number of retunings required by GLPT increases almost linearly with

C for all values of �; also, larger values of � result in a smaller number of retunings, as

expected. This result, combined with our previous observations, indicates that, for certain

values of parameter � (in this case, for 20 � � � 40), GLPT provides a scalable approach to

recon�guring the network since (a) it achieves a guaranteed level of performance in terms of

load balancing, (b) its retuning requirements are low, and more importantly, (c) the number

of retunings scales with the number of channels, not the number of nodes in the network.

The results plotted in Figures 5.2 { 5.5 were obtained by randomly selecting the

initial tra�c matrix T, and then randomly selecting the target matrix T0, independently of

T. In practice, the new tra�c matrix T0 will be related to the old matrix T, di�ering only

by the changes in the tra�c demands that have taken place in the time interval between

successive recon�guration instants. To study the relative performance of the two approaches

under a model that more closely captures the characteristics of a realistic tra�c scenario,

we have run a set of experiments in which we have used Brownian motion to model the

change in the source-destination tra�c demands.

In the new model, the initial random matrix T was constructed as before. This

matrix was then evolved through a series of steps to obtain the target matrix T0. The

Brownian motion was modeled by using two asymmetric probabilities: the probability of

the particle moving towards the \wall" and the probability of moving away from the \wall",

the \wall" being either the lower or the upper limit on the source-destination tra�c demand

(to obtain results comparable to those in Figures 5.2 - 5.5, we used 0 and 20, respectively,

for the lower and upper limit on the tra�c demands). At every step of the evolution process,
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each element of the demand matrix T is treated as a one-dimensional Brownian particle.

In our model, the probability of moving away from the wall (set to 0.5) was higher than the

probability of moving towards the wall (set to 0.2) 1. Thus, a particle always has a \direction

of likely movement". Based on these probabilities, a newly generated random number at

each step determines whether the bandwidth demand for a certain source-destination pair

will increase by an amount �, decrease by �, or remain the same, independently of the other

elements; in our experiments we let � = 1. If an element hits the upper or lower limit, its

\direction of likely movement" is reversed. After performing several steps (� 10 � 20) in

this manner, the resulting matrix was taken as the new tra�c matrix T0.

The results from the Brownian model are shown in Figures 5.6 - 5.9. As we can

see, the new model had little e�ect on the behavior of the various algorithms, con�rming

our conclusions regarding the relative performance of the two approaches.

5.4 Concluding Remarks

We considered the problem of updating the bandwidth allocation in single-hop

WDM networks to accommodate varying tra�c demands, by retuning a set of slowly tunable

receivers. Our objective was to balance the tra�c load across all channels, while keeping the

number of retunings to a minimum. We studied a straightforward approach to obtaining

a new wavelength assignment, one that employs well-known algorithms to satisfy the two

requirements independently of each other, and we have shown that it is not scalable. We

then presented a new algorithm that attempts to construct the new wavelength assignment

in a way that simultaneously achieves the stated objectives. The algorithm provides for

tradeo� selection between the two requirements, and scales well with the size of the network.

We presumed that the decision to perform the recon�guration of the network will

have already been made by the time GLPT is invoked. The following chapter will address

the important question of a Recon�guration Policy which will decide when it is advantageous

to recon�gure the network in order to improve the overall throughput.

1Note that these probabilities need not sum up to unity; if they do not, the di�erence represents the
probability that the particle will not change its position during a step.
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Figure 5.6: Algorithm comparison on load balancing (C = 10 channels, Brownian model)
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Figure 5.8: Algorithm comparison on load balancing (N = 120 nodes, Brownian model)
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Chapter 6

Optimal Recon�guration Policies

During the recon�guration phase, while the network makes a transition from one

WLA to another, some cost is incurred in terms of packet delay, packet loss, packet dese-

quencing, and the control resources involved in receiver retuning. Clearly, receiver retunings

should not be very frequent, since unnecessary retunings a�ect the performance encountered

by the users. Hence, it is desirable to minimize the number of network recon�gurations.

However, postponing a necessary recon�guration also has adverse e�ects on the overall

performance. Since the network does not operate at an optimal point in terms of load bal-

ancing, it takes longer to clear a given set of tra�c demands, causing longer delays and/or

bu�er overows, as well as a decrease in the network's tra�c carrying capacity (refer also

to the stability condition in [26]). Similarly, if the decisions are made merely by consid-

ering the degree of load balancing, even tiny changes in the tra�c demands can lead to

constant recon�guration, thereby signi�cantly hurting network performance. Consequently,

it is important to have a performance criterion which can capture the above tradeo�s in an

appropriate manner and allow their simultaneous optimization.

In this chapter we develop a novel, systematic, and exible framework in which

to view and contrast recon�guration policies. Speci�cally, we formulate the problem as a

Markovian Decision Process and we show how an appropriate selection of reward and cost

functions can achieve the desired balance between various performance criteria of interest.

However, because of the huge state space of the underlying Markov process, it is impossible

to directly apply appropriate numerical methods to obtain an optimal policy. We therefore

develop an approximate model with a manageable state space, which captures the pertinent

properties of the original model. We also demonstrate that results from Markov Decision
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Process theory can be applied in an e�cient way to obtain recon�guration policies for

networks of large size.

The rest of this chapter is organized as follows. In Section 6.1 we present a model of

the broadcast WDM network under study. In Section 6.2 we formulate the recon�guration

problem as a Markovian Decision Process, and we discuss the issues of obtaining an optimal

policy. We present numerical results in Section 6.3, where we also compare the optimal

policy against a class of threshold policies.

6.1 The Broadcast WDM Network

As discussed earlier, we consider a packet-switched single-hop lightwave network

with N nodes, and one transmitter-receiver pair per node. The nodes are physically con-

nected to a passive broadcast optical medium that supports C < N wavelengths, �1; � � � ; �C.

Both the transmitter and the receiver at each node are tunable over the entire range of

available wavelengths. However, the transmitters are rapidly tunable, while the receivers

are slowly tunable. We refer to this tunability con�guration as rapidly tunable transmitter,

slowly tunable receiver (RTT-STR). Although we will only consider RTT-STR networks in

this chapter, we note that all our results can be easily adapted to the dual con�guration,

STT-RTR.

During normal operation, each of the slowly tunable receivers is assumed to be

�xed to a particular wavelength. The network operates by having each node employ a media

access protocol, such as HiPeR-`, that requires tunability only at the transmitting end.

Nodes use HiPeR-` to make reservations, and can schedule packets for transmission using

algorithms that can e�ectively mask the (relatively short) latency of tunable transmitters

[20].

For the purposes of this chapter we now de�ne the degree of load balancing (DLB)

�(R;T) for a network with tra�c matrix T operating under WLA R as:

(1 + �(R;T))

PN
i=1

PN
j=1 tij

C
= max

c=1;���;C

8<
:

NX
i=1

X
j2Rc

tij

9=
; (6.1)

The right hand side of (6.1) represents the bandwidth requirement of the dominant (i.e.,

most loaded) channel, while the second term in the left hand side of (6.1) represents the

lower bound, with respect to load balancing, for any WLA for tra�c matrix T. Thus, the
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DLB is a measure of how far away WLA R is from the lower bound. If � = 0, then the load

is perfectly balanced, and each channel carries an equal portion of the o�ered tra�c, while

when � > 0, the channels are not equally loaded. In other words, the DLB characterizes

the e�ciency of the network in meeting the tra�c demands denoted by matrix T while

operating under WLA R: the higher the value of �, the less e�cient the WLA is.

6.1.1 The Transition Phase

In order to more e�ciently utilize the bandwidth of the optical medium as tra�c

varies over time, a new WLA may be sought that distributes the new load more equally

among the channels. We will refer to the transition of the network from one WLA to another

as recon�guration. In general, we assume that recon�guration is triggered by changes in the

tra�c matrix T. When such a change occurs, the following actions must be taken:

1. a new WLA for the new tra�c matrix must be determined,

2. a decision must be made on whether or not to recon�gure the network by adopting

the new WLA, and

3. if the decision is to recon�gure, the actual retuning of receivers must take place.

The �rst issue was addressed in the previous chapter, where we developed the GLPT al-

gorithm which takes as input the current WLA R and the new tra�c matrix T0, and

determines the new WLA. The rest of this chapter addresses the second problem of deter-

mining whether the changes in tra�c conditions warrant the recon�guration of the network

to the new WLA. We now discuss the third issue of receiver retuning.

Let R and T be the current WLA and tra�c matrix, respectively, and let T0 be

the new tra�c matrix. Let R0 be the new WLA computed by the GLPT algorithm with

R and T0 as input. Assuming that a decision has been made to recon�gure, there will

be a transition phase during which a set of receivers is retuned to take the network from

the current WLA R to the new WLA R0. The distance D(R;R0) (see 5.1) represents the

number of receivers that need to be taken o�-line for retuning during the transition phase.

There is a wide range of strategies for retuning the receivers, mainly di�ering in

the tradeo� between the length of the transition period and the portion of the network that

becomes unavailable during this period (see [13] for a discussion of similar issues in multihop

networks). One extreme approach would be to simultaneously retune all the receivers which
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are assigned new channels underR0. The duration of the transition phase is minimized under

this approach (it becomes equal to the receiver tuning latency), but a signi�cant fraction

of the network may be unusable during this time. At the other extreme, a strategy that

retunes one receiver at a time minimizes the portion of the network unavailable at any given

instant during the transition phase, but it maximizes the length of this phase (which now

becomes equal to the receiver tuning latency times the distance D(R;R0)). Between these

two ends of the spectrum lie a range of strategies in which two or more receivers are retuned

simultaneously.

While the receiver of, say, node j, is being retuned to a new wavelength, it cannot

receive data, and thus, any packets sent to node j are either bu�ered or lost. If, on the other

hand, the network nodes are aware that node j is in the process of retuning its receiver,

they can refrain from transmitting packets to it. In this case, packets destined to node

j will experience longer delays while waiting for the node to become ready for receiving

again. Moreover, packets for j arriving to the various transmitters during this time cannot

be serviced, and may cause bu�er overows. This increase in delay and/or packet loss is

the penalty incurred for recon�guring the network.

We note that, in general, the recon�guration penalty associated with retuning a

given number D of receivers will depend on the actual retuning strategy employed (e.g.,

simultaneously retuning allD receivers versus retuning one receiver at a time). Furthermore,

the relative penalty of the various retuning strategies is a function of system parameters

such as the receiver tuning latency and the o�ered load. Determining the best retuning

strategy for a given region of network operation will be considered in the following chapter.

In this chapter, we instead develop an abstract model that includes a cost function to

account for the recon�guration penalty. Our model is exible in that the cost function can

be appropriately selected to �t any given strategy.

6.2 Markov Decision Process Formulation

6.2.1 Recon�guration Policies

We de�ne the state of the network as a tuple (R;T). R is the current WLA, and

T is a matrix representing the prevailing tra�c conditions. Changes in the network state

occur at instants when the matrix T is updated. Since we have assumed that future tra�c
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changes only depend on the current values of the elements of T, the process (R;T) is a

semi-Markov process. LetM be the process embedded at instants when the tra�c matrix

changes. Then, M is a discrete-time Markov process. Our formulation is in terms of the

Markov processM.

A network in state (R;T) will enter state (R0;T0) if the tra�c matrix changes to

T0. Implicit in the state transition is that the system makes a decision to recon�gure to

WLA R0. In order to completely de�ne the Markovian state transitions associated with our

model, we need to establish next WLA decisions. The decision is a function of the current

state and is denoted by d[(R;T)]. Setting d[(R;T)] = Rnext implies that if the system is

in state (R;T) and the tra�c demands change, the network should be recon�gured into

WLA Rnext. Note that WLA Rnext can be the same as R, in which case the decision is

not to recon�gure. Therefore, for each state (R;T) there are two alternatives: either the

network recon�gures to WLA R0 obtained by the GLPT algorithm with R and T0 as inputs

(in which case the new state will be (R0;T0)), or it maintains the current WLA (in which

case the new state will be (R;T0)). The set of decisions for all network states de�nes a

recon�guration policy.

To formulate the problem as a Markov Decision Process, we need to specify reward

and cost functions associated with each transition. Consider a network in state (R;T) that

makes a transition to state (R0;T0). The network acquires an immediate expected reward

equal to �[�(R0;T0)], where �(�) is a non-increasing function of �(R0;T0), the DLB of WLA

R0 with respect to the new tra�c matrix T0. Also, if R0 6= R, a recon�guration cost equal to

�[D(R;R0)] is incurred, where �(�) is an non-decreasing function of the number of receivers

that have to be retuned to take the network to the newWLAR0. In other words, a switching

cost is incurred each time the network makes a decision to recon�gure. We assume that the

rewards and costs are bounded, i.e.:

�min � �[�(R0;T0)] � �max and 0 � �min � �[D(R;R0)] � �max (6.2)

where �min, �max, �min and �max are real numbers.

The problem is how to recon�gure the network sequentially in time, so as to

maximize the expected reward minus the recon�guration cost over an in�nite horizon. Let

(R(k);T(k)) denote the state of the network immediately after the k-th transition, k =

1; 2; � � �. Let also Z be the set of admissible policies. The network recon�guration problem

can then be formally stated as follows (note that D(R;R) = 0):
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Problem 6.2.1 Find an optimal policy z? 2 Z that maximizes the expected reward

F = lim
k!1

1

k
E

(
kX
l=1

�[�(R(l);T(l))] � �[D(R(l�1);R(l))]

)
(6.3)

The �rst term in the right hand side of (6.3) is the reward obtained by using a

particular WLA, and the second term is the cost incurred at each instant of time that

recon�guration is performed. The presence of a reward which increases as the DLB �

decreases (i.e., as the load is better balanced across the channels) provides the network with

an incentive to associate with a WLA that performs well for the current tra�c load. On the

other hand, the introduction of a cost incurred at each recon�guration instant discourages

frequent recon�gurations. Thus, the overall reward function captures the fundamental

tradeo� between the DLB and frequent retunings involved in the recon�guration problem.

6.2.2 Motivation

We now motivate the above formulation by showing how an appropriate selection

of reward and cost functions yields various performance criteria of interest. Typically, such

selection can be based on either measurements of an existing network or simulations.

One important performance objective is to minimize the probability that the net-

work will not be able to handle the o�ered tra�c load. This is equivalent to minimizing

the probability that the DLB increases beyond a maximum value �max. Let max be the

maximum tra�c load (in packets per packet transmission time) that will ever be allowed

into the network. By de�nition of the DLB in (6.1), the load o�ered to the dominant chan-

nel when the DLB is � will be (1 + �)max=C. Since each channel can clear at most one

packet per packet time, we have that 1 + �max � C=max. Therefore, this objective can be

achieved by selecting �(�) a function as shown in Figure 6.1 and �max small.

Another performance measure of interest is the probability of unnecessary recon-

�gurations. By making �min and �max large, and letting �(�) a slowly decreasing function as

� increases, minimizing the probability of unnecessary recon�gurations becomes equivalent

to maximizing (6.3). Similarly, the objective to minimize the probability that the portion

of the network that becomes unavailable due to recon�guration is greater than a certain

threshold Dmax can be achieved by letting �min small, �max large, and selecting �(�) a

function as shown in Figure 6.2.

It is also possible to select rewards and costs that reect performance measures
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degree of load
balancing φ

α(φ)

α

α

max

min

φ
max

Figure 6.1: Reward function to minimize the probability that the DLB is above a certain
threshold �max

such as throughput, delay, packet loss, or the control resources involved in receiver retuning.

For example, a reward function of the form A=(1 + �) may, depending on the value of

parameter A, capture either the throughput or average packet delay experienced while

the network operates with a DLB equal to �. On the other hand, using a cost which

is proportional to the number D = D(R;R0) of retunings (i.e., �(D(R;R0)) = BD) can

account for the control requirements for retuning the receivers, or for the data loss incurred

during recon�guration. Furthermore, parameter B can be chosen based on which of the

retuning strategies discussed in Section 6.1.1 is employed. Thus, network designers can

select in a uni�ed fashion appropriate rewards and costs to achieve the desired balance

among the various performance criteria of interest.

For the case �max = 0, the problem of �nding an optimal policy is trivial, since it

is optimal for the network to associate with the WLA which best balances the o�ered load

at each instant in time. This is because the evolution of the tra�c matrix T is not a�ected

by the network's actions and recon�gurations are free. However, when �max > 0, there is

a conict between future recon�guration costs incurred and current reward obtained, and it

is not obvious as to what constitutes an optimal policy. We also note that as �min ! 1,
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D max
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D

Figure 6.2: Cost function to minimize the probability that network unavailability exceeds
a certain threshold Dmax

the optimal policy would be to never recon�gure, since this is the only policy for which

the expected reward in (6.3) would be non-negative. Again, however, the point (i.e., the

smallest value of �min) at which this policy becomes optimal is not easy to determine, as it

depends on the transition probabilities of the underlying Markov chain.

One way to determine an optimal policy is to use Howard's Policy-Improvement

Algorithm (see Appendix C and [?, ST:howard-dynamic]. A di�culty in applying the

policy-iteration algorithm to the Markov processM is that its running time per iteration

is dominated by the complexity of solving a number of linear equations in the order of the

number of states in the Markov chain. Even if we restrict the elements of tra�c matrix

T to be integers 1 and impose an upper bound on the values they can take, the potential

number of states (R;T) is so large that the policy-iteration algorithm cannot be directly

applied to anything but networks of trivial size. In the next subsection we show how to

overcome this problem by making some simplifying assumptions that will allow us to set

up a new Markov process whose state space is manageable.

1If the elements of T are real numbers, then M becomes a continuous-state process and the policy-
iteration algorithm cannot be applied.
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Figure 6.3: State of the new Markov processM0

6.2.3 Alternative Formulation

Consider a network in state (R;T), and a new tra�c matrix T0 for which the WLA

obtained with the GLPT algorithm is R0. A closer examination of the reward function in

(6.3) reveals that the immediate reward acquired when the network makes a transition does

not depend on the actual values of the tra�c elements or the actual WLAs involved, but

only on the values of the DLBs �(R;T0) and �(R0;T0), and the distance D(R;R0). Thus,

we make the simplifying assumption that the decision to recon�gure will also depend on the

DLBs and the distance only. This is a reasonable assumption, since it is the DLB, not the

actual tra�c matrix or WLA that determine the e�ciency of the network in satisfying the

o�ered load. Similarly, it is the number of retunings that determines the recon�guration

cost, not the actual WLAs involved.

Based on these observations, we now introduce a new process embedded, as Markov

process M, at instants when the tra�c matrix changes, as illustrated in Figure 6.3. The

state of this process is de�ned to be the tuple (�;D), where � is the DLB achieved by the

current WLA with respect to the current tra�c matrix, and D is the number of retun-

ings required if the network were to recon�gure. Transitions in the new process have the

Markovian property, since they are due to changes in the tra�c matrix which, in turn, are

Markovian. However, as de�ned, the process is a continuous-state process since, in general,

the DLB � is a real number. In order to apply Howard's algorithm (see Appendix C.) we

need a discrete-state process. We obtain such a process by using discrete values for random
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variable � as follows.

By de�nition (refer to expression (6.1)), the DLB � can take any real value between

0 and C�1, where C is the number of channels in the network 2. We now divide the interval

[0; C�1] into a numberK+1 of non-overlapping intervals [�
(l)
0 ; �

(u)
0 ); [�

(l)
1 ; �

(u)
1 ); � � � ; [�

(l)
K ; �

(u)
K ],

where �
(l)
k and �

(u)
k are the lower and upper values of interval k; k = 0; � � � ; K; and:

�
(l)
k < �

(u)
k , �

(l)
0 = 0, �

(u)
k = �

(l)
k+1, and �

(u)
K = C � 1. Let �k denote the midpoint of

interval k. We now de�ne a new discrete-state process M0 with state (�k; D). We will

use state (�k; D) to represent any state (�;D) of the continuous-state process such that

�
(l)
k � � < �

(u)
k . Clearly, the larger the number K of intervals, the better the approxima-

tion.

Before we proceed, we make one further re�nement to the new discrete-state pro-

cess M0. We note that the GLPT algorithm in [3] is an approximation algorithm for the

load balancing problem, and it guarantees that the DLB of the WLA obtained using the

algorithm will never be more than 50% away from the degree of load balancing of the op-

timal WLA. The importance of this result is as follows. Consider a network in which the

tra�c matrix changes in such a way that the current WLA provides a DLB � for the new

tra�c matrix such that � < 0:5. Based on the guarantee provided by algorithm GLPT,

we can safely assume that the load is well balanced and avoid a recon�guration. This is

because the network will incur a cost for recon�guring, without any assurance that the new

DLB will be less than �. Therefore, we choose to let �
(u)
0 = 0:5, and therefore the midpoint

for the �rst interval is �0 = 0:25. We will call any state (�0; D) a balanced state since the

o�ered load is balanced within the guarantees of the GLPT algorithm.

We now specify decision alternatives, as well as reward and cost functions associ-

ated with each transition in the new process M0. Consider a network in state (�k; D). At

the instant the tra�c matrix changes, the network has two options. It may maintain the

current WLA, in which case it will make a transition into state (�l; D
0), where �l is the

DLB of the current WLA with respect to the new tra�c matrix, and D0 is the new distance.

Or, it will recon�gure into a new WLA. In the latter case, the network will move into state

(�0; D
00), since its new DLB is guaranteed to be less than 0.5. When the network makes

2The value � = 0 is achieved when the load is perfectly balanced across the C channels, in which case the

expression in the right hand side of (6.1) becomes equal to

P
N

i=1

P
N

j=1
tij

C
. The value � = C�1 corresponds

to the worst case scenario where one channel carries all the tra�c; in this case, the right hand side of (6.1)

becomes equal to
PN

i=1

PN

j=1
tij.
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Figure 6.4: Transitions and rewards out of state (�k; D) of process M0 under the two
decision alternatives (Note: the labels along the transitions represent rewards, not transition
probabilities)

a transition into state (�l; D
0); l � 0, it acquires an immediate expected reward which is

equal to �(�l). In addition, if (�l; D0) is a balanced state (i.e., if l = 0), a recon�guration

cost equal to �(D) is incurred.

The transitions out of state (�k; D) and the corresponding rewards are illustrated

in Figure 6.4. If the decision of the policy is not to recon�gure, then the process will take

one of the transitions indicated by the solid arrows in Figure 6.4. Since the network does

not incur any recon�guration cost, the immediate reward acquired is a function of the new

DLB in the new state. If, on the other hand, the decision is to recon�gure, the transition

out of state (�k; D) will always take the network to a balanced state with a DLB equal

to �0. These transitions are shown in dotted lines in Figure 6.4. A recon�guration cost is

incurred in this case, making the immediate reward equal to �(�0)� �(D).

The new processM0 is a discrete-space, discrete-time Markov process with rewards

and two alternatives per state, and we can use the policy-iteration algorithm [11] to obtain

an optimal policy o�-line and cache its decisions. The optimal policy decisions can then

be applied to a real network environment in the following way (refer also to Figure 6.3).

Consider a network with tra�c matrix T operating under WLAR. Let T0 be the new tra�c

matrix and R0 be the WLA constructed by algorithm GLPT [3] with R and T0 as inputs.
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Let also D = D(R;R0) be the number of receivers that need to be retuned to obtain WLA

R0 from WLA R. To determine whether the network should recon�gure to the new WLA

R0, let �(R;T) be the current DLB for the network, and suppose that �(R;T) falls within

the k-th interval, 0 � k � K. By de�nition of the Markov processM0, the current network

state is modeled by state (�k; D) of this process. If, under the optimal policy, the decision

associated with this state is to recon�gure, then the network must make a transition to the

new WLA R0; otherwise, the network will continue operating under the current WLA R.

We note that the discrete-space Markov process (�k; D) is an approximation of the

continuous-space process (�;D), since, as discussed above, in general the DLB � is a real

number between 0 and C � 1. We also note that as the number of intervals K ! 1, the

discrete-state process approaches the continuous-state one. Therefore, we expect that as the

number of intervals K increases, the accuracy of the approximation will also increase and

the decisions of the optimal policy obtained through the process (�k; D) will \converge".

This issue will be discussed in more detail in the next section, where numerical results to be

presented will show that the decisions of the optimal policy \converge" for relatively small

values of K. This is an important observation since the size of the state space of Markov

processM0 increases exponentially with K. By using a relatively small value for K we can

keep the state space of the process to a reasonable size, making it possible to apply the

policy-iteration algorithm [11].

6.3 Numerical Results

In this section we demonstrate the properties of the optimal policies obtained by

applying the policy-iteration algorithm [11] to the Markov decision process developed in

the previous section. We also show how the optimal policy is a�ected by the choice of

reward and cost functions, and we compare the long-term reward acquired by the network

when the optimal policy is employed to the reward acquired by other policies. All the

results presented in this section are for the approximate Markov process M0 with state

space (�k ; D).

In this study, we consider a near-neighbor tra�c model . More speci�cally, we

make the assumption that, if the network currently operates with a DLB equal to �k and

no recon�guration occurs, the next transition is more likely to take the network to the same

DLB or its two nearest neighbors �k�1 and �k+1, than to a DLB further away from �k.
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Figure 6.5: Near-neighbor model

Speci�cally, we assume that

P [�l j �k ] =

8>>>>>><
>>>>>>:

0:3; k = 1; � � � ; K � 1; l = k � 1; k; k+ 1

0:1=(K � 2); k = 1; : : : ; K � 1; l 6= k � 1; k; k+ 1

0:45; k = 0; l = 1 or k = K; l = K � 1

0:1=(K � 2); k = 0; l = 2; � � � ; K or k = K; l = 0; � � � ; K � 2

(6.4)

This tra�c model is illustrated in Figure 6.5 which plots the conditional probability P [�k j

�l] that the next DLB will be �l given that the current DLB is �k , for K = 20 intervals.

The near-neighbor model captures the behavior of networks in which the tra�c matrix T

changes slowly over time and abrupt changes in the tra�c pattern have a low probability

of occurring.

Given the probabilities in (6.4), we let the transition probability, when no recon-

�guration occurs, from state (�k; D) to state (�l; D
0) be equal to:

P [(�l; D
0) j (�k; D)] = P [�l j �k ] pD0 (6.5)

where pD0 is the probability that D0 retunings will be required in the next recon�guration.

The probabilities pD were measured experimentally, and we also observed that the proba-
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bility that random variable D takes on a particular value is independent of the DLB �k,

thus the expression (6.5).

We note that we need to obtain two di�erent transition probabilities out of each

state [11], one for each of the two possible options: the do-not-recon�gure option and the

recon�gure option. The above discussion explains how to obtain the transition probability

matrix for the do-not-recon�gure option. The transition probability matrix for the recon�g-

ure option is easy to determine since we know that regardless of the value �k of the current

state, the next state will always be a balanced state, i.e., its DLB will be �0. The individual

transition probabilities from a state (�k; D) to a state (�l; D0) are then obtained by making

the same assumption that all values of D have an equal probability of occurring. Therefore,

the transition probabilities under the recon�gure option are:

P [(�l; D
0) j (�k; D)] =

8<
: pD0 ; l = 0

0; otherwise
(6.6)

6.3.1 Convergence of the Optimal Policy

Let us �rst consider the following reward and cost functions

�[(�k; D)] =
A

1 + �k
; �(D) = BD (6.7)

discussed in Section 6.2.2, where A and B are weights assigned to the rewards and costs.

We apply Howard's algorithm [11] to a network with N = 20 nodes and C = 5 wavelengths

with a near-neighbor tra�c model similar to the one shown in Figure 6.5. Our objective is

to study the e�ect that the number of intervals K in the range [0; C � 1] of possible values

of DLB � has on the decisions of the optimal policy. As we mentioned in Section 6.2.3, we

expect the decisions of the optimal policy to \converge" as K ! 1. More formally, let '

be a real number such that 0 � ' � C� 1, and let kK be the interval in which ' falls when

the total number of intervals is K. Also let d(K)[(�kK ; D)] be the decision of the optimal

policy for state (�kK ; D) of Markov processM0 when the number of intervals is K. We will

say that the decisions of the optimal policy converge if

lim
K!1

d(K)[(�kK ; D)] = d[(';D)] 8 '; D (6.8)

In Figures 6.6 to 6.8 we plot the decisions of the optimal policy for the 20-node,

5-wavelength network with a near-neighbor tra�c model, and for three di�erent values of
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K; the weights used in the functions (6.7) were set to A = 30 and B = 1. Figure 6.6

corresponds to the optimal policy for K = 20 intervals, while in Figures 6.7 and 6.8 we

increase K to 30 and 40, respectively. The histograms shown in Figures 6.6 to 6.8, as well

as in other �gures in this section, should be interpreted as follows. In each �gure, the x axis

represents the DLB �k (with a number of intervals equal to the corresponding value of K),

while the y axis represents the possible values of D. The vertical bar at a particular DLB

value �k has a height equal to Dthr
k such that:

d(K)[(�k; D)] =

8<
: recon�gure; D � Dthr

k

do not recon�gure; D > Dthr
k

(6.9)

In other words, for each value of �k, there exists a retuning threshold value Dthr
k such that

the decision is to recon�gure when the number of receivers to be retuned is less than Dthr
k ,

and not to recon�gure if it is greater than Dthr
k . Since the optimal policy had similar

behavior for all the di�erent reward and cost functions we considered, its decisions will be

plotted as a histogram similar to those in Figures 6.6 to 6.8 3.

As we can see in Figures 6.6 to 6.8, the decisions of the optimal policy do converge

(in the sense of expression (6.8)) as K increases. For instance, let us consider a DLB of

1, which falls in the fourth interval when K = 20 (in Figure 6.6), the sixth interval when

K = 30 (in Figure 6.7), and the seventh interval when K = 40 (in Figure 6.8). In all three

cases, the retuning threshold is equal to 9 for these intervals, therefore, the decisions of the

optimal policy for the three values of K are the same. On the other hand, for a DLB of 2,

the retuning threshold is 14 in Figure 6.6, but it drops to 13 in Figure 6.7, same as in Figure

6.8. In other words, for a DLB of 2, the decisions of the optimal policy are di�erent when

K = 20 than when K = 30 or 40 (in the former case, the decision is to recon�gure as long

as the number of retunings is at most 14, while in the latter the decision is to recon�gure

only when the number of retunings is at most 13). But the important observation is that

the policy decisions do not change when the number K of intervals increases from 30 to 40,

indicating convergence. In fact, there are no changes in the optimal policy for values of K

greater than 40 (not shown here). We have observed similar behavior for a wide range of

3That the optimal policy was found to be a threshold policy (with a possibly di�erent retuning threshold)
for each value of �k, can be explained by the fact that we only consider cost functions that are non-decreasing
functions of random variable D. As a result, if the decision of the optimal policy for a state (�k;D1) is
not to recon�gure, intuitively one expects the decision for state (�k; D2), where D2 > D1 to also be not
to recon�gure since the recon�guration cost �(D2) for the latter state would be at least as large as the
recon�guration cost �(D1) for the former.
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values for the weights A and B, for di�erent network sizes, as well as for other reward and

cost functions. These results indicate that a relatively small number of intervals is su�cient

for obtaining an optimal policy.

Another important observation from Figures 6.6 to 6.8 is that the retuning thresh-

old increases with the DLB values. This behavior can be explained by noting that, because

of the near-neighbor distribution (refer to Figure 6.5), when the network operates at states

with high DLB values, it will tend to remain at states with high DLB values. Since the

reward is inversely proportional to the DLB value, the network incurs small rewards by

making transitions between such states. Therefore, the optimal policy is such that the net-

work decides to recon�gure even when there is a large number of receivers to be retuned.

By doing so, the network pays a high cost, which, however, is o�set by the fact that the

network makes a transition to the balanced state with a low DLB, reaping a high reward.

On the other hand, when the network is at states with low DLB, it also tends to remain at

such states where it obtains high rewards. Therefore, the network is less inclined to incur

a high recon�guration cost, and the retuning threshold for these states is lower.

6.3.2 The E�ect of Reward and Cost Functions

In Figures 6.9 to 6.11 we apply Howard's algorithm to a network with N = 100

nodes and C = 10 wavelengths, operating under a near-neighbor model similar to the one

shown in Figure 6.5. For this network we used K = 20 intervals, and we varied the weights

A and B in the reward and cost functions in (6.7) to study their e�ect on the optimal

policy. Speci�cally, we let B = 1 and we varied A from 20 (in Figure 6.9) to 35 (in Figure

6.10) to 50 (in Figure 6.11). We �rst observe that the optimal policy is again a threshold

policy for each value �k of the DLB. However, as A increases, we see that the retuning

threshold associated with each DLB value also increases. This behavior of the optimal

policy is in agreement with intuition since, by increasing A we increase the reward obtained

by taking the network to a balanced state relative to the cost of recon�guration, making

recon�gurations more attractive. Similarly, if we keep A constant and we increase B (a case

not shown here), recon�guring the network becomes less desirable, and thus the retuning

threshold associated with each DLB value decreases. Overall, in our study we have found

that one can obtain a wide variety of policies by varying the values of weights A and B.

We now proceed to study the e�ect of di�erent reward and cost functions. Let us
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Figure 6.6: Optimal policy decisions for N = 20, C = 5, K = 20, A = 30, B = 1
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Figure 6.7: Optimal policy decisions for N = 20, C = 5, K = 30, A = 30, B = 1
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Figure 6.8: Optimal policy decisions for N = 20, C = 5, K = 40, A = 30, B = 1
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Figure 6.9: Optimal policy decisions for N = 100, C = 10, K = 20, A = 20, B = 1
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Figure 6.10: Optimal policy decisions for N = 100, C = 10, K = 20, A = 35, B = 1
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Figure 6.11: Optimal policy decisions for N = 100, C = 10, K = 20, A = 50, B = 1
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�rst consider a new cost function �(D) as plotted in Figure 6.13, while the reward function

is as in (6.7) with A = 50. This cost function is similar to the the one shown in Figure 6.2

with �min = 1, �max = 2, and Dmax = 30. As we discussed in Section 6.2.2, maximizing the

expected reward in this case will minimize the probability that more than Dmax receivers

will have to be retuned during recon�guration. In Figure 6.13 we show the decisions of the

optimal policy for a network with N = 100, C = 10, and a near-neighbor tra�c model,

when K = 20. As we can see, the retuning threshold never exceeds the value Dmax = 30,

therefore, the network will never recon�gure when the number of retunings is greater than

30, as expected.

We also obtained the optimal policy for the same network as above, but with

the reward function shown in Figure 6.14, and a cost function �(D) = BD, with B = 1.

This reward function is similar to that in Figure 6.1, with �min = �30, �max = 80, and

�max = 4:5. As the reader may recall, this reward function can be used in order to minimize

the probability that the network will operate with a DLB greater than �max. The resulting

policy is shown in Figure 6.15, where we can see that the retuning threshold is 100 for DLB

values greater than 4.5. Since the maximum number of receivers that will ever need to be

retuned is N � C = 90 [3], a retuning threshold equal to 100 means that the network will

always recon�gure when the DLB becomes greater than 4.5. Thus, although the network

is not prohibited from entering a state with a DLB value greater than 4.5, once doing so,

in the very next transition the network will recon�gure and will enter the balanced state.

Subsequently, because of the nature of the near-neighbor tra�c model, the network will

tend to stay at states with low DLB values. In e�ect, therefore, the probability that the

network will be operating at states with DLB values greater than 4.5 is very small when

the reward function in Figure 6.14 is used.

6.3.3 Comparison to Threshold Policies

In this section we compare the optimal policy against three classes of threshold-

based policies:

� DLB-threshold policies. There exists a threshold DLB value �max such that, if

the system is about to make a transition into a state (�k; D); �k > �max, then the

network will recon�gure and make a transition to a state with DLB �0, regardless of

the recon�guration cost involved. Otherwise, no recon�guration occurs. This class



62

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100

B
et

a 
(C

os
t F

un
ct

io
n)

Number of Retunings

Figure 6.12: Cost function �(D) used for the policy shown in Figure 6.13
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Figure 6.13: Optimal policy decisions for N = 100, C = 10, K = 20, A = 50
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Figure 6.14: Reward function �(�) used for the policy shown in Figure 6.15
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Figure 6.15: Optimal policy decisions for N = 100, C = 10, K = 20, B = 1
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of policies is not concerned with the recon�guration cost incurred. Instead it ensures

that the tra�c carrying capacity of the network will never fall below the value min =

C=(1+ �max).

� Retuning-threshold policies. This class of policies is in a sense a \dual" of the

previous one, in that decisions are based solely on the number of retunings involved

in the recon�guration, not on the DLB. Speci�cally, if the network is about to make

a transition, then the network will recon�gure only if the number D of receivers

that must be retuned is less than or equal to a threshold Dmax. If D > Dmax, no

recon�guration takes place. This class of policies ensures that the portion of the

network that becomes unavailable due to recon�guration never exceeds Dmax.

� Two-threshold policies. This class of policies attempts to combine the objectives

of the two classes of policies above. Speci�cally, there are two thresholds, �max and

Dmax. If the system is about to make a transition into a state (�k; D), then the

network will recon�gure if �k > �max. Otherwise, if �k � �max, the network will

recon�gure if the number D of receivers that must be retuned is less than or equal

to Dmax, and it will not recon�gure if D > Dmax. We note that if we let Dmax =

N � C (i.e., the maximum number of receiver that will ever need to be retuned

[3]), these policies reduce to the class of DLB-threshold policies. Similarly, if we

let �max = C � 1 (i.e., the DLB threshold is equal to the maximum DLB value),

these policies become simple retuning threshold policies. Therefore, the two-threshold

policies are the most general class of policies, and include the DLB-threshold and

retuning-threshold policies as special cases.

The DLB-threshold and the general two-threshold policies above de�ne Markov

processes which are outside the class of Markovian Decision Processes considered in Section

6.2. In a Markovian Decision Process, there are several alternatives per state, but once

an alternative has been selected for a state, then transitions from this state are always

governed by the chosen alternative (refer also to Figure 6.4). In a DLB-threshold policy, on

the other hand, the alternative selected does not depend on the current state, but rather on

the next state. Therefore, the system may select di�erent alternatives when at a particular

state, depending on what the next state is 4. Similarly for the two-threshold policies. Since

4If the next state is one with a DLB less than the threshold, the alternative selected is not to recon�gure,
otherwise the alternative selected is to recon�gure.
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Howard's algorithm [11] is optimal only within the class of Markovian Decision Processes,

it is possible that these threshold policies obtain rewards higher than the optimal policy

determined by the algorithm. Retuning-threshold policies, however, are such that there is

a unique alternative per state, so we expect them to perform no better than the optimal

policy 5.

All the results presented in this section are for a network with N = 100 nodes,

C = 10 wavelengths, a near-neighbor tra�c model, and K = 20 intervals. The reward

and cost functions considered are those in expression (6.7). In Figure 6.16 we compare

the optimal policy obtained by Howard's algorithm [11] to a number of retuning-threshold

policies. The �gure plots the average long-term reward acquired by each of the policies

against the retuning threshold Dmax. The horizontal line corresponds to the reward of the

optimal policy, which, clearly, is independent of the retuning threshold. Each point of the

second line in the �gure corresponds to the reward of a retuning-threshold policy with the

stated threshold value. As we can see, retuning-threshold policies obtain a reward which is

signi�cantly less than that of the optimal policy, as expected. Furthermore, the reward of

retuning-threshold policies varies depending on the actual threshold used. Since the best

threshold depends on system parameters such as the tra�c patterns and the reward and

cost functions and the associated weights, it is impossible to know the best threshold to use

unless one experiments with a large number of threshold values.

In Figure 6.17 we compare the optimal policy to a DLB-threshold policy and a

number of two-threshold policies. For these results, we used A = 50 and B = 1 as the

values for the weights in the reward and cost functions, respectively, in (6.7). This time we

plot the reward of each policy against the DLB threshold value; similar to Figure 6.16, the

optimal policy is independent of the DLB threshold, resulting in a horizontal line in Figure

6.17. We also plot the reward of DLB-threshold policies with varying DLB thresholds,

and of a family of two-threshold policies. Each of the three plots of two-threshold policies

corresponds to a di�erent retuning threshold (namely, Dmax = 40; 32, and 24) and varying

DLB thresholds. Also, recall that the DLB-threshold policy is equivalent to a two-threshold

policy with a retuning threshold equal to N � C = 90.

5As we have seen, the optimal policies are in fact threshold policies with a di�erent retuning threshold for
each DLB value. Therefore the optimal policy will in general perform better than a recon�guration policy
with the same threshold for all DLB values.
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Figure 6.16: Policy comparison, N = 100, C = 10, K = 20, A = 50, B = 1

The most interesting observation from Figure 6.17 is that, for certain values of

the DLB-threshold, the DLB-threshold policy and the two-threshold policy with retuning

threshold Dmax = 40 achieve a higher reward than the optimal policy obtained through

Howard's algorithm. This result is possible because, as we discussed earlier, the class of two-

threshold policies is more general than the class of policies for which Howard's algorithm is

optimal. On the other hand, we note that the reward of the DLB-threshold policy depends

strongly on the DLB threshold used, and that the reward of the two-threshold policies

depends on the values of both thresholds. Although within a certain range of these values

the threshold policies perform better than the optimal policy, the latter outperforms the

former for most threshold values. Therefore, threshold selection is of crucial importance for

the threshold policies, but searching through the threshold space can be expensive. The

optimal policy, however, guarantees a high overall reward and is also simpler to implement

since the network does not need to look ahead to the next state to decide whether or not to

recon�gure.

Figure 6.18 is similar to Figure 6.17 in that we again compare the optimal policy

against a DLB-threshold and two-threshold policies. For these experiments, however, we
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have used A = 20 and B = 1 in the reward and cost functions, respectively, of (6.7). As we

can see, the reward of the optimal policy is strictly higher than that of threshold policies

across all possible threshold values. These results demonstrate that DLB- or two-threshold

policies do not always perform better than the optimal policy, and their performance de-

pends on the system parameters and/or the reward and cost functions. Furthermore, it is

not possible to know ahead of time under what circumstances the threshold policies will

achieve a high reward. Equally important, if the network's operating parameters change,

threshold selection must be performed anew, since, for instance, the DLB threshold that

maximizes the reward of the DLB-threshold policy in Figure 6.17 results in very poor per-

formance in Figure 6.18, and vice versa.

Overall, the results presented in this section demonstrate that the optimal policy

obtained through Howard's algorithm can successfully balance the two conicting objec-

tives, namely the DLB and the number of retunings, and always achieves a high reward

across the whole range of the network's operating parameters. We have also shown that, by

appropriately selecting the reward and cost functions, the optimal policy can be tailored to

speci�c requirements set by the network designer. On the other hand, pure threshold poli-

cies, although they can sometimes achieve high reward, are less exible, and they introduce

an additional degree of complexity, namely, the problem of threshold selection.
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Chapter 7

Retuning Strategies

In the previous chapters we have been able to answer two of the most important

questions in recon�guring a broadcast WDM network with fast-tunable transmitters and

slowly-tunable receivers. Those were how to determine a balanced wavelength assignment

and how to make a decision when best to recon�gure the network from the standpoint of

packet losses vs. performance (e.g. average cell delay or throughput). In this chapter we

study the �nal problem associated with recon�gurable WDM networks: how to transfer the

network from the original WLA R to the new balanced WLA R0. In order to do that we

have created a realistic simulation of a broadcast WDM network that applies the solutions

of the previous two chapters and uses them to compare the various strategies of retuning

the network from one WLA to another. In the following sections we will �rst introduce our

retuning strategies, then we will take a closer look at the simulation and �nally examine

some numerical results acquired through the simulation.

7.1 Retuning Strategies

Once the decision to recon�gure the network is made according to the optimal

policy described in the previous chapter and the new WLA R0 is calculated, what remains

is the procedure that transfers the network from the original WLA R to the new WLA

R0. We call this procedure a retuning strategy. It is clear that in order to complete the

recon�guration a number of receivers equal to D(R;R0) must be retuned. The retuning

strategy determines when and in what sequence these receivers are retuned. Once all of these

receivers complete retuning, we may say that the network has completed a recon�guration
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Parameterized non-overlapping greedy retuning strategy

Input: Parameter 1 � P � N , set S(R;R0) of receivers that need to be retuned.

1. Whenever a batch of receivers has �nished retuning, until set S is exhausted

2. Pick at most P receivers from set S with the smallest number of cells queued for them.

3. Remove these receivers from set S.

4. Remove cells addressed to these receivers from all node bu�ers.

5. Schedule this batch of receivers for retuning at the beginning of the next schedule.

6. end.

Figure 7.1: Description of our retuning strategy

and may proceed to function normally until a new recon�guration is required.

The set of retuning strategies is rather large, however all of them must follow one

important rule in order to be compatible with network operations. This rule states that

each receiver can be scheduled to begin retuning only at the HiPeR-l schedule boundary.

It is necessary to ensure the correct functioning of HiPeR-l which presumes that all of the

receivers that are available in the beginning of the scheduling cycle, will remain available

until the current schedule is exhausted. In other words, HiPeR-l is not capable of generating

transmission schedules in which a particular receiver is available only part of the time.

Scheduling retunings to begin only at the schedule boundaries ensures that a receiver is

either available for scheduling by HiPeR-l with no restrictions or not available for scheduling

at all (while retuning) and therefore is ignored by HiPeR-l in the current schedule.

Besides this important rule, a retuning strategy can schedule the receivers to retune

in a number of di�erent ways. Two limiting cases are retuning all of the receivers at the

same time or scheduling them to retune one by one at schedule boundaries. In between lies

a large number of strategies that can schedule the retunings in batches of various sizes. The

strategies may also vary in whether they allow the di�erent batches to overlap or not, since

a single batch may take longer than one schedule to retune. If a strategy requires that one

batch must �nish retuning before the new one can be scheduled, it is called non-overlapping

otherwise it is an overlapping strategy.

In our work we have chosen to study a limited class of parameterized non-overlapping
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Figure 7.2: Actions of a non-overlapping recon�guration strategy with P = 2 for a network
with C=3, N=10

greedy retuning strategies. Each strategy has a parameter P and can be described by pseu-

docode in Figure 7.1.

The actions of such a strategy are depicted in Figure 7.2 by using an example of

a network with 3 wavelengths (channels) and 10 nodes. Note that by using this strategy,

or indeed, any strategy that allows to retune less receivers in a single batch than the to-

tal number of receivers that require retuning, the network's WLA goes through a series

of transformations that begins with the initial WLA R and ends with the new balanced

WLA R0. The WLAs in between those two are called transitional WLAs, because they do

not contain all of the receivers in the network - just those that aren't currently retuning.

These transitional WLAs serve as intermediate points in the process of network recon�g-

uration. They are necessary in order to keep the packet losses during the recon�guration

to a minimum, since they allow packets to be transmitted even during the recon�guration

phase, albeit not to all of the receivers and not under the best possible conditions, since

the transitional WLAs are unbalanced. The alternative solution of allowing only the initial

and the �nal WLAs to be used by the network would mean completely shutting down the

network during the recon�guration phase and would be inexible in addition to causing

unnecessary packet losses.

In the case of our parameterized strategies, by varying the value of parameter P

we hope to determine whether there is a possible tradeo� between the number of nodes

that can be scheduled to retune at the same time and the associated packet losses in the

recon�guration phase. In order to �nd this out we have created a simulation of a WDM
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network, which will be introduced in the next section.

7.2 Simulating a Broadcast WDM Network

7.2.1 Components of the Simulation

For the implementation of the network simulation we have chosen an event-based

type simulation (as opposed to slotted) in order to improve execution time. The simulation

is guided by a single event queue, in which events are ordered according to their arrival

time. An arrival of a particular event to the top of the queue causes the simulation to take

actions necessary to process this event. Some examples of the possible event types are:

� An arrival of a cell into a node bu�er.

� A departure of a cell from a node bu�er.

� HiPeR-l schedule boundary.

Besides the event queue, the simulation consists of components that closely model their

real-world counterparts such as cells, sources, bu�ers, nodes, WLAs etc. The structure of

a node object is reected in Figure 7.3. A node owns a set of sources, which generate cells

according to preset parameters such as PCR (Peak Cell Rate), SCR (Sustained Cell Rate),

MBS (Maximum Burst Size) and others. Each cell has a destination node, which determines

which of the bu�ers it will be sent to. A node has C bu�ers (same number as the number of

channels in the network). The arriving cells are bu�ered by their outgoing channel, which

is derived from the current WLA, based on the destination node id. The bu�ers are simple

FIFO queues of a predetermined size, such that if a cell arrives to a bu�er which is already

full to capacity, it is considered lost. The cells are taken out of the bu�er based on cell

departure events from the event queue.

The cell departure events are generated from the HiPeR-l transmission schedules,

which, in turn, are calculated based on node bu�er occupancy at the moment of the arrival

of the schedule boundary event (for more on HiPeR-l scheduling see [26]) The schedule

boundary events are o�set from each other by the length of the current schedule. The

frequency of schedule boundary events (schedule length) depends on the current tra�c

pattern and the current WLA. The next section will describe the tra�c pattern used in our

simulations.
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Figure 7.3: Node representation in the Network Simulation

7.2.2 Network Tra�c Pattern

For the purposes of this study we decided on a WDM network with C = 5 channels

and N = 70 nodes. Each channel was modeled as an OC-48 (2.48Gb/s) link. To create

a tra�c pattern with high variations in the Degree of Load Balancing we have adopted a

client-server model of communications. The nodes were separated into two groups - a small

group of servers and the rest of them clients.

Each node has two types of sources - one that creates the background tra�c in the

network by communicating with other client nodes at low speeds, and the other type that

models the communication of this node with its assigned server and is distinguished by a

signi�cantly higher cell rate, than the background sources. Each client node has multiple

background sources and a single client-server source. Server nodes only have background

sources. The source, regardless of its type has a parameter that determines its call length

(the time while the source is actively generating cells) and a call waiting time (the time the

source spends quiet between calls).

By adjusting these parameters we have been able to create a tra�c pattern with

signi�cant variations in the DLB. In order to sustain these variations even after the network

was recon�gured once, the pattern was made to vary in time by dynamically changing the

assignment of server nodes to clients after the end of every call.

Figure 7.4 shows how the length of the HiPeR-l schedules varied through time

with our tra�c pattern without network recon�gurations. We can see that due to the



74

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 20000 40000 60000 80000 100000 120000 140000 160000

S
ch

ed
ul

e 
Le

ng
th

Time

Figure 7.4: Variations in Schedule Length in a client-server tra�c pattern.

highly unbalanced tra�c load, the schedules tended to grow quite large (up to 18,000) cells,

until all the client-server calls ended and the load was shifted to the new servers.

To see what kind of values of DLB we could create in the network we built a

20-bin distribution of DLB values similar to the near-neighbor distribution described in the

previous chapter (see Figure 6.5). The di�erence was that the DLB varied between 0.2 and

1.2 in our model. This conditional distribution P [�k j �l] can be seen in Figure 7.5.

As can be seen, abrupt tra�c changes in our model caused the 'bunching' of the

DLB values in two regions - the tuned region below 0.2 and the second region with values

� 1.

After applying the Howard's algorithm according to the method developed in the

previous chapter we were able to calculate an optimal policy as shown in Figure 7.6. This

policy was used in the comparison of retuning strategies performed later.

It should be mentioned that the Degree of Load Balancing was measured not on a

per-schedule basis as one might think. We have discovered that under comparatively low cell

loads, when the schedule length is small, it is often possible to observe high values of DLB,

if measured on per-schedule basis, even though the tra�c load may be well balanced. It is
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Figure 7.5: Conditional distribution of DLB values in the client-server model.

caused by the inherent burstiness of some of the sources, which are active for a short period

of time, supplying a lot of cells into the bu�er, even though their sustained rate may be low

and the cell load, as mentioned before, may be well balanced in the long term. To avoid

the unnecessary recon�gurations, caused by this e�ect, we accumulated the tra�c data in

a tra�c matrix T at 2 millisecond intervals independent of the HiPeR-l schedules. This

data was then used to determine the DLB during each of the intervals, and the conditional

distribution was built on this data.

The introduction of this interval, of course, meant that no two recon�gurations

could be spaced closer than 2 ms from each other, but in our model the tra�c changed no

more often than every 20 ms, which allowed us to accumulate ample data on the changes

in the degree of load balancing in the network. We believe something similar will have to

be done if our work were to be applied to a real-life WDM network.

The next section will show some numerical results acquired through the use of the

simulation.
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Figure 7.6: Optimal recon�guration policy calculated for the client-server tra�c pattern

7.3 Numerical Results

By using the network simulation described above we were able to perform two

types of numerical comparisons. First we compared WDM networks with and without

the dynamic recon�guration capability on the same tra�c pattern in order to verify that

using this capability indeed resulted in improved network utilization. Second, we compared

various retuning strategies in order to determine the e�ect of several of the important

parameters on the network performance. The following two sections will present the results.

7.3.1 Bene�ts of Dynamic Network Recon�gurations

In this �rst experiment we compare the performance of the network with and

without dynamic recon�gurations. When the recon�gurations are allowed, they are done

according to the optimal policy depicted in Figure 7.6 and a DLB-threshold policy, as

described in Section 6.3.3 with a threshold value of 0.8. The retuning strategy used for

both of these policies used P = N or, in other words, allowed to retune all of the receivers

at once. The receiver tuning latency was equivalent to 1000 cell transmission slots while
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Figure 7.7: Average cell delay in networks with and without recon�guration capabilities

the channel bu�ers (see Figure 7.3) in nodes were �xed at 200 cells/channel.

We compare the performance of the network based on three parameters: the aver-

age cell delay, the percentage of cells lost and the maximum bu�er size used by the nodes.

In all cases the network is allowed to process 107 cells before terminating. This only in-

cluded cells delivered to their destinations, which means that the cells lost due to bu�er

overow or recon�gurations were not counted. We compare these parameters of interest

under increasing tra�c loads, peaking at about 7Gb/s, of the 5 � OC � 48 = 12:4Gb/s

total available network bandwidth. As can be seen from Figure 7.7 the networks with a

dynamic recon�guration capability clearly outperform the network without such capability

in terms of average cell delay. As the network load increases, the delay in the static network

soars to nearly 800 microseconds, while in the dynamically recon�gurable networks it grows

much slower and remains under 100 microseconds. Also, the recon�gurable network using

an optimal recon�guration policy achieves lower average cell delays than the same network

using a DLB-threshold policy.

It also turns out that despite the inevitable cell losses associated with the recon-

�gurations in the dynamic networks, these losses are still smaller then those of the static
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Figure 7.8: Percentage of cells lost in networks with and without recon�guration capabilities

network, incurred due to the unbalanced wavelength assignment. The static network under

maximum load loses as much as 2.5 percent of all cells, which is unacceptable. At the

same time both the dynamic networks lose less than 1=2 of a percent of cells, and, in fact,

the dynamic network using the optimal recon�guration policy loses only 1=4 of a percent,

which is one order of magnitude improvement over a static network. This of course, under

relatively high network tra�c loads. When the network load is low, the static network

incurs no losses, because its bu�ers are large enough to accommodate the imperfections in

the tra�c load, while the dynamically recon�gurable networks have some losses due to the

recon�gurations.

An additional bene�t of using the recon�guration capability seems to be that under

high tra�c loads, the network with a recon�guration capability requires smaller bu�ers, than

the static network, as shown in Figure 7.9. As we can see, the static network starts losing

cells due to bu�er overow at high tra�c loads, so its bu�er requirements peak at 200 cells,

which was the preset limit, and so does the dynamic network with a DLB-threshold policy.

At the same time, the recon�gurable network using an optimal recon�guration policy never

loses cells due to bu�er overow, since it never reaches the maximum allowable bu�er size.
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Figure 7.9: Maximum bu�er sizes in networks with and without recon�guration capabilities

All of the cell losses this network sustains are entirely due to the recon�gurations.

The conclusion we can draw from this data is that under moderate to high tra�c

load, the performance of a WDM network would signi�cantly bene�t from having a dy-

namic recon�guration capability. This validates our original intent to improve the network

performance, by using a novel RTT-STR architecture that can adapt itself to the tra�c

conditions. It also shows the importance of using an optimal recon�guration policy in such a

network, since the recon�gurable network with a DLB-threshold type policy did not perform

as well as the same network with an optimal policy.

7.3.2 Comparison of Retuning Strategies

In this section we presume that the optimal recon�guration policy is in use and

we attempt to compare the various strategies of the family we described in section 7.1.

We compare them according to the same three parameters of interest, used in the previous

comparison: average cell delay, percentage of cells lost and maximum bu�er size. The

average cell delay and the maximum bu�er size tell us about the network performance,

since the lower delay results in higher throughput and the need for smaller bu�ers, while
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Figure 7.10: Average cell delay comparison of retuning strategies for various values of
receiver latency

the cell losses tell us what price the performance improvement comes at. We used the

o�ered load of 7Gb/s, equivalent to the maximum load, used in the previous section.

One important parameter that directly impacts the performance of a retuning

strategy is the receiver tuning latency described in section 4.1. In Figures 7.10 and 7.11

we show the dependence of strategies on this parameter, by plotting the behavior of the

retuning strategies with various values of the receiver tuning latency (equivalent to 1000,

2000 and 5000 cell transmission slots). Each line connecting the data points refers to a

family of strategies using the same value of the receiver tuning latency, which is shown in

the legend in units of cells. The average cell delay and cell losses are shown along the Y

axes, while we plot the value of the parameter P (see section 7.1) against the X axes.

We can see from these plots that increasing the receiver tuning latency increases

the average cell delay, cell losses and the maximum bu�er size. It can be explained by the

fact that the longer a single receiver takes to retune, the longer a batch of receivers will

take to retune, which will, therefore, result in more cells lost, while each batch is retuning.

It also takes the network longer to recon�gure to an optimal WLA, which negatively a�ects

the average cell delays. It should be noted that in this experiment the bu�er size was
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Figure 7.11: Cell loss comparison of retuning strategies for various values of receiver latency

not limited, as we wished to see the actual maximum values it would reach under varying

conditions. This means that any cell losses sustained by the network were entirely due to

recon�gurations, and none due to bu�er overow.

From these plots we can also see that the two extreme strategies of retuning the

receivers one at a time or all at once, tend to do worse than the 'in between' strategies

when some signi�cant fraction of the receivers is allowed to retune in a single batch. We

can attempt to explain this by studying each case separately. When all of the receivers

are allowed to retune at the same time, the network takes the shortest possible time to

recon�gure to an optimal WLA, however during that time none of the receivers are available

so, even though the average cell delay is the best in this case, due to the short recon�guration

period, the cell losses are somewhat high. When the network is only allowed to retune

the receivers one at a time, the recon�guration period takes the longest among all such

strategies, so both the cell delays and the losses su�er due to the fact that the WLA being

used by the network is not optimal for longer periods of time, than with other strategies.

The strategies that allowed to retune several receivers at once have done well in terms of

cell delay and best in terms of cell loss. In a real network these two parameters will have
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Figure 7.12: Maximum bu�er sizes of retuning strategies for various values of receiver
latency

to weighed against each other in order to determine which strategy is best suited for the

environment.

7.4 Conclusion

In this chapter we have been able to compare by using a simulation, the perfor-

mance of static and dynamically recon�gurable WDM networks. We also compared various

retuning strategies and their e�ect on the overall network performance.

It is clear from these results that the dynamically recon�gurable networks will

outperform their static counterparts in the environments with shifting and uneven tra�c

loads. The comparison of the parameterized retuning strategies showed that the 'in-between'

strategies do better than the extreme strategies but the choice of the particular value for

parameter P should be determined by the network quality of service requirements and the

parameters of the hardware elements involved.
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Chapter 8

Conclusions and Future Work

We believe that the main contribution of this research has been as much in iden-

tifying the problems associated with the dynamic recon�guration capability in broadcast

WDM networks and developing a systematic way of approaching them, as in �nding the so-

lutions to them. First we proposed a novel network architecture we call RTT-STR (Rapidly

Tunable Transmitters-Slowly Tunable Receivers) which is capable of dynamically adapting

to the changing tra�c conditions, in order to improve the overall network performance.

Then we identi�ed and solved three of the main problems that arise when one attempts to

implement the dynamic recon�guration capability in a WDM network. The problems and

our solutions to them are presented in Table 8.1.

These solutions allowed us to create a realistic simulation of the type of the net-

work under study, which, in turn, has veri�ed the validity of our approach as a whole, by

proving that a dynamically recon�gurable network does perform better than a static one.

In addition, the simulation has also provided us with valuable numerical data concerning

the network performance under various conditions.

8.1 Future Work

This work was centered around RTT-STR (rapidly-tunable transmitters, slowly

tunable receivers) architecture. It should be possible to extend this research to the dual

STT-RTR (Slowly Tunable Transmitters-Rapidly Tunable Receivers) architecture, and quite

possibly many of the conclusions of this work could be directly applied to such an architec-

ture.
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Problem Solution

Decide when it is best to An optimal recon�guration
recon�gure from the point of policy based on representing a
view of network resources. network state as a Markovian

Decision Process.

Determine a balanced assignment An algorithm called GLPT, which
of the receivers to channels. calculates the new balanced

WLA based on the previous one,
thus minimizing the number of
receivers that require retuning.

Perform the recon�guration with A class of recon�guration strategies,
minimal losses in short amount governed by a single parameter P ,

of time. which allow to adjust the tradeo�
between the cell losses incurred

during network recon�guration against
the long-term improvement in network

performance.

Table 8.1: Problems and solutions of dynamic recon�guration in WDM networks.

Our simulation of a recon�gurable WDM network used a fairly unsophisticated

tra�c model, so an interesting area of study would be in �nding other models that better

capture the salient features of the tra�c likely to be observed in a multi-channel WDM

network. A better understanding of the tra�c behavior in such a network would lead to

the re�nement of our solutions and, perhaps, identify other potential problems that might

be faced in implementing such a network.

In our research we have studied one class of retuning strategies and we have been

able to show that a trade-o� exists in this class between the several parameters involved (e.g.

depending on the value of parameter P , we might observe various average cell delays and

cell losses). Although the cell losses due to recon�gurations with most retuning strategies

amounted to a fraction of a percent of overall tra�c, other classes of retuning strategies

could be studied to determine whether our greedy strategy can be improved upon.
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Appendix A

Proof of Lemma 5.1.1

Proof. We will construct an instance of the CA problem for which the di�erence

in the number of retunings under the identity and optimal permutations is equal to N � 1.

Consider a network with C � 3 andN > C. Let the initial wavelength assignmentR = fRcg

be any arbitrary assignment such that j Rc j� 2 and let j 2 RC . Let the new partition

S0 = fS0cg be such that

S0c =

8>>>>>><
>>>>>>:

R2 [ fjg; c = 1

Rc+1; c = 2; � � � ; C � 2

RC � fjg; c = C � 1

R1; c = C

(A.1)

It is straightforward to verify that the identity permutation requires that all receivers retune

to new wavelengths (N retunings), while the optimal permutation (C; 1; 2; 3; � � � ; C � 1)

requires only one retuning, that of receiver j from wavelength �C to wavelength �2. 2
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Appendix B

Proof of Lemma 5.1.2

Proof. We will �rst prove that no more than N � C retunings are needed under

an optimal solution to the CA problem. We will then show that this is a tight bound by

constructing instances of the CA problem that require a number of retunings equal to the

upper bound.

Consider a network with N nodes and C � N channels. Let m be an integer such

that, for any arbitrary instance (R(N);S0(N)) of the CA problem, there will be at least

m (out of N) receivers that do not need to be retuned under the optimal solution (the

reason why we express R and S0 as functions of the number of nodes will become apparent

shortly). In other words, if R0(N) is the optimal new wavelength assignment for instance

(R(N);S0(N)), we have that:

CX
c=1

j Rc(N)\R0c(N) j � m (B.1)

Now consider a network with N 0 > N nodes and C wavelengths. We show by

contradiction that, if (R(N 0);S0(N 0)) is an arbitrary instance of the CA problem for this

network, and R0(N 0) is the optimal new wavelength assignment, then we also have:

CX
c=1

j Rc(N
0) \ R0c(N

0) j � m0 = m; N 0 > N (B.2)

Indeed, suppose that m0 < m, and consider an instance of the CA problem for this network

for which the left part of (B.2) holds with equality. Then, by removing from this instance

N 0�N receivers that need to be retuned 1, we obtain an instance of the CA problem for a

1There will be N 0 �N receivers that need retuning because N 0 �N � N 0 �m < N 0 �m0.
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network with N nodes such that

CX
c=1

j Rc(N)\R0c(N) j = m0 < m (B.3)

But, because of our hypothesis that (B.1) holds, (B.3) is impossible. Therefore, (B.2) must

necessarily hold. The result in (5.3) now follows from (B.2) and the fact that, when C = N ,

each channel is assigned exactly one receiver, and, under optimal channel assignment, no

receiver needs to be retuned (i.e., when N = C, m = C in (B.1)).

A trivial instance for which the upper bound is achieved is for a network with

N = C + 1 nodes where (a) in the initial assignment all receivers are assigned a unique

channel, except i and j who share the same channel, and (b) in the new partition, i is in a

subset by itself and j moves to a subset with, say, receiver k. Then, under optimal channel

assignment, exactly N�C = 1 receiver must be retuned, receiver j, from its original channel

to the channel of k. However, even for large N , the number of retunings may be very close

to the upper bound N � C. Speci�cally, we now construct an instance of CA that requires

exactly N � C � 1 retunings. Consider a network with N = C2, and an initial wavelength

assignment given by:

Rc = f(c� 1)C + 1; � � � ; cCg c = 1; � � � ; C (B.4)

The new partition S0 is:

S0c =

8<
: fcg; c = 2; � � � ; C

f1; C + 1; � � � ; C2g; c = 1
(B.5)

It is straightforward to verify that (a) a permutation is optimal if it assigns S01 to any of

channels �2 through �C , and that (b) exactly C
2�C�1 = N�C�1 retunings are required

under an optimal permutation. 2
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Appendix C

Howard's Algorithm

C.1 Introduction

Consider a completely ergodicN -state Markov process with rewards described by

a transition probablity matrix P = fpijg and a reward matrix R = frijg. A quantity, which

describes the performance of the process over an in�nite horizon in terms of its expected

reward is called the gain of the process and is expressed as

g =
NX
i=1

�iqi (C.1)

where �i are the limiting state probabilities and the quantities qi are the immediate expected

rewards (qi =
PN

j=1 pijrij) for each state.

In Markovian decisionprocesses, instead of a single transition probability vector

pij , all or some of the states may have alternatives described by their own transition proba-

bilities pkij (k being the index of the alternative). For such a process a policy is an N -vector

describing the alternatives to be picked in each of the states. These policies may have dif-

ferent conditions of optimality, and one of the more important ones involves determining

the policy with the highest gain. This involves picking the alternatives in each state in

such a way that the overall gain of the resulting process is maximized. A straightforward

solution would involve studying each possible combination of alternatives, which in most

cases would be prohibiteively complex. Howard's Policy-Iteration Algorithm is intended to

calculate such an optimal policy in a small number of iterations.
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C.2 Steps of the Algorithm

Each iteration of the Howard's algorithm consists of two steps:

1. Value-Determination Operation

2. Policy-Improvement Routine

The Value-Determination Operation involves solving the following system of N+1

linear equations: 8<
: g + vi = qi +

PN
j=1 pijvj ; i = 1; 2; :::;N

vN = 0
(C.2)

where g is the gain of the process. These equations are solved for g and the vi quantities

which are called the relative values of the process. The state transition probabilities pij in

this system are determined by the policy-vector d 2 RN which resulted from the previous

iteration.

The Policy-Improvement Routine �nds the alternative k0 for each state i such that

the quantity

qki +
NX
j=1

pkijvj (C.3)

is maximized. Here the qki quantities are the immediate expected rewards of state i if

the alternative k is used. The value of k0 which maximizes the above quantity for state i

becomes part of the new policy so that qki becomes simply qi and pkij becomes simply pij

and the new iteration may begin.

The iterations stop when the policy calculated at the previous step remains un-

changed after a new iteration. The algorithm may begin with either step. If the Value-

Determination Operation is used as the �rst step, some initial policy d must be provided (it

can be a policy which, for instance, always chooses the �rst alternative in every state). If

the Policy-Improvement Routine is used as the initial step of the iteration, then the relative

values vi must be chosen (as a vector of all 0's, for instance).

The algorithm has good convergence characteristics, frequently terminating after

5-10 iterations for a 500-state process. For a complete description of the algorithm as well

as the proof of correctness see [11].


