
ABSTRACT

VELLALA, MANOJ. Stack Composition for SILO Architecture. (Under the direction of
Associate Professor Rudra Dutta and Professor George Rouskas).

SILO is a new internetworking architecture that represents a significant departure

from current philosophy and practice. The architecture consists of building blocks of fine-

grain functionality, explicit support for combining elemental blocks to accomplish highly

configurable complex communication tasks, and control elements to facilitate (what is cur-

rently referred to as) cross-layer interactions. It takes a holistic view of network design,

allowing applications to work synergistically with the network architecture and physical

layers so as to meet the application’s needs within resource availability constraints. The

SILO research advocates a non-layered architecture based on silos of services assembled on

demand and specific to an application and network environment. With the goal to facilitate

what in today’s layered architecture is referred to as “cross-laye” interactions, in a manner

that meets the exact user requirements and optimizes performance, the main focus of this

research work is on developing mechanisms to optimize the construction of SILOs (stack of

services) in a manner that takes into account service specific constraints, current network

conditions and user policies.
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Chapter 1

Introduction

1.1 Context

The Internet, conceived as a free academic tool has evolved into a complex global

system of importance equal to that of the power grid and the transportation infrastructure.

The Internet has seen an explosive growth mainly due to its innate ability to incorporate

easily new link and node technologies, and to accommodate seamlessly novel protocols,

applications, and edge devices. The Internet’s successful evolution into a key component of

the global information and communications infrastructure, is a testament to the flexibility

of its architecture and the fundamental principles underlying its design [proposal17,44].

The resulting combination of a simple, transparent network offering a basic communication

service with end systems providing for a rich functionality, which lies at the foundation of the

Internet architecture, has proven exceptionally adaptable to new and changing requirements.

We are already seeing the beginnings of this: in sensor/actuator networks, in the

increasing functionality of mobile handheld devices, and in the migration of many services to

network appliances and the network itself. The dominant vision of networking in the future,

and computing in general, has been called ubiquitous or pervasive networking. Even as

computing technology reaches new heights of ubiquity, a crisis has been seen to be developing

that can jeopardize this future vision. The pervasive network of the future is enabled by

and must serve a new generation of communication endpoints that are very different from
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the personal computers and servers that form the bulk of the network endpoints in today’s

Internet. Communication devices are already appearing which are more integrated, more

embedded, with sensors and other ubiquitous computing devices. Such devices often have

unique characteristics, both advantages and limitations, which are not common in currently

popular networking devices. Current internetworking protocols are flexible enough to handle

them, but not gracefully. The overhead imposed in bending the capability of such devices to

existing network architecture can make the use of such devices prohibitive and even useless.

A primary goal of this research project is to allow integration of cross-layer design

and optimization solutions into the future Internet, because an important the inability to

integrate crosslayer interactions is seen as one of the significant shortcomings of the current

architecture. Such interactions have become a common theme in handling new communi-

cation devices efficiently. In general, the term refers to the increasingly common tendency

to leverage the capabilities offered by emerging network devices by taking them into ac-

count at all levels of operation of the network, even operations such as routing or transport,

which are traditionally considered to be disjoint from the physical communication device.

Emerging pervasive devices are likely to provide powerful capabilities, such as transmission

power control or angle-of-arrival detection, which impact all levels of network operation.

Similarly, the emerging class of ubiquitous applications pose unique new challenges, such as

mobility or disconnection tolerance, which cannot be naturally mapped to be the respon-

sibility of any single one of the traditional networking layers. However, the only way to

currently implement cross-layer control and optimization is by custom implementation of

the application and the entire protocol stack. Flexibility is attained at the cost of a unified

architecture.

At the same time, the suitability of protocol layering, as either an Organizing or

implementation principle for future network architectures, is being questioned [9]. network

protocols typically incorporate significant functionality, making them inflexible and difficult

to evolve. New functionality is difficult to fit in the rigid structure of network stacks, as

witnessed by the proliferation of 1/2 layer solutions (e.g., IPSec and MPLS). Also, the lack

of mechanisms for cross-layer interactions (e.g., for performance tuning) has led to frequent

layer violations.

Moreover, protocols were not designed to take advantage of emerging hardware

architectures such as the Cell by IBM [22] with one main and several synergistic processors in

a single chip. Current TCP offload engines [3, 4, 6, 12, 30] are clumsy, having to deal with a
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Figure 1.1: Traditional TCP Stack

multitude of contingencies forced by the presence of two or more separate networking stacks

inside the node, and have to be carefully engineered for each specific hardware architecture.

A more modular design that makes it easier to selectively offload into hardware the most

time consuming protocol functions, might lead to significant performance gains.

We propose a new network architecture that represents a departure from cur-

rent philosophy and practice. The frame work consists of (1) building blocks of fine-grain

functionality, (2) explicit support for combining elemental blocks to accomplish highly con-

figurable complex communication tasks, and (3) control elements to facilitate (what is

currently referred to as) cross-layer interactions. We take a holistic view of network design,

allowing applications to work synergistically with the network architecture and physical lay-

ers to select the most appropriate functional blocks and tune their behavior so as to meet

the application’s needs within resource availability constraints. We call our architecture

the Services Integration, controL, and Optimization (SILO) architecture. The next chapter

deals with the SILO architecture and specific research problems.

An application specific stack is dynamically generated satisfying all the Qos re-

quirements of that application and in confirmation with local polices and network con-

straints. The SILO stacks can be generated per flow or per class of flows.
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Figure 1.2: Per Flow Silo Stack
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Despite the remarkable ongoing effects of the Internet, there is a widespread per-

ception in the networking community that key limitations of its design might be bringing it

close to a breakdown point and a sea-change is necessary in the next decade or so. Recently,

the National Science Foundation issued a call for proposals for clean-slate Internet design.

The SILO research is the effort of multi-organization collaborative research team that has

been working on such a clean-slate approach to future Internet design funded by a grant

from the NSF Future InterNet Design (FIND) program.

1.2 Review of parallel efforts

In recent years, the networking community has taken a variety of approaches in

addressing the issues that arose, as the shortcomings and limitations of today’s Internet

architecture have become increasingly evident. Typically, a solution for a specific problem

is engineered within the constraints of the current Internet architecture. Often, such a

solution only applies to a specific context; consider, for example, the recent research on

TCP variants for high bandwidth-delay product networks [16, 18, 19, 33] earlier work on

TCP over wireless networks

Among recent research, the work most closely related to SILOS is that on role-

based architecture (RBA) [9] carried out as part of the NewArch project [28]. RBA repre-

sents a non-layered approach to the design of network protocols, and organizes communica-

tion in functional units referred to as roles. The main motivation for RBA was to address

the frequent layer violations that occur in the current Internet architecture, the unexpected

feature interactions that emerge as a result [9], and to accommodate “middle boxes.” We

also advocate a non-layered architecture based on silos of services assembled on demand

and specific to an application and network environment (refer to Chapter 2). However, the

goal is to facilitate what in today’s layered architecture is referred to as “cross-layer” in-

teractions, in a manner that meets the exact user requirements and optimizes performance.

Furthermore, a main focus of our proposed work is on developing control mechanisms to

optimize the construction of silos of services in a manner that takes into account current

network conditions and user policies.

Some earlier work also investigated more flexible frameworks for realizing protocols

and services. The use of finer-grain protocol (micro-protocol) objects, each encapsulating
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a single function, to facilitate the development of protocol stacks was considered in [8].

The main goal of [23] is to dynamically select a set of protocol layers within a hierarchi-

cal framework, based on application semantics and the characteristics of the underlying

network. The micro-protocols of [23] are coarser than our services, and we allow for a

richer set of interactions among services beyond what is possible within the strict hierar-

chy considered there. The work in [8] focuses on protocol modularity and configurability

as a means for ease and efficiency of implementation. Both these approaches are x-kernel

specific, as they rely heavily on the x-kernel [17] environment and its mechanisms for com-

munication between micro-protocols. In contrast, we do not tie our implementation to any

special purpose environment; rather, we target our approach to a more common POSIX-

like OS. The focus of [26] was on efficient construction of transport services with different

QoS characteristics for multimedia applications. Their concept of services is much coarser

than ours (e.g., “multicast” is considered a service in [27]), and the work is oriented toward

hierarchical composition with limited interaction (information sharing) between services.

In general, our proposed architecture goes beyond previous work in that (1) service silos

are created on-demand, automatically, based on application requirements, local and core

policies etc., and (2) mechanisms for adaptive control along with “cross-layer” interactions

for the purpose of optimizing behavior are built into the framework.

Another research worth noting is JumpStart’s Just-in-Time (JIT) Architecture

[1]. JIT is an open protocol suite with multicast extensions which was developed under

the assumption of an optical core and wireless access networks. JIT uses a novel message

structure of flexible information elements (IEs). JIT IEs have a common header and sepa-

rate hardware-parsable components for frequently executed functions, and software-parsable

components for infrequent complex functions. The same IE format is used by all of the JIT

management protocols, routing, connection management, network management, etc. This

greatly simplifies hardware and software, and provides flexibility to accommodate future

requirements.
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Chapter 2

The SILO Architectural

Framework

2.1 Architectural objectives

The SILO design was guided by the following objectives than ensure flexible, ser-

vice oriented architecture for future internet.

Interworking flexibility and extensibility. Unlike the overly strict layering

and tight integration of coarse-grain functions in current architectures, we advocate a frame-

work of fine-grain building blocks along with explicit support for combining elemental func-

tions in a highly configurable manner, so as to carry out complex communication tasks.

The architecture does not limit either the number of functional building blocks or their

combinations, thus fostering experimentation and innovation and easily accommodating

change.

Support for a scalable, unified Internet. We are witnessing a growing gap

between commodity applications running in today’s Internet, on the one hand, and high

performance e-Science applications and a wide range of wireless applications, on the other

hand, which are tuned to run on isolated customized networks. A fine-grained modular-

ization of networking functions opens up interesting opportunities for low-powered devices
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like network enabled sensors, which do not need the full networking stack, as well as high-

performance applications which require specialized protocols. These can be provided with

customized functional blocks most appropriate for their requirements and network environ-

ment, all the while staying within a consistent architectural framework.

Holistic network design through explicit facilitation of cross-service in-

teractions. Existing protocol stacks lack well-defined control interfaces for cross-layer

interactions, hence the latter have to be engineered in a piecemeal and ad-hoc fashion. We

have explicitly built in the ability for functional blocks to interact with each other so as

to optimize their behavior for the specific communication task at hand. To this end, the

architecture requires all functional blocks to have well-defined interfaces and provides for a

control entity that is able to tune the parameters of individual blocks in order to match the

application QoS requirements and improve network resource utilization.

Smooth integration of security features. We feel that it is critical to incorpo-

rate simple mechanisms into the network architecture to create barriers to miscreants. The

SILO architecture allows for the integration of security and management features at any

point in (what is now referred to as) the networking stack. By treating security functions

as easily pluggable components, our framework makes it possible to include security into

the design from the ground up.

Support for performance-enhancing techniques. A finer modularization of

the networking stack has the potential to facilitate faster integration of hardware accelerated

solutions. Our approach is positioned to take advantage of the capabilities of multiprocessor-

on-a-chip architectures such as Cell [20] which are expected to be prevalent in the future, by

offloading small but computationally intensive functions to secondary CPUs so as to achieve

dramatic performance improvements. This goal may be further advanced by employing a

message structure similar to the one we implemented for Just-In- Time [5] which facilitates

hardware/software partitioning.

2.2 SILO Architecture

Figure below shows the difference of the SILO approach and traditional networking

stack. The traditional stack is shown in Figure 1 (a). There are multiple applications, to

which transport layer provides sockets, but only single instance of all other layers. This
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makes it impossible to provide customized service to different applications. for example, if

we want to use reliable transport, we have to use TCP/IP stack. It is quite hard to extract

this functionality out gracefully, while eliminating some other TCP functionality, for some

application that does not need it. Another downside of this traditional stack is that we

cannot easily perform cross-layer tuning to optimize the stack; we have to write custom

version of the layers for that purpose. However, the SILO architecture incorporates these

two requirements into the architecture framework as Figure 1 (b) shows. The networking

communication entity is dynamically composed by protocols of fine-grained functionalities,

which we call services. m1;1, m1;2 etc refer to these functionalities. Every such service

provides explicit interfaces for performance optimization, which can be used by Cross-

Service Tuning for optimization purpose. We explain these architectural components in

greater detail next.

2.2.1 Services

The fundamental building blocks in the SILO architecture are services. A service

is a well defined and self-contained function performed on application data, and which is

relevant to a specific communication task. In-order packet delivery, end-to-end flow control,

packet fragmentation, compression, encryption, are all examples of services in this context.

Each service addresses a separate, atomic function, hence the architecture provides more

flexibility and a much finer granularity than current protocols which typically embed com-

plex functionality. At the core of the architecture is the mechanism through which services

interact in order to accomplish complex communication tasks. Our approach represents a

middle ground between the strict protocol stack imposed by current architectures and the

“heap” approach advocated by the RBA [3]. Specifically, we allow any set of services to be

selected dynamically for a particular task, but the order in which these services are applied

is not tied to the layer in which the service belongs, but rather to a set of well-defined

precedence constraints; for instance, when the application requires both a compression and

an encryption service, the only meaningful interaction is when compression is applied before

encryption. In general, the precedence constraints impose a partial ordering among services.

Once selected, however, the subset of services is arranged in a specific order, derived from

the partial ordering and other rules, and this binding remains in effect for the duration of

the associated communication task (typically, the lifetime of a connection). A service is
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fully defined by describing: (1) the function it performs, (2) the interfaces it presents to

other services, (3) any properties of the service that affects its relation with other services

(e.g., as required to establish a partial ordering), and (4) its control parameters, which we

also refer to as knobs (defined below) and their actions and constraints.

Figure 2.1: SILO Architecture Overview

2.2.2 Methods

We distinguish between a service and its realization. A method is an realiza-

tion of a service that uses a specific mechanism to carry out the functionality associated

with the service. for instance, re-sequencing is one method for implementing the in-order

packet delivery service, window-based flow control is a method for the end-to-end flow

control service, and 802.11a OFDM PHY is one method for the multi-rate RF PHY ser-

vice. A method implementing a service must implement the service-specified interfaces,

as well as any service-specific knobs; in other words, service-specific interfaces and knobs

are polymorphic to all methods implementing a given service. A method may also imple-

ment method-specific knobs, i.e., control parameters unique to this implementation of a

service; for instance, length of Reed-Solomon FEC is a knob specific to the Reed-Solomon
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FEC method implementing the error-free delivery service. These knobs are adjusted by

the tuning agent (defined in 4) to refine the method behavior and optimize it for a spe-

cific environment. A method is fully defined by describing (1) the service it implements,

(2) the specific algorithm/mechanism it uses to implement the service, and (3) optional

method-specific control parameters, and their actions and constraints. We emphasize that

the architecture defines services and their interfaces, but it does not define the methods

that implement them; therefore, it is possible that several alternative methods for a given

service co-exist within the network. We refer to an ordered subset of methods, each method

implementing a different service, as a silo. One can think of a silo as a vertical stack of

methods; conceptually, applications reside at the top of the stack, and network interfaces

reside at the bottom. A silo performs a set of 4 transformations on data from the applica-

tion to the network or vice versa, so that the delivery of data from an application to its peer

is consistent with the application’s requirements. Each data transformation corresponds to

a method in the silo, and may include the generation (or processing) of metadata to be

included (respectively, present) in the packet. A silo possesses a state that is a union of all

constituent method states as well as any shared state resulting from cross-method interac-

tions. A silo structure and all related state information are associated with a specific traffic

stream (equivalently, a connection or flow) and persist for the duration of the connection.

One important aspect of silos is that they can be optimized for each traffic stream, as we

explain next.

Figure 2.2: Services and Methods
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2.2.3 Knobs

The knobs include read/write knobs and read-only knobs. The read/write knobs

are adjustable parameters specific to the function performed by a service or a method,

with a specified range of values or several enumerated values and a pre-defined relationship

between these values and the perceived performance of the service or method. for instance,

compression factor is a read/write knob for the compression service. The read-only knobs

are values or states of a service or a method. for example, throughput is a read-only knob

for the performance monitor service. The figure above presents a typical knob in SILO

universe. It has maximum, minimum, default and current values, or has several enumerated

values. With the help of relation between performances and knobs provided by Performance

Table, the knobs are manipulated by the tuning agent (defined in 4) so as to optimize the

performance of the subset of services selected for the specific task. If a knob is defined as

enumerated values, the tuning agent is able to switch between them. Otherwise, the tuning

agent can tune the value with the minimum gradient of tuning step. Service, Method and

Knob designers can provide those parameters and Performance Table when they design the

services, methods and knobs. Performance Table provides the relation between knob and

performance in terms of relevance scale and mathematical expression.

2.2.4 Control Agent

A control agent is an entity residing inside a node, which is responsible for (1)

composing a silo for an application stream (or selecting an appropriate commonly-used silo,

as we discuss shortly), and (2) appropriately adjusting all the service- and method-specific

knobs and facilitating cross-service interactions. Composing a silo refers to determining the

subset of services it contains, their order in the stack, and the method implementing each

service. The objective is to dynamically custom-build a silo for each new connection. To

this end, the control agent takes into account the application’s QoS requirements, current

network resource availability and other conditions, the precedence constraints among ser-

vices, and any policy in effect at the time. The current policy is derived from a combination

of local node policies (e.g., battery-saving mode) as well as, possibly, one or more network-

wide policies of varying scopes. A detailed information on research in this area can be found

in [2].
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Figure 2.3: Detailed Overview Depicting Tuning agent and Composition agent

An example of control agent behavior is tuning the length of the FEC in order to

enhance the “error-free delivery” service in response to increased radio interference reported

by the “PHY” service. This example clearly illustrates an intentional design feature of

the silo architecture, namely, the explicit ability to perform cross-service optimization. A

control agent may optionally be able to communicate with control agents at other nodes in

the network (e.g., neighboring nodes, nodes on the connection path, or the connection peer

node) in order to optimize the behavior of a silo further; this communication may take place

either in- or out-of-band. The control entities should be able to function without the ability

to communicate (e.g., due to network bandwidth constraints), but should it be available,

they should be able to utilize it. We expect that in a network following the SILO architecture

a number of services will be defined and standardized; the architecture, however, does

not impose any limit on the supported services, and is designed to facilitate the addition

of new services. Specifically, it should be possible to construct abstract representations

of services so as to reason formally about their properties and interactions. Therefore,

we expect a large number of experimental and special purpose services to emerge, the

most successful of which (e.g., in terms of adoption) may eventually become standardized.

Similarly, for common and/or straightforward communication tasks, we expect that a set

of pre-constructed silos will be defined. At the same time, we envision many scenarios in
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which the silo will need to be constructed on-demand, by selecting and vertically arranging

a needed set of services, further specialized into methods, in order to tailor its behavior to

the application requirements and the network environment.



15

Chapter 3

Problem definition

3.1 Stack composition problem

The protocol stack is dynamically on demand constructed per flow based on the

flow characteristics and QoS requirements. The stack is composed of services, where every

service interacts with an upper service and lower service. A set of compatibility rules and

constraints determine the services that can be above or below a particular service in a

stack. The rule set also captures other service/method dependencies. This opens up an

opportunity for creating unique stacks on a per dataflow basis or distinct stacks for different

class of applications.

The rule set does not limit the number of unique stacks that can be construction

for a specific need (data flow or class of applications). The problem of composition is the

problem of finding the optimal stack recipe satisfying all the service constraints and not

violating any of the compatibility rules. The section on Silo Composition Agent discusses

the algorithm used for Silo composition.

The silo construction problem thus becomes one of finding a valid ordering of

a set of services which are self-consistent, and incorporate the functionality required by

the user and application requirements, including derived ordering requirements. We can

now conceive of an optimization problem, which further seeks to find that solution which

maximizes some measure of user satisfaction, e.g., obtained from the prioritization of the
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user preferences. Clearly, an approach based on exhaustive search is not computationally

scalable. Below, we provide a graph interpretation of part of the problem.

We denote the set of services S available to the silo manager as s1, s2, .....sn. for

each service sk, let there be nk methods available, we denote them by mk,1,mk,2, ......mk,nk

.We denote the set of all methods by M. for each rεS
⋃

M , p(r) denotes a set of subsets

of S
⋃

M , such that at least one service or method from each element of p(r) must also be

included in any silo which includes r. For example, if p(m1,2) = {{s2, s3, s4}, {m6, 1,m6, 2},
{m5, 2}}, then to include the method m1;2 in a silo, we must include also a method for

either services 2, 3 or 4, and either methods m6,1orm6,2, and method m5,2. Also for each

rεS
⋃

M , a(r) and b(r) are two sets expressing ordering constraints; a(r) is the set of

elements of S
⋃

M that must be ordered after r; b(r) the set of those that must be ordered

before r. Given a subset Sr of S representing user requirements, and a set OR of ordered pairs

of elements representing derived ordering constraints, the problem is to find two ordered

sets Sa and Ma, the augmented service and corresponding methods lists. for every element

in Sa, the corresponding element (in the same ordered position) of Ma must be a method

implementing the service. Sa must be a superset of Sr that satisfies the dependencies p(r),

obeys the constraints a(r) and b(r) for every element rεSa, and obeys the constraints OR.

3.2 Representing the Composibility rules and Constraints:

Ontology

The compatibility rules and constraints need to be captured and represented in

the computer. There needs to be query based interface that allows the composition agent

to query online for allowed services based on specified conditions. ‘the Ontology’ is the

global set of services and rules set and provides the querying interface. To Ontology fa-

cilitates flexible maintenance, supports customized expressive specifications and semantic

comparisons, reasoning, understanding.

The existing ontology framework and infrastructure for web semantics can be taken

advantage of. RDFS is used as the ontology language and JENA is the java based querying

and reasoning library is used by the composition agent to query the ontology. The section

on ontology framework discusses the implementation in detail.
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Silo Composition Problem The Problem of SILO composition constitutes two sub-

problems 1. Ontology: Logical representation of the constraints and conditions that services

and methods impose on themselves and on other services and methods in a format that

can be used to programmatically deduct/infer complex implications. 2. Composition:

Composing a silo recipe of services and methods such that all the application’s requirements

are met and is in accordance with the above said constraints and conditions.

The composition problem can be further defied formally in the following way: In-

puts: a) Application required services/methods b) Application imposed ordering constraints

both loose and strict c) Ontology Output: a) A minimal silo that does not violate any of

the conditions/constraints specified in the input and meets all the input requirements.s OR

Error indicating that such a recipe is not possible.

3.2.1 Types of Constraints

The constraints are defiend as a triple, the subject service, the relation/constraintand

the object service. The constraints are defiend in sucg a way they are to be confirmed by

every inatance of both the subject and object serivce. For instance, Service-A constrsint

service-B, would mean that, the constraint should not be violated for any pair of instances

of A and B. When a SILO has no repeated service then, the implications are strainght

forward. The initial set of constrinsts identifed are enumerated below.

Simple Constraints

• Only Above

• Only Below

• Only Imm Above

• Only Imm Below

• Primitive Depedency / Requires

Complement Constraints

• Not Above {equivalent to Only Below}
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• Not Below { equivalent to Only Above}

• Not Imm Above

• Not Imm Below

Compound Constraints

• AND Connector

• OR Connector

• Forbids

3.2.2 Constraint Definitions

Simple Constraints

• Only Above

A Only Above B : If A is present AND if B is present, then A has to be above B

(If A then A above B if B)

• Only Below

A Only below B : If A is present AND if B is present, then A has to be below B

(If A then A below B if B)

• Only Imm Above

A Only Imm Above B : If A is present AND if B is present, then A has to be Imme-

diately above B

(If A then A immediately above B if B)

• Only Imm Below

A Only Imm Below B : If A is present AND if B is present, then A has to be Imme-

diately below B

(If A then A immediately below B if B)
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• Needs

A Needs B : If A is present then B needs to be present

(If A then B)

• Forbids

A forbid B : If A is present then B cannot be present

(If A then not B)

Complement Constraints

– Not Above

A Not Above B : If A is present AND if B is present, then A Should not be above

B

(If A then A not above B if B)

– Not Below

A Not below B : If A is present AND if B is present, then A should not be below

B

(If A then A not below B if B)

– Not Imm Above

A Not Imm Above B : If A is present AND if B is present, then A should not be

immediately above B

(If A then A not immediately above B if B)

– Not Imm Below

A Not Imm Below B : If A is present AND if B is present, then A should not be

immediately below B

(If A then A notimmediately below B if B)

Compound Constraints

OR Connector acts as OR operator over a set of simple, complement and

compound constraints.

The AND Connector is not needed as each of the ANDed constraints can be

represented as individual constraint on the same service.
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Allowed ordering between two services and Their realization:

The following ten cases are the complete set of orderings that are possible between

two services (A, B).

1. Neither A nor B is present

2. Only A is present

3. Only B is present

4. A appears immediately above B

5. B appears immediately above A

6. A appears above B and A,B are not consecutive

7. B appears above A and A,B are not consecutive

Realization of each of the above cases and valid combinations of cases is discussed

below:

Only Case 1. Neither A nor B is present

A needs B

B needs A

A forbids B

Only case 2. Only A is present

A forbids B

B needs A

Only case 3. Only B is present

B forbids A

A needs B

Only case 4. A appears immediately above B

A needs B

A only immediately above B

B needs A

B only immediately below A

only case 5. B appears immediately above A

B needs A

B only immediately above A
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A needs B

A only immediately below B

only case 6. A appears above B and A,B are not consecutive

A needs B

A only above B

B needs A

B only below A

A not immediately above B

Only case 7. B appears above A and A,B are not consecutive

B needs A

B only above A

A needs B

A only above B

A not immediately below B

Apart from these ten cases few combination of the cases are valid. The following

are some of the valid combinations.

Case 4 OR 6: A appears above B

A needs B

A only above B

B needs A

B only below A

Case 5 OR 7: B appears above A

B needs A

B only above A

A needs B

A only below B

Case: 1 OR 2

B needs A

A forbids B

Case: 1 OR 2

A needs B

B forbids A
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Case: 2 OR 3

A forbids B

B forbids A

Case: 4 OR 5

A needs B

B needs A

A immediately below B OR A immediately above B

B immediately below A OR B immediately above A

Case: 2 OR 4

B needs A

B only immediately below A

Case: 2 OR 7

B needs A

A Not above B

It can also be realized as B needs A, A only Below B Similarly other combinations

can be realized using the constraint set specified in the previous section. We note

that most of the ten cases discussed can be realized in more than one way. for

example:

Case: A appears immediately above B

Realization 1:

A needs B

A only immediately above B

B needs A

B only immediately below A

Realization 2:

A needs B

A only immediately above B

B needs A

Realization 3:

A needs B
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B needs A

B only immediately below A

Case: B appears above A

Realization 1:

B needs A

B only above A

A needs B

A only below B

Realization 2:

B needs A

B not below A

A needs B

A not above B

This indicates that a minimal set of constraints that can be used to realize all

orderings between two services is possible. The next section explores this.

3.2.3 Minimal Constraints set

Some constraints are redundant. This means two constraints mean the same.

Such constraints can be called to belong to same equivalent class.

Equivalent Constraint Instance Class 1

{A Only Above B, A Not Below B, B Not Above A, B Only Below A}
A Not Below B : This means that A appears above B since two services cannot

be at the same position on a stack. So this can be represented as A above B.

B Not Above A : This means that B appears only below A for the same reason

as above.

B Only Below A : This means that A appears above B. So this can be represented

by A Only Above B.

Hence, of the four constraints Only Above , Not Below, Not Above, Only Below,

any one would suffice. Similarly, it can be observed that the following two equiv-
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alent constraint set are also possible.

Equivalent Constraint Instance Class 2

{A Only Imm Above B, B Only Imm below A }

Equivalent Constraint Instance Class 3

{A Not Only Imm Above B, B Not Only Imm below A }
Implication: Equivalent Constraint Instance Class 2 and Equivalent Constraint

Instance Class 3 imply: Only Imm Above and Not Imm above should suffice.

Implication: forbids is implemented as two contradicting instances of Only Above

: A forbids B is implemented as A Only Above B, B Only Above A

Thus we can conclude that the following set of constraints would suffice:

Minimal Set of constraints:

1. Only Above

2. Only Imm Above

3. Not Imm Above

4. Requires

To verify if this is the sufficient set of constraints, realizing all the above said

seven orderings between two services with the minimal set can be tested.

1. Neither A nor B is present

1. A requires B

2. B requires A

3. A above B

4. B above A

2. Only A is present

1. A above B

2. B above A

3. B requires A

3. Only B is present

1. B above A

2. A above B
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3. A requires B

4. A appears immediately above B

1. A requires B

2. A only immediately above B

3. B requires A

5. B appears immediately above A

1. B requires A

2. B only immediately above A

3. A requires B

6. A appears above B and A,B are not consecutive

1. A requires B

2. A only above B

3. B requires A

4. A not immediately above B

7. B appears above A and A,B are not consecutive

1. B requires A

2. B only above A

3. A requires B

4. A only above B

5. B not immediately above A

We notice that all the seven possible orderings can be implemented by the mini-

mum set of constraints. By excluding any one of them its not possible to realize

atleast one of these. for example, if we exclude “not immediately above” from

the set, then Consider ordering 7 : B appears above A and A,B are not consec-

utive Realizing the condition that A and B are not consecutive cannot be done.

If we exclude “only immediately above” then ordering 5 (B appears immediately

above A) cannot be realized. The ordering where B appears above A can be

realized but, the consecutiveness cannot. If we exclude the ‘requires’ constraint,

most of the orderings cannot be realized. for example consider ordering 2: Only

A appears on the stack. A above B and B above A ensure that A and B do not
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occur on the same stack. But cannot ensure the case where only B appears on

the stack is invalid.

Representing the composition problem as a graph problem

A digraph can be constructed where the services are vertices and the constraints

are edges. Such a graph will have edges of different colors each color representing

a constraint type. A specific color could mean, that such an edge (or any parallel

edge between the two vertices) should never be traversed. Another color could

mean that the specific edge (or any parallel edge) has to be traversed if the edge’s

source node is in the path. The graph problem if multi colored edges can be also

be represented as multiple graphs of single color with the condition that a path

in one graph does not violate any constraints imposed by other graphs.

This approach works when we have constraints that define ordering of two ver-

tices when they are adjacent in the path. A constraint like “A above B” which is

a loose ordering constraint cannot be represented by a graph as described above.

When each of the constrainsta or a subset of constrainst are consider and repre-

sented as graph problem we note that the silo composition is polynomiyal time

problem. But the most general case is un-charecterised.

a) Above: Between all services excluding Ss and Se,the edges are of type

Only Above if an edge exists. If no edge exists between two nodes then there is

no ordering restriction between them. The problem is finding a directed ordering

from Ss to Se. As are the services that can go immediately below Ss and Bs are

services that can be immedately above Se. If one of As is also one of Bs, then

Ss, As, Se is a valid ordering and this take linear time in number of services

to check. For the case that an edge exists from a Bs to an As, if there exists

any vertex v such that, v → As or Bs → v or both are not true, then As, v,Bs

is a valid ordering. If no such v exists then there is no ordering satisfying the

constraints. Finding such a v is again linear in number of services for a given

pair of As and Bs. In the first two cases the ordering is of length 3 at maximum

and in the second case it is of length 4. Each of the sub-cases is of polynomial

time complexity.

b) Imm Above: The proof is exactly the same as for the case above. An easy
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Figure 3.1: Only Above Constraint Graph: Silo size 3

Figure 3.2: Only Above Constraint Graph: Silo size 4
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Figure 3.3: Only Above Constraint Graph: Silo size 4

way to see this is as follows: if between two services As, Bs there are no edges

then we can include the edges As → Bs and Bs → As and then run Dijkstras

algorithm. Here the services Ss and Se are treated like any other service.

c) Not Imm Above: Here we construct another graph in which every edge is

an ImmAbove edge. Initially this is a complete bi-directed graph on the nodes

(services). Then remove the directed edges between any two services u, v if

a constraint u Not Imm Above v is specified. Now run Dijkstras algorithm.

Obviously, even when Imm Above and Not Imm Above are both present, the

problem can be solved in polynomial time by removing the (directed) edges

corresponding to the contradicting constraints. (Such contradicting constraints

should not exist if the ontology is consistent). Finally, we note that in the more

general case when Imm Above and Above are both present, the problem can still

be solved in polynomial time by the same procedure as in the Above only case.

However, the most general case remains beyond our reach.

A graph with Only Imm Above, And Not Imm Above can be solved in poly-

nomial time , as we can remove directed edges accordingly and run Dijkstras

algorithm. A graph with Only Imm above,And Only Above can be solved in

polynomial time , exactly the same way as in only Only above case. Any of

the above cases with “requires constraint can also be solved in polynomial time.

However, The most general case remains uncharacterized.
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Application Specified inputs

The application can specify required and recommended services and some order-

ing constraints between them. Let us consider only the required services. These

are the services that need to be present in the path constructed. An ordering

constraint makes path computation more complicated in that the vertices need

to be visited in a specified order.

The Opening and closing services

The opening service and the closing service interface the silo with the application

and the lower layer protocols respectively. The opening service helps in identi-

fying the services from which the silo construction can be started. The closing

service helps in terminating the silo-search. The closing service also helps in

multiplexing and de-multiplexing the flows.

The diagram above depicts a bidirectional connection as an incoming and an

outgoing flow. In case of an incoming flow, the closing service being the lowest

on the silo stack identifies the right silo which needs to service the flow. In the

outgoing direction it multiplexes multiple silo flows on to one single lower layer

protocol stack.

3.2.4 Mathematical formulation

By trying to formulate each of the constraint as a mathematical expression we

tried to formulate the composition problem as an ILP. Our attempt was reason-

ably sucessful in that we were able to formutlae each constraint as a quadratic

inequation.

Following is the formutaion:

Parameters:

Aij = 1 if service i should be above service j

= 0 otherwise

Rij = 1 if service i needs service j to be in the stack.

IAij = 1 if service i should be immediatley above service j

= 0 otherwise
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Table 3.1: Required constraint truth table

Rij Aij Sij φ

0 0 0 1
0 0 1 1
0 1 1 1
0 1 0 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Variables:

Si = 1 if ith service is in the stack

= 0 otherwise

Ki is the position of the ith service in the stack.

Xij = 1 if service i is above service j

= 0 otherwise

The problem is to find a SILO such that
∑

Si is minimum and
∑

Si ≥ 1. This

means the smallest SILO with atleast one service. (Note here we do not consider

the opening and closing service.)

3.2.5 Deriving expression for Required constraint

The following truth table points out the conditions under which including two

services in the silo would be invalid.

¬φ =Si . ¬Sj . Rij

⇒ φ = ¬(Si . ¬Sj . Rij)

⇒ φ = ¬Si ∨Sj ∨¬Rij)

φ ≥ 0 ⇒ (1−Si)+Sj+(Rij) ≥ 1

⇒ 1+Sj - Si + Rij ≥ 0

This is a linear integer inequation.
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Table 3.2: Only Above constraint truth table

Xij Aij Sij Sij φ

0 0 0 0 1
0 1 0 0 1
0 1 1 0 1
0 1 0 1 1
0 1 1 1 X

....

....

....
0 1 1 1 0

3.2.6 Deriving expression for Above constraint

Here we use a new varibale X whose value depends on the position of two services under

consideration. Deriving expression for Required constraint result sin two inequations.

One is derived form the definition of X and other the above constraint. Definition of X:

Xij = 1 if K − i - Kj ≥ 1

⇒ (Ki - Kj) Xij + ¬(Ki - Kj) ≥ 1

⇒ (Ki - Kj) Xij + (Kj - Ki) ≥ 1........EQ2

Definition of Only Above constraint results in the following truth table:

¬φ = ¬Xij . Aij . Si .Sj

⇒ φ =Xij + (1 - Aij) + (1 - Si) + (1 - Sj)

⇒ (Xij + 3 - Aij- Si - Sj) ≥ 0........EQ3

3.2.7 Only Immediately Above

Here we use a new varibale X whose value depends on the position of two services under

consideration. Deriving expression for Required constraint results in two inequations.

One is derived form the definition of X and other the above constraint. Defition of X:

Xij = 1 if K − i - Kj 1

= 0 other wise.

⇒ (Ki - Kj -1)Xij ≥ 1........EQ4

⇒ (1−Ki + Kj) Xij ≥ 1........EQ5
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Figure 3.4: Only Above Constraint

Definition of Only Immediatley Above constraint results in the truth table 3.3.

¬φ = ¬Xij . Aij . Si .Sj

⇒ φ =Xij + (1 - Aij) + (1 - Si) + (1 - Sj)

⇒ (Xij + 3 - Aij- Si - Sj) ≥ 0........EQ6

3.3 SILO Composition Algorithm

The composition problem then can be stated as follows: Given a set of services in the

ontology, the problome is to obtain an ordering that is consistent with the precedence

constraints in the ontology, possibly augmenting the set of services for the purpose. A

straightforward approach can easily guarantee that correct stacks (obeying all constraints)

are constructed. The approach is to do a DFS starting from the Start Service untill Closing

service is reached, then backtrace one step and try to extend. At every step of DFS,

the services that are forbidden or services that violate a constrsint withrespect to services

already in the stack are eleminated. When a step is backtraced all services that were
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Table 3.3: Only Immediatley Above constraint truth table

Xij Aij Sij Sij φ

0 0 0 0 1
0 1 0 0 1
0 1 1 0 1
0 1 0 1 1
0 1 1 1 X

....

....

....
0 1 1 1 0

Figure 3.5: Only Imm Above Constraint
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eleminated would agin become allowed.

Briefly, the steps are:

∗ Initialize essential services list from application specification

∗ Designate any service S1 as the top service

∗ Recursively, build the stack below

∗ Si := service last added

∗ If Si Requires any service, add to essential

∗ If Si has an ImmAbove constraint, add it to stack (unless marked backtrack)

∗ Otherwise, add any other service which can be added

∗ Recurse // (No other service can be added)

∗ Check to see if stack violates any Above condition

∗ OR any essential service is missing

∗ If not, output stack and exit

∗ Else backtrack to remove last service added

∗ Start with some other service as top service

Clearly, this algorithm will produce correct stacks; equally clearly, it has a very long run-

ning time. Many improvements to running time can be made in the form of sophistications

such as checking each service for violations with services already on the stack, backtracking

several steps when removing a service required by another above, starting with essential

services as top service choice, etc. However, they leave the algorithm essentially the same,

and not guaranteed to complete in polynomial time. for this reason as well as some indi-

cations from a graph-theoretic modeling, we conjecture that the problem is NP-complete;

however, we do not have a formal proof at this time. In practice, in ontologies with rea-

sonable sets of constraints, the version of the algorithm with all the accelerations runs with

very little delay (a few seconds with an ontology of around fifty services) if there are a

reasonable number of constraints to prune the search. However, this changes with further

drastic simplification of the set of precedence constraints. If there are no essential services

designated by the application, and only one of the three ordering constraints are allowed,

together with Requires, the problem can be solved polynomially. for ease of discussion,

w.l.o.g. we consider a unique top service Ss and a unique bottom service Se. Further, we

consider that the set of services As that can follow Ss are known, as is the set of services Bs
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that can precede Se. In the general case, these can of course be the set of all services. We

consider a digraph where every service can be represented as a node and the constraints as

edges between them.
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Chapter 4

SILO Prototype Architecture

A high-level view of the prototype software architecture is shown in Figure ??. The archi-

tecture consists of the following major components:

∗ the SILO API,

∗ the SILO ontology of services and methods,

∗ the SILO-enabled application (APP),

∗ the SILO management agent (SMA),

∗ the SILO tuning agent (STA),

∗ the SILO construction agent (SCA),

∗ the universe of services storage (USS), and

∗ the control strategies storage (CSS).

The application creates a service request, which describes its communications requirements.

Based on the requirements the SCA constructs a silo recipe, which it then passes to the

SMA. The SMA dynamically links in necessary code and instantiates the state for the new

silo using the silo recipe. The application and the SMA communicate by referencing a silo

handle. The SMA maintains the silo state and when necessary, the STA manipulates the

control interfaces in order to optimize performance. A control strategy is used to govern

the manipulation of the control interfaces. The SMA and STA select appropriate control

strategies from the Control Strategies Storage based on the desired optimization goals.

The high-level behavior of the framework is affected by the policies that are currently in
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effect (as selected by the user and/or system and/or network administrator). The described

interactions are shown in Figure ??. The following are some terminologies used in the

description of the archetecture.

∗ SILO - a framework for creating flexible networking applications

∗ silo - state storage, associated executable code and execution contexts nec-

essary to perform communication functions on behalf of an application. A

silo represents a collection of services and methods operating on a data flow.

∗ silo state - a storage abstract which maintains information necessary for

silo operation (example - congestion window size, number of packets/bytes

transmitted etc)

∗ silo handle - unique identifier of silo state used between the application and

the SILO framework

∗ service request - description of desired services communicated by the appli-

cation to the SILO framework.

∗ silo recipe - an XML-based description of the composition and state necessary

to create a silo. Contains pointers to dynamically linkable code to methods

constituting a silo.

∗ control interface - an abstract describing control options of a specific method

within a silo. Control interface is composed of method-specific and service-

specific control knobs. Service-specific knobs are inherited based on poly-

morphism of services and methods.

∗ control strategy - an algorithm used to manipulate silo control interfaces in

concert in order to achieve a specific optimization goal.

4.1 Over view of the implementation approach

The prototype has been implemented as a series of user-space components implemented in

C++ interconnected using traditional UNIX IPC mechanisms (e.g. UNIX sockets, shared

memory, message queues etc). Individual components incorporate multiple threads depend-

ing on the needs of the components. Whenever appropriate, thread-based concurrency will

be replaced with event queues to simplify locking and debugging.
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Because of the need to develop this prototype rapidly, user-space approach was chosen

over a kernel-based implementation. High performance, generally ascribed to kernel-based

implementations is not of high priority in this case. User-space approach will allow us

to incorporate the code and components from other OSS projects without regard to their

implementation details. It allows us to mix and match implementation frameworks and lan-

guages to achieve the fastest result. An example includes using some OSS Java components

alongside the C/C++ implementation of the SILO framework.

4.2 High-level Architecture

Below, we describe the individual components in greater detail.

In the prototype, we have implemented SILO API, SILO-enabled Application, SILO Man-

agement Agent and SILO Tuning Agent.

Figure 4.1: High Level Architecture
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4.3 Component Description

We have described SILO Construct Agent, SILO Management Agent and SILO Tuning

Agent in pervious sections. Besides these control agents, other components are described

below.

SILO-Enabled Application The SILO-enabled Application (APP) is any application

that includes a networking communications component implemented using the SILO frame-

work. This means the APP is linked against the SILO API and communicates with other

SILO components. The APP could be an existing networked application (e.g. a web-

browser) whose socket-based TCP/IP interface has been replaced with the SILO API or,

alternatively, a purpose-built application utilizing the SILO framework.

SILO Construction Agent SILO Construction Agent (SCA) is a major component of

the architecture whose responsibility it is to assemble a silo based on application’s request.

It utilizes the SILO Ontology (discussed in 4.3), an inference Engine, and a collection of

custom algorithms in order to turn the application request into a silo recipe. The silo recipe

is used by the SMA to construct the custom silo for the application.

SILO Management Agent SILO Management Agent (SMA) is responsible for

(a) Constructing a silo for a specific application based on a recipe created by the SCA,

(b) Maintaining the silo state during the communications session,

(c) Manipulating the control interfaces within individual silos in order to optimize its be-

havior according to a specific optimization goal. This part of SMA is called SILO Tuning

Agent.

The construction of a silo involves instantiating the silo state, linking in the necessary

method code from the Universe of Services Storage and starting any required execution

context.

Control interface manipulation is performed in order to optimize either individual or collec-

tive behavior of silos within a single node or among many nodes. The selection of appropriate

control strategy is governed by policies that are stored within Universe of Services Storage

component.
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The SILO API The SILO API consists of C++ header files and library code. Two types

of API and libraries are implemented:

∗ Application API - for creating SILO-enabled applications

∗ Internal API - library code common to the individual SILO components (

e.g. to facilitate inter-component communications)

The SILO API can help application to add application-specified constraints or ontology as

part of the request. It maintains the requests from Application to SILO Construct Agent,

whose purpose is requesting SCA to construct a silo and to release a silo.

The SILO Ontology The SILO ontology is an XML-based (RDF) description of the

relationships between SILO services and methods used to create and operate silos. It

describes interfaces between services as well as service and method control interfaces.

The SILO Ontology is stored by the Universe of SILO Services component.

Universe of Services Storage The USS serves as the main repository of information

about the SILO framework. It contains

(a) The ontology that describes relationships between services and service interfaces,

(b) A database of method implementations which helps the SMA locate the executable code

necessary to construct a given silo, (c) Current policy setting which affect the operation of

the SILO framework. These can be application-, node- and network-specific. The USS has

a query-based interface, which allows other components of the SILO framework to utilize

its functionality.

Control Strategies Storage The CSS serves as the repository of control strategies for

the SMA. Initial functionality of the CSS will be subsumed within the SMA R1. Further

SMA releases will rely on a standalone CSS equipped with a query interface to help select

and retrieve an appropriate control strategy based on app lication requirements and policies

currently in effect.
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4.4 Component Interactions

Interfaces between different components are expected to be reliable. Blocking is performed

where appropriate. The interfaces are:

∗ Between the Application and SMA.

Application passes data to SMA and receives user data from SMA using the

silo handle. Data can take the form of

(a) Stream, represented either as non-delineated buffers in some traditional

stream-oriented transport, or file descriptors; or

(b) Sequence of records, Oor delineated buffers, which is a record-oriented

transport that preserves record boundaries. Only suitable for silos that have

been defined for purposes of record-oriented transport.

SMA also relay the request from APP to SCA. Application sends a service

request for a silo, specifying the types of services it needs, the types of

services it forbids, any ordering requirement of services or methods. SCA

replies with a silo handle, which is passed back to APP by SMA.

∗ Between SCA and SMA. SCA communicates to SMA the silo handle and

the silo recipe.

∗ USS to SCA and SMA.

USS presents a unified interface to the rest of the SILO framework. This

interface allows other SILO components to query USS about its contents.

∗ Between CSS and SMA.

CSS interface serves to enable search and selection of the best control strat-

egy based on application requirements and active policies.

4.5 Ontology in detail

The ontology, which is the universe of services and constrsints acts like a database that

can be queried for services that confirm to some specified conditions. The Ontology is

implemnted by defining services and constraints as objects of specifc object types or classes.

The classes implemented are:

∗ Service : Every service has the following attributes:
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· Has Constraint : This attribute is defined by an object of type Con-

straint.

· Has Data effect : This attribute is defined by an object of type Data

effect.

· Has Effect : This attribute is defined by an object of type Performance

effect.

· Has Function : This attribute is defined by an object of type Service

Function.

· Is of type : This attribute is defined by an object of type ServiceType.

· Name : The service’s name.

Figure 4.2: Constraint Classes in RDF

∗ Method Every method has the following attributes:

· Has Constraint : This attribute is defined by an object of type Con-

straint.

· Has Data effect : This attribute is defined by an object of type Data

effect.

· Has Effect : This attribute is defined by an object of type Performance

effect.

· Implements : This attribute defines the service that this method imple-

ments.

· Name : The method’s name.

∗ SimpleConstrinst : The simple constrinst can be a PrimitiveDependency

or an orderingRestriction.
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∗ PrimitiveDependency : This type of constraint is the representation of

‘Requires constraint’ in the ontology. Its the dependency of a primitive

(service or a method) on another primitive.

∗ OrderingRestriction : Objetcs of this constraint represents Above or Im-

medately Above or Not Immediately Above kind of constraints.

∗ Compount constraint : Is an OR-ed combination of simple constaints on

a specific primitive.

Once the services and the constraints are defined and captured in the ontology, a reasoner

or a query language can be used to query the ontology. JENA is a javabased query library

that implements a reasoner for ontology defined RDFS or OWL. See appendix for more

information on Jena. RDF defines every relation as triad as depicted in the picture..

Figure 4.3: Service, constraint instances as Traids in RDF
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Chapter 5

Algorithm Variations and Results

The algorithm presented in section 3.3 gives the over view of a brutforce method of com-

posing a stack. Few variations of this algorithm has been implemented.One various does

not allow any service to be repeated on the stack, while one does not allow more than ‘r’

repititions of service. Another variation restricts loop repittion in a stack. While none of

the flavours run in polynomial time, the first two have deterministic running time. They

are exponential on number of services ‘n’ in terms of running time. The latter variations

running time or complexity was not quantifiable. The following sections discuss the nature

of each of the variations and some results.

5.1 Stack composition with fixed length

The stack size is fixed and is defined by the application or some local environment policy.

Further variation of this is fixed length and no repetitions allowed or repetitions allowed.

Given an ontology of ‘n’ services excluding the opening and closing services, in the cae

where no repetitions are allowed, and when the length is ‘l’ the total number of possible

stacks are nPl.

When repetitions are allowed, the toatl number of possible stacks are ln and is of exponential

complexity.

The resriction on services that can be immediately below Starting Service and on services
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that can be just above a closing service makes the running time less, but does not change

the complexity. For, example, if s services can be starting services, c services can be closing

services, the number of possible stacks are s.(l − 2)n.c, which is still exponential.

5.2 Stack composition with no repetitions and unrestricted

length

Since the stack size can vary from one to ‘n’, the total number of possible stacks are
nP1 +n P2 +n P3 +n P4........ +n Pn.

Had the order of the services with in a stack not mattered then number of stacks possible

are
nC1 +n C2 +n C3 +n C4........ +n Cn = 2n.

Since the algorithm is a brute-force algorithm, with some optimizations, the ‘no repetitions’

variation is atleast Ω(2n) and atmost O
∑n Prr →{1,2,...n}

5.2.1 Example Stack composition

An ontology in which TCPHandshake is the opening service and TCPChecksum is the clos-

ing service, and total number of services are 9 and with 4 constraints, apart of the algorithm

out put is shown below.

New Silo:

silo:TCPHandshake , silo:IPv4SegReassy , silo:OrderedDelivery ,

silo:TCPReliableDelivery , silo:TCPInOrderDelivery , silo:TCPChecksum ,

New Silo: silo:TCPHandshake , silo:IPv4SegReassy , silo:OrderedDelivery ,

silo:TCPReliableDelivery , silo:TCPInOrderDelivery , silo:TCPSegmentation ,

silo:TCPChecksum ,

New Silo:

silo:TCPHandshake , silo:IPv4SegReassy , silo:OrderedDelivery ,
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silo:TCPReliableDelivery , silo:TCPInOrderDelivery , silo:TCPSegmentation ,

silo:TCPFlowControl , silo:TCPChecksum ,

New Silo: silo:TCPHandshake , silo:IPv4SegReassy , silo:OrderedDelivery ,

silo:TCPReliableDelivery , silo:TCPInOrderDelivery , silo:TCPSegmentation ,

silo:TCPFlowControl , silo:TCPCongestionControl ,

silo:TCPChecksum ,

New Silo: silo:TCPHandshake , silo:IPv4SegReassy , silo:OrderedDelivery ,

silo:TCPReliableDelivery , silo:TCPInOrderDelivery , silo:TCPSegmentation ,

silo:TCPFlowControl , silo:TCPCongestionControl ,

silo:IPv4Checksum , silo:TCPChecksum ,

New Silo: silo:TCPHandshake , silo:IPv4SegReassy , silo:OrderedDelivery ,

silo:TCPReliableDelivery , silo:TCPInOrderDelivery , silo:TCPSegmentation ,

silo:TCPFlowControl , silo:TCPCongestionControl , silo:IPv4Checksum ,

silo:IPv6SegReassy , silo:TCPChecksum ,

5.3 Stack composition with repetitions and unrestricted length

Unrestricted length and unrestricted repetitions clearly result in infinate possibilities. The-

ordering constraints can only reduce some of the possibilities. With restricted repetitions,

the problem becomes deterministic.

For example the number of possible stack compositions to be verified for validity in the case

when at most one reprtitions of a service is allowed, is 2nP1+2nP2+2nP3+2nP4........+2nP2n.

This is equivalent to the case where there are ‘2n’ services and no repetitions are allowed.

5.4 Stack composition with repetitions and restricted loops

In this case a service can appear any number of times. But a particular loop of services

can loop only a specified number of times. This is a tricky situation, since in the algorithm,
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even if an addition of a repeated service to the stack doesnot result in a repeated loop, part

of the stack that includes the last added service can be considered and any of its previous

instance can be considered as the first appearance of a loop. The loop restriction algorithm

is presented in the appendix.

The complexity or running time of this algorithm is non-deterministic. Even with a restric-

tion on the number of times a loop can be repeated, say no loop repetitions are allowed, the

every first possible SILO realization can take a non-deterministic time. Cosider a subset of

services with no ordering constraints. Number them as 0,1, 2, 3 ..and so on.

For instance let the number such services be 10. A non deterministic series of these ten

symbols can be generated. For example consider Pi.It is an irrational number, which means

that its decimal expansion never ends or repeats. Indeed, beyond being irrational, it is

a transcendental number, which means that no finite sequence of algebraic operations on

integers could ever produce it. Such transcendental series can be generated even with two

symols (or digits), since Pi (or any transcendental number) can be realised even in Binary

number system.

Since no sequence of algebraic operations on these integers can ever produce such series of

symbol,no formal language can be defined. Thus the number of steps in the algorithm and

hence the running time can be concluded to be non-deterministic.
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Chapter 6

Future Work

6.1 Peering Silo Construction

Silo composed on one end of a connection confirms to the global ontology, local polocies

and is dependenton the availability of the services an the end. An identical silo may not

be possible atthe remote end. This necessiates peering the Silo ie, negotictaing the SILO

reciepe by both the ends. Also, at every hop a partial SILO needs to constructed. While

neotiating the SIloreciepe across the network, the following things need to be considered:

1. End to End silo peering Vs Hop by Hop (E2E Vs HbH)

2. Non-homogeneous network

3. Different addressings/Address translation

4. Standard Bootstrap Silo(B-Silo). Is a universal B-Silo possible?

5. Does every silo need a peer-silo negotiation (before sending data)?

6. Does every service on a silo need a peer (E2E or HbH)?

7. Negotiation Similar to HandShake.

6.1.1 End to end silo peering Vs Hop by Hop ((E2E Vs HbH))

E2E silo peering makes heavy assumptions about the capabilities of intermediate nodes. for

E2E to be sufficient every intermediate node should be able to build any silo (or that part
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of the negotiated Silo that is needed for correct forwarding).

In case of HbH peering, there is considerable overhead introduced. Here every node nego-

tiates with the node at next hop. This means that the silos constructed at the either ends

need not be identical.

6.1.2 Non-homogeneous network

If the network is not homogeneous, and if the two ends are in different networks, the peer

silos cannot be identical. for example, if the source end is in wired n/w and if the destination

is in wireless network, the service (or method of the service) that serves Data Link Layer

kind of services cannot be the same at both the ends.

6.1.3 Different addressing

If the addressing for the source and destination are different, then again the peer silos cannot

be same. This is similar to the non-homogeneous network case. Silo needs to include address

translation on some intermediate node.

6.1.4 Bootstrap Silo

for peer silo negotiation to happen, there should be some way of communication. This is

enabled by a bootstrap silo. However, for the same reasons as above (and below) a universal

bootstrap silo is not possible.

6.1.5 Does every silo need a peer-silo negotiation

If the packet headers contain the silo information, then the intermediate nodes and the

endnode can attempt to construct a ‘compatible’ silo. But, if there are any QoS, or appli-

cation req constraints, then such the intermediate/end nodes should be mind ful of such

constraints.

This means there is a default silo used temporarily to read the header info and the con-

straints in the first packet. The node at the next hop makes a best effort attempt to

construct a compatible silo and forwards a similar packet to the next hop.
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Should the next hop deny, how many alternate next hops should be tried?

6.1.6 Does every service on a silo need a peer (E2E or HbH)?

In HbH, Source and next hop, and Destination and previous hop cannot negotiate on all

services in a silo since the intermediate nodes need to construct only on a part of the silo.

The actual question is should every service have a peer either at next hop or at the other

end?

We think not all services need to be peered.

1. Services that modify the data or the header need to be peered.

2. Services that generate control messages (that help other nodes on the ‘flow’ tune ser-

vices/methods) need to be peered

6.1.7 Default silo

1. As discussed above, when no negotiation is required, a default silo is needed to read the

header info and the constraints in the first packet. The node at the next hop makes a best

effort attempt to construct a compatible silo and forwards a similar packet to the next hop.

2. Boot Strap silo on each node, that enables peer Silo negotiation (three way handshake).

3. The default silo should facilitate the node to communicate to other nodes, its participa-

tion in the network.

6.1.8 Hop By Hop peering

Assuming that all the nodes have a bootstrap Silo (B-Silo), the peer negotiation can happen

as below:

The source constructs a silo Ss and communicates it to the next hop Nh1. The next hop

builds the silo peering with minimum number of services on the Silo Ss so that it can forward

the packet to the second hop Nh2. This means the services below the first forwarding silo

is peered.

If the Node Nh1 acts as a gateway for two different types of networks, then it adds more

services corresponding to the different network. If the ‘other network’ is a sonet/atm kind

of network, the silo will have multiple forwarding services.
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Consider Ip over Sonet.

Figure 6.1: Peering Silos in a Non-homogeneous network

For the Proof of Concept model, TCP/UDP like Silo is stacked over IP.

6.2 Shortest SILO First

Algorithm to geneate shortest SILO first and then sucessive shortest SILO is one areas of

future research focus. This problem sounds similar to sucessive shortest path algorith bit

is diffrent and complex due to the inherent dynamic nature of the graph representation

of the ontology. The Ontology can be represented as graph with multiple cloured edges,

and traversing any edge can result in modification of the graph due to the constraints.

Since the graph possibly changes on every edge traversal, a decision made at one step of a

graph algorithm can no more be valid. Even a sigle shortest pathalgorithm like Dijkstra’s

algorithm proves to be futile.
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