
ABSTRACT

STUCKEY, JEFFREY J. Worst-Case Cell Delay in an ATM Switch using EDF Scheduling.
(Under the direction of Professor George N. Rouskas and Professor Ioannis Viniotis.)

Asynchronous Transfer Mode (ATM) is well-suited for carrying real-time tra�c.

Because real-time tra�c must arrive at its destination prior to its playback instant, end-to-

end delay is one of its most critical QoS parameters.

We focus our attention on analyzing delays under worst-case conditions. In partic-

ular, our interests are in characterizing the tail behavior of cell delay functions in an ATM

switch using the EDF scheduling algorithm. We use simulation techniques to observe cell

delays and the behavior of EDF scheduling.

In this study we examine four di�erent source models and their e�ect on the tails

of cell delay functions. We observe that cell delays are a�ected by many factors such as

the source model behavior, the degree of multiplexing, the leaky bucket behavior, and the

synchronization of cell transmissions.

Our results suggest that cell delays approach their theoretical maximum delay

bound during a switch's warm-up period. Further, we conclude that cell delays increase

as the degree of multiplexing decreases. We examine two di�erent methods of worst-case

leaky bucket behavior in terms of admitting individual cells and bursts of cells. We �nd that

very large cell delays result in both of these worst-case leaky bucket behaviors. Finally, we

show that worst-case cell delays occur when sources are aligned to begin transmitting cells

simultaneously and that these delays can be greatly reduced if sources begin transmitting

cells at random points in time.



WORST-CASE CELL DELAY IN AN ATM SWITCH

USING EDF SCHEDULING

by

Je�rey J. Stuckey

A thesis submitted to the Graduate Faculty of
North Carolina State University

in partial ful�llment of the
requirements for the Degree of

Master of Science

Computer Science

Raleigh

1998

APPROVED BY:

Co-Chair of Advisory Committee Co-Chair of Advisory Committee



ii

To my family,

for all the love and encouragement they have shown me.



iii

BIOGRAPHY

Je�rey J. Stuckey was born in East Lansing, Michigan on June 19, 1971. He spent

his childhood in Lexington, Kentucky, graduating from Henry Clay High School in 1989.

He received his Bachelor of Arts degree in Mathematics from Goshen College in 1993. In

1996, he began the pursuit of a Master of Science in Computer Science at North Carolina

State University, graduating in August of 1998.



iv

ACKNOWLEDGEMENTS

This work would not have been possible without guidance from Professor George

Rouskas and Professor Yannis Viniotis. I appreciate the generous amount of time that they

have spent with me on this work. It has been a pleasure to work closely with both of these

talented professors. I would also like to thank Professor Doug Reeves for serving on my

committee and for his helpful suggestions.

I would also like to thank my four terri�c grandparents, Lou, Wilma, Chauncey,

and Pearl, who have shown me much love and taught me important principles such as

dedication, integrity, and courage in their daily lives.

Finally, I would like to thank the three most important people in my life: Richard,

Judy, and Jon. We are truly blessed to have such a wonderful family and the love and

encouragement you have shown me is unparalleled. I thank you with all of my heart.



v

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Asynchronous Transfer Mode : : : : : : : : : : : : : : : : : : : : : : : : : : 1
1.1.1 Quality of Service : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2
1.1.2 Tra�c Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

1.2 Link Scheduling Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.2.1 Fixed Priority and Dynamic Priority : : : : : : : : : : : : : : : : : : 4
1.2.2 First In First Out : : : : : : : : : : : : : : : : : : : : : : : : : : : : 4
1.2.3 Weighted Round Robin : : : : : : : : : : : : : : : : : : : : : : : : : 5
1.2.4 Weighted Fair Queueing : : : : : : : : : : : : : : : : : : : : : : : : : 5
1.2.5 Earliest Deadline First : : : : : : : : : : : : : : : : : : : : : : : : : : 5
1.2.6 Variations and Combinations : : : : : : : : : : : : : : : : : : : : : : 6

1.3 Introduction to Our Research : : : : : : : : : : : : : : : : : : : : : : : : : : 6
1.4 Thesis Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

2 Overview of Previous Work 7

2.1 Earliest Deadline First Research : : : : : : : : : : : : : : : : : : : : : : : : 7
2.2 Percentile Analysis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11
2.3 Other Relevant Research : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 11

3 Cell Delay in ATM Networks 13

3.1 Call Admission Control : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13
3.2 The Degree of Multiplexing : : : : : : : : : : : : : : : : : : : : : : : : : : : 14
3.3 Leaky Bucket Policing and Shaping : : : : : : : : : : : : : : : : : : : : : : : 15
3.4 ATM Switch Technology : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 15
3.5 Theoretical Maximum Delay Bounds : : : : : : : : : : : : : : : : : : : : : : 17
3.6 Earliest Deadline First : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18

3.6.1 Characteristics : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 18
3.6.2 Rationale for Choosing EDF for Scheduling : : : : : : : : : : : : : : 19



vi

4 Simulation Environment 21

4.1 System Topology : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
4.1.1 Sources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21
4.1.2 Leaky Buckets : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26
4.1.3 Multiplexers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 27
4.1.4 Links : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
4.1.5 Bu�ers : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28
4.1.6 Switch Fabric : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

4.2 Parameter Set and Values Used in Experimentation : : : : : : : : : : : : : 30
4.2.1 Number of Cells : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
4.2.2 Number of Input Ports : : : : : : : : : : : : : : : : : : : : : : : : : : 30
4.2.3 VC Topology : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 30
4.2.4 Size of Input Bu�ers : : : : : : : : : : : : : : : : : : : : : : : : : : : 31
4.2.5 Size of Output Bu�er : : : : : : : : : : : : : : : : : : : : : : : : : : 31
4.2.6 Input and Output Link Speed : : : : : : : : : : : : : : : : : : : : : : 31
4.2.7 Source Speeds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
4.2.8 Packet Size : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
4.2.9 Idle Period Mean : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
4.2.10 Pause Period Mean : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32
4.2.11 Number of Packets per Active Period Mean : : : : : : : : : : : : : : 33
4.2.12 Source Start Times : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
4.2.13 Tra�c Mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33
4.2.14 Cell Delay Variation Tolerance for Peak Cell Rate : : : : : : : : : : 33
4.2.15 Cell Delay Variation Tolerance for Sustained Cell Rate : : : : : : : : 34
4.2.16 Verbose Modes : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34
4.2.17 Random Number Seed : : : : : : : : : : : : : : : : : : : : : : : : : : 34
4.2.18 Derived Values : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

4.3 Parameter Prioritization and Impact : : : : : : : : : : : : : : : : : : : : : : 35
4.4 Bin Size Rationale : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36
4.5 Worst-Case Cell Delay and The Warm-Up Period : : : : : : : : : : : : : : : 37

5 Simulation Results 38

5.1 Three State Source Model Experiments : : : : : : : : : : : : : : : : : : : : 41
5.1.1 Homogeneous Virtual Circuits : : : : : : : : : : : : : : : : : : : : : 41
5.1.2 Heterogeneous Virtual Circuits : : : : : : : : : : : : : : : : : : : : : 47

5.2 Persistent Sources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56
5.2.1 The Aligned Case : : : : : : : : : : : : : : : : : : : : : : : : : : : : 56
5.2.2 The Staggered Case : : : : : : : : : : : : : : : : : : : : : : : : : : : 58

5.3 Repetitive Burst Sources : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59
5.3.1 The Aligned Case : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60
5.3.2 The Staggered Case : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

5.4 MPEG Traces : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63



vii

6 Summary and Future Work 66

6.1 Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 66
6.2 Future Work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

Bibliography 69

A How to Run the Simulator 72

B Simulator Utilities 78

B.1 CAC : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 78
B.2 ExtractColumns : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79
B.3 GetPercentile : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

C Simulation Parameters 81

D MPEG Traces 83



viii

List of Tables

C.1 Selected simulation input parameters : : : : : : : : : : : : : : : : : : : : : : 82
C.2 Output link utilization percentages : : : : : : : : : : : : : : : : : : : : : : : 82

D.1 MPEG encoder parameters used in generating traces : : : : : : : : : : : : : 83



ix

List of Figures

3.1 A generic ATM switch architecture : : : : : : : : : : : : : : : : : : : : : : : 16

4.1 System topology used in simulations : : : : : : : : : : : : : : : : : : : : : : 22
4.2 The three state model for simulating bursty source behavior : : : : : : : : : 23
4.3 Leaky bucket output pattern from a persistent source : : : : : : : : : : : : 26
4.4 Leaky bucket output pattern from a repetitive burst source : : : : : : : : : 27

5.1 Cell delays with 256 VCs on 64 input links : : : : : : : : : : : : : : : : : : 42
5.2 Cell delays with 256 VCs on 2 input links : : : : : : : : : : : : : : : : : : : 43
5.3 Tail behavior of cell delays with 256 VCs on 64 input links : : : : : : : : : : 45
5.4 Delay percentages with 256 VCs and 97% output link reservation : : : : : : 46
5.5 Delay percentages with 256 VCs and 65% output link reservation : : : : : : 46
5.6 Cell delays with 256 VCs in 2 VC classes on 32 input links : : : : : : : : : : 48
5.7 Manipulation of the second burst of cells : : : : : : : : : : : : : : : : : : : : 50
5.8 Cell delays with 256 VCs in 2 VC classes on 16 input links : : : : : : : : : : 51
5.9 Manipulation of the second bounce in cell delays : : : : : : : : : : : : : : : 53
5.10 Cell output times by VC class with 64 input links : : : : : : : : : : : : : : : 54
5.11 Cell output times by VC class with 2 input links : : : : : : : : : : : : : : : 55
5.12 Cell delays with 256 persistent VCs in 2 VC classes on 64 input links in

aligned mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57
5.13 Cell delays with 256 persistent VCs in 4 VC classes on 64 input links in

staggered mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 59
5.14 Cell delays with 256 repetitive burst VCs in 2 VC classes on 64 input links

in aligned mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61
5.15 Cell delays with 256 repetitive burst VCs in 4 VC classes on 64 input links

in staggered mode : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62
5.16 Cell delays with 25 MPEG video sources : : : : : : : : : : : : : : : : : : : : 65



1

Chapter 1

Introduction

This chapter provides a brief background on much of the terminology used through-

out this document.

1.1 Asynchronous Transfer Mode

Many in the computer networking community have predicted that Asynchronous

Transfer Mode (ATM) will be the foundation of choice for most networking applications in

the future. Because of its hype and potential, ATM has received a tremendous amount of

attention and study in recent years. Whether ATM obtains the sweeping popularity that

many predict remains to be seen.

An ATM network is connection-oriented. In contrast to datagram services where

packets are sent using a store-and-forward approach, connection-oriented services require

that a single logical route be established through the network from source to destination

for a particular 
ow of data. This logical route is referred to as a virtual path (VP). Within

each virtual path there exists one or more virtual circuits (VC) which carry the tra�c for

an individual application from source to destination. In our work we focus on data 
ows at

the VC-level as opposed to the VP-level.

An advantage to a connection-oriented approach is that all packets will travel along

the same VC through the network; therefore, packets will arrive at the destination in the

order transmitted and the destination will not need to resequence packets. A disadvantage

to a connection-oriented approach is that a VC must be established before data may be

transmitted which requires some overhead.



2

In an ATM network, data is packetized into 53 byte units called cells. 48 of these

53 bytes consist of the actual data to be transmitted, called the cell payload. The �rst

5 bytes of each cell are overhead bytes called the cell header. The cell header is used for

VC and VP identi�cation, error checking, and cell loss priority.

These relatively small cells give ATM many advantages over traditional network

protocols with larger, variably-sized packets. First, since all of the cells are a small size, we

do not have the overhead of fragmenting and defragmenting along the path. Secondly, the

modularity of ATM cells allows us to disregard the issue of packet preemption which can

result in substantial overhead in a switch. Finally, in the event that a packet must be re-

transmitted due to cell loss or bit errors, the small cell size results in minimal retransmission

overhead.

1.1.1 Quality of Service

One of the strengths of ATM is its suitability for a wide array of tra�c types.

ATM is engineered for video, voice, and data tra�c. Some of these types of tra�c have

very di�erent requirements. For example, video and voice are often considered real-time

tra�c; whereas data tra�c, such as that being transmitted using the File Transfer Protocol

(FTP), is considered non-real-time.

In the transmission of real-time tra�c, cells must arrive at the destination by a

certain time in order to meet their playback instant|the time at which a cell's data is

presented to the user. If a source sending real-time tra�c has a cell which incurs a delay

such that it misses its playback instant, then this cell is of little or no use to the destination.

In contrast, non-real-time tra�c does not need to meet playback instants. Even if a source

sending non-real-time tra�c has a cell whose delay is relatively large, this cell will likely

still be of use to the destination.

The type of service requested by a source for its tra�c is referred to as its Quality

of Service (QoS). Naturally, the better the QoS desired by a user, the more the user will

have to pay monetarily for this service. From the network's perspective, a better QoS will

result in smaller delays, but use more of the network's resources. In our experiments, we

consider various QoS levels represented as di�erent classes of VCs for real-time tra�c.

The ATM Forum [3] proposes several di�erent bit rate characteristics that a source

may employ when generating tra�c. In one such option, a source may generate cells at a



3

Constant Bit Rate (CBR). With CBR, cell arrival times are deterministic as there exists a

constant inter-arrival time between cell transmissions.

The ATM Forum suggests two di�erent types of Variable Bit Rate tra�c: one for

real-time tra�c (VBR-rt1) and one for non-real-time tra�c (VBR-nrt). In either case, the

inter-arrival time varies between cells. Voice and video tra�c can be of either the CBR or

the VBR-rt variety.

Available Bit Rate (ABR) tra�c is a \best e�ort" service. That is, the network

will provide its best e�ort to service ABR tra�c if no higher priority tra�c needs service.

Unspeci�ed Bit Rate (UBR) tra�c is another type of best e�ort service. Unlike ABR, most

tra�c parameters are not given to the network for UBR tra�c.

Since we are most interested in studying the delays of real-time tra�c, our ex-

periments included CBR tra�c and VBR-rt tra�c. However, the deterministic nature of

CBR gave us very uninteresting results and lead us to more extensive experimentation with

VBR-rt. Due to their lack of suitability for real-time tra�c, we chose not to experiment

with VBR-nrt, ABR, or UBR.

1.1.2 Tra�c Parameters

ATM tra�c is characterized by several parameters on a per-VC basis. The Peak

Cell Rate (PCR) is de�ned as the maximum allowable rate at which a source may transmit.

Often, the PCR is equal to the speed of the transmission medium. In specifying a PCR

with the network, a source promises that it will not send cells at a rate any higher than the

PCR during any point of transmission.

The Sustained Cell Rate (SCR) is de�ned as the average rate at which a VC is

allowed to send cells through the ATM network. In specifying an SCR with the network, a

source promises that it will not send cells at a rate any higher than the SCR during a given

interval of time. Of course, a source may send cells at a lesser rate than the SCR during

this time interval. For CBR tra�c the SCR is equal to the PCR and for VBR tra�c the

SCR is strictly less than the PCR.

A group of cells that is transmitted consecutively and relatively rapidly after each

other is commonly referred to as a \burst" of cells. A burst is not easily quanti�ed and

is a notion, not a distinct measure. However, there exist several methods of estimating

1In future chapters, we will reference VBR-rt with simply the term VBR.



4

burstiness. The Maximum Burst Size (MBS) is de�ned as the greatest number of cells that

can be transmitted at the negotiated PCR. The Burst Tolerance (BT) is de�ned as the

length of time at which a source may be allowed to transmit at PCR.

The Cell Delay Variation Tolerance (CDVT) is a lower bound on the amount of

time permissible between consecutive cell arrivals still considered conforming to either the

PCR or SCR. In regards to the PCR, the CDVT is denoted CDVTPCR. Similarly, in regards

to the SCR, the CDVT is denoted CDVTSCR.

Of the above parameters, only PCR and CDVTPCR are applicable to CBR tra�c;

however, each of the above parameters is required for VBR-rt tra�c.

1.2 Link Scheduling Algorithms

The question of how to best schedule cell departures from ATM switches is not

clear-cut and may depend upon the tra�c characteristics. Many scheduling algorithms have

been proposed in the literature. In this section we discuss some of the more well-known

scheduling algorithms.

1.2.1 Fixed Priority and Dynamic Priority

Scheduling algorithms may be either �xed priority or dynamic priority. Intuitively,

in �xed priority scheduling, once a priority has been assigned to a cell, this priority will not

change regardless of subsequent cell arrivals. On the contrary, dynamic priority scheduling

allows a cell's priority to change in time depending on subsequent arrivals. A �xed priority

scheme does not involve the overhead of changing priority assignments and is relatively easy

to implement; however, it does not minimize delays as well as dynamic priority schemes in

most cases.

1.2.2 First In First Out

First In First Out (FIFO) scheduling is also known as First Come First Served

(FCFS) scheduling. In this �xed priority scheduling method, cells depart the switch in the

same order as they arrived at the switch. In this method, priority is a function of cell

arrival instants. Clearly, this is undesirable when di�erent levels of QoS are requested. An

advantage to this scheme is that it is very easy to implement in the switch hardware.



5

1.2.3 Weighted Round Robin

The Weighted Round Robin (WRR) algorithm is a �xed priority approximation of

the purely theoretical General Processor Sharing (GPS) algorithm. In GPS, in�nitesimally

small portions of packets are served on a per-VC basis such that each VC can be served at

least once in any given interval of time. In GPS, if a VC has no cell to be transmitted, then

the amount of time that would have been dedicated to serving this VC is equally shared

among the VCs that do require service.

In WRR, weights may be assigned to connections, thus allowing di�erent priority

levels. In WRR, each VC is served sequentially, where the length of its service time is

proportional to its assigned weight. WRR only provides fairness during an interval of time

greater than the time required to service each VC. If there are many VCs with long service

times, other VCs will have long wait times. WRR is appropriate for �xed size packets, but

not ideal for variable sized packets since WRR must know a VC's average packet size at

connection establishment.

1.2.4 Weighted Fair Queueing

Like WRR, the Weighted Fair Queueing (WFQ) algorithm is another �xed priority

approximation of GPS. Also like WRR, WFQ allows assigning weights to VCs to provide

di�erent levels of service. In WFQ, a packet's estimated �nish service time is calculated

according to GPS. Then this service time and the VC's weight is used in prioritizing packets

for service. WFQ provides reasonable fairness to VCs and does not require knowledge of

average packet sizes; however, the large number of calculations required cause WFQ to have

a high degree of computational complexity.

1.2.5 Earliest Deadline First

The Earliest Deadline First (EDF) algorithm is the focus of our research. With this

dynamic priority algorithm, each cell is assigned a deadline upon arrival at the switch. At

any instant in time, the cell with the most immediate deadline is served. EDF is relatively

easy to implement, but su�ers from complexities at call set-up time. A more in depth

discussion of the EDF algorithm is given in Section 3.6.



6

1.2.6 Variations and Combinations

Many variations of the above algorithms have been proposed in the literature.

Further, combinations of these algorithms are also possible. For example, some commer-

cial ATM switches have implemented head of line priorities in combination with WRR

scheduling.

1.3 Introduction to Our Research

In this work we examine worst-case cell delays in an ATM switch. Because of

EDF's delay optimality and its relatively low degree of implementation complexity, we

chose EDF for study in favor of other scheduling algorithms.

Our focus is in researching the tail behavior of cell delay functions under a variety

of worst-case conditions. To accomplish this, we have developed a simulation program with

which we analyze cell delays using a variety of di�erent source and leaky bucket behaviors.

We observe that worst-case cell delays increase as the degree of multiplexing de-

creases. We also observe that worst-case cell delays are heavily dependent on the source

and leaky bucket models used. Finally, we show that worst-case cell delays increase when

sources are aligned to transmit simultaneously.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we provide a brief overview of

other research related to our own. In Chapter 3, we discuss the principles which contribute to

cell delays in ATM networks. In Chapter 4, we discuss in detail our simulation environment

and the simulator program. In Chapter 5, we discuss the most interesting �ndings from our

experimentation. Finally, in Chapter 6, we summarize our work and discuss some possible

future research topics.



7

Chapter 2

Overview of Previous Work

Much research has been devoted to the Earliest Deadline First scheduling algo-

rithm. However, to our knowledge, we are the �rst to perform an analysis of ATM switch

cell delays using the EDF scheduling algorithm. In this chapter we give an overview of the

research most relevant to our own.

2.1 Earliest Deadline First Research

The ground-breaking research on EDF was performed by Liu and Layland [15].

In their work they describe a real-time dynamic scheduling algorithm that they call the

Deadline Driven Scheduling algorithm. Currently in the literature, this algorithm is referred

to as the Earliest Deadline First (EDF) algorithm. We also use this convention in further

references.

While Liu and Layland's research gives us the foundations of the EDF algorithm,

their research di�ers from ours in several ways. First, their work is based upon single

processor task scheduling, whereas ours deals with scheduling cell transmissions from the

input ports to an output port of an ATM switch. In their studies, tasks are periodic,

which means that they must be repeated at regular intervals. In most of our simulations,

cell arrivals are aperiodic with varied inter-arrival times. With a purely periodic task set

a schedule can be established in advance; however, in our aperiodic cases we must make

scheduling decisions at run-time.

Their work also di�ers from ours in that they assume that a task may be pre-

empted, i.e. interrupted, by a higher priority task. Liu and Layland assume that there



8

is no overhead in context switching between tasks during preemption and that preempted

tasks resume execution without loss of work. We do not allow cell preemption in our simu-

lations. Because of uniform cell sizes, preemption simply does not make sense in an ATM

environment.

In their paper, Liu and Layland show a couple of important properties of this

algorithm which we also observe. First, they show that when a set of tasks is scheduled

according to EDF, there is no idle time prior to an over
ow [15]. In other words, the EDF

scheduling algorithm is work-conserving in the sense that as long as there are tasks to be

scheduled (or cells to be transmitted in our case), the EDF algorithm will schedule the

tasks (cells) back-to-back. If a deadline is missed, then the processor (ATM switch in our

case) was not idle just prior to this. In our research, deadlines are not missed since the

Call Admission Control algorithm will not over allocate the output link and since we have

ample bu�ering inside the switch.

Secondly, Liu and Layland show that EDF is an \optimal" scheduling algorithm.

That is, if a set of tasks is schedulable (i.e. there exists a schedule such that all tasks meet

their respective deadlines), then the EDF scheduling algorithm will be able to schedule

the tasks. This is very important to our study and one of the reasons we choose to study

EDF instead of other scheduling algorithms. Largely due to the optimality property and the

work-conserving nature of EDF, we expect that EDF will provide favorable delay guarantees.

Another important work in the EDF domain was conducted by Georgiadis et al. [7].

In their research they investigate delay and bu�er requirements on a single link. They

use non-preemptive EDF (NPEDF) while considering three methods of bu�er allocation:


exible (FL), �xed (FI), and semi-
exible (SE). In 
exible allocation, any bu�er space may

be allotted to any arrival stream. In �xed allocation, each class of tra�c has a reserved

amount of bu�er space which is assumed to be su�cient for all input tra�c rates and bursts.

In semi-
exible bu�er allocation, there is a �xed amount of bu�er space allotted for each

class of tra�c which may not be changed after the �rst packet arrives. This space may

depend on tra�c characteristics.

In their analysis, B represents the minimum bu�er size for each allocation method,

N is the number of tra�c streams, Lmax is the maximum packet length in bits, and �i is

the burst size of the ith tra�c stream.

They propose the following minimum bu�er sizes for each bu�er allocation method.



9

For 
exible allocation (FL),

Blower
FL = NLmax +

NX
i=1

�i:

For �xed allocation (FI),

Blower
FI = 2NLmax +

NX
i=1

�i: (2.1)

And for semi-
exible allocation (SE),

Blower
SE � (2N � 1)Lmax +

NX
i=1

�i:

Georgiadis et al. [7] also provide the following upper bound on bu�er size required

for the �xed allocation method:

B
upper
FI � (2N + 1)Lmax + 2

NX
i=1

�i: (2.2)

Our bu�er implementation falls into both their 
exible allocation and �xed allo-

cation categories. In our switch we have a single output bu�er into which any VC's cells

may be inserted into any position. This falls into the 
exible allocation category. Also, in

our switch we have a separate input bu�er for each VC which is only stores cells for that

VC. Thus our input bu�ers are examples of �xed allocation.

We note that because they assume that the entire burst arrives instantaneously

at the bu�er, the summations in each of the equations presented here cause these to be

extremely conservative bounds.

In the 
exible allocation method, the lower bound on bu�er size holds for any

work-conserving policy, such as EDF. However, it is important to note that Equation 2.1

only holds for Rate Proportional Processor Sharing (RPPS) and not for EDF. Although the

minimum bu�er size for EDF is lower than that given in Equation 2.1, this bound can be

used for EDF, because of its overly conservative nature. Equation 2.2 holds for both RPPS

and EDF.

A discussion of how we relate Equations 2.1 and 2.2 to our choice of input bu�er

sizes is given in Section 4.2.4.

Georgiadis et al. [7] continue by giving some schedulability conditions showing

that NPEDF is delay-optimal among all non-preemptive scheduling policies. They go on to

show that with NPEDF for semi-
exible bu�er allocation with N tra�c streams into the



10

system, a switch needs bu�er space on the order of N2 per tra�c stream. Next, they design

policies which reduce bu�er requirements and delay at the expense of reducing the number

of tra�c streams able to be served.

In a paper on end-to-end delay bounds, Goyal et al. [10] consider a single data


ow, f , which conforms to a leaky bucket with parameters (�f ; rf), where �f is the MBS

of the 
ow and rf is the rate of the 
ow.

In their delay formula, djf is the end-to-end delay of the jth packet on 
ow f , K

is the number of servers on the path of the 
ow, lnf represents the length of the nth packet,

�n represents the time to transmit the nth packet, and �n;n+1 represents the propagation

delay between the nth server and the destination. The end-to-end delay of a packet is given

by,

d
j
f �

�f + (K � 1)maxn2[1::j]l
n
f

rf
+

n=KX
n=1

(�n + �n;n+1): (2.3)

This theoretical maximum delay bound is further discussed and modi�ed to �t our

simulation environment in Section 3.5.

In order to understand the work performed by Georgiadis et al. [8, 9] we must

�rst introduce the concept of tra�c reshaping. Tra�c reshaping is a means of controlling

jitter, the variation of delays, across an ATM network which involves bu�ering cells at the

output of each intermediate switch. Clearly, a VC's MBS and SCR may be di�erent when

observed at a switch's output and it's input, depending on other tra�c also being served

by the switch. If the SCR at the output of a switch is greater than at the input, this

could result in the next downstream switch receiving a greater SCR for this VC than was

expected. Since most EDF feasibility schedules rely heavily on a VC's SCR, the feasibility

schedule of the next downstream switch could be violated if no tra�c reshaping is performed.

Another advantage of tra�c reshaping is that by delaying cells at the output of a switch,

bu�er requirements for subsequent switches are reduced. However, implementation of tra�c

reshapers in switches is non-trivial.

One initially counter-intuitive notion presented in [8, 9] suggests that the increase

in cell delays caused by bu�ering at the output of each switch for tra�c reshaping purposes

does not cause an increase in end-to-end cell delays. This result can be understood when

we consider that although cell delays at the output of a switch will likely increase, tra�c

reshaping o�sets these cell delays by decreasing cell delays inside the downstream switches



11

along a VC's path. Thus the end-to-end delay is una�ected.

In our study, we only consider the single node case; however, the work in [8, 9]

leads us to believe that we could use the EDF scheduling algorithm in the multiple-node

case by placing tra�c shapers at the output of each switch along a VC's path.

2.2 Percentile Analysis

Several researchers have performed various percentile analyses; however, each of

their works fundamentally di�er from our research. Liang and Yuang [13] consider EDF

in ATM switches; however, their work focuses on percentile analyses of cell inter-departure

times, whereas our research considers cell delays. Schulzrinne et al. [19] consider network

percentile delays; however, their focus is on a hop laxity scheduling algorithm, whereas we

consider EDF. Both Hirano [11] and Zein [22] consider ATM cell delays; however, both use

FIFO ordering at all bu�ers inside of the switch. In another paper, Chao [2] gives a very

brief percentile analysis of 4 VCs; however, he uses a di�erent \on-o�" source model than

ours.

2.3 Other Relevant Research

Much other research has been conducted on related topics, such as WFQ, call

admission control, and source modeling.

A popular scheduling technique implemented in ATM switches is WFQ (see Sec-

tion 1.2.4). Delay bounds for WFQ can be found in the work of Parekh and Gallager [16, 17]

for both the single and multiple node cases. Many variations of WFQ exist including WF2Q,

as outlined by Bennett [1].

Lieberherr et al. [14] derive a schedulability condition for NPEDF implemented in

a single node. In their analysis, they consider 
ows f and k which are elements of the set of

N connections which may be a�ected by the constraint function, A�. A�f serves as a tra�c

policer and rate controller for 
ow f . Let smax
f denote the maximum packet transmission

time on 
ow f . Let the number of arrivals on 
ow f with requested delay dreqf which occur

before or at time t be given by
P

f2N A�f (t � d
req
f ). Then if 8t � d

req
1 , where dreq1 is the

smallest delay requested, the EDF schedulability test is given by:



12

t �
X
f2N

A�f (t� d
req

f )+
max

k;d
req

k
>t smaxk ; (2.4)

where
max

k;d
req

k
>t smax

k � 0 for t >
max
k2N d

req
k : Note that the term

max
k;d

req

k
>t smax

k simply means the

maximum time to transmit a packet for 
ow k, where the requested delay of k is greater

than t. This term provides for the non-preemptive nature of NPEDF and is equal to either

0 or the time to transmit a cell in an ATM environment. Finally, the term A�f(t � d
req
f )

tests the schedulability of the SCRs for 
ow f .

Elsayed and Perros [5] give schedulability conditions for the multiple node case.

In their analysis they assume we have VCs i and j with requested delays dreqi and d
req
j ,

respectively, where dreqi < d
req
j if i < j. Let �i represent the MBS of 
ow i and ri represent

its average rate. Then Pmaxk is the maximum packet size from connection k. Finally,

given that
PN

i=1 ri < C, where C is the link capacity, the schedulability condition is given

by:

d
req
j �

�j +
Pj�1

i=1 (�i � rid
req
i ) +maxk>jPmaxk

C �
Pj�1

i=1 ri
: (2.5)

Firoiu [6] discusses an improved CAC for EDF. Kawasaki [12] proposes a new CAC

algorithm, but for a variant of Round Robin scheduling.

The source model that we use for our research on EDF is part of the ATM Forum [3]

standard and is also used by Wright [21]. Wright gives tail delay analyses; however, he

considers WFQ scheduling.

Variants of EDF have also been proposed in the literature. Cruz [4] discusses

an EDF variant, SCED+. Spuri [20] also discusses EDF variants. Zhang [23] performs

percentile analyses; however, uses a di�erent scheduling algorithm and source model than

ours.



13

Chapter 3

Cell Delay in ATM Networks

While there are many factors which contribute to a requested QoS such as cell

loss rate, bit error rate, etc., we choose to focus our study on the most critical factor for

real-time applications|cell delay. In this chapter, we explore some of the factors most

directly related to cell delay in ATM networks.

3.1 Call Admission Control

When a source makes a request to establish a VC through the network, a decision

must be made by the network regarding whether or not to accept the request. Upon con-

sidering this, the network must concern itself with two issues. First, the network must have

su�cient resources available to grant the requested QoS desired by the source. Secondly,

if this request is granted, the QoS of existing VCs which use any of the switches through

which the new VC will be established must not be compromised. If both of these conditions

can be met, then the connection is accepted; otherwise, it is rejected. This decision-making

process is referred to as call admission control (CAC) or, alternatively, connection admission

control.

The network uses a CAC algorithm to determine how much bandwidth to reserve

for a given VC on each link used by that VC. The network may choose to not overallocate

the link bandwidth. In this case, deterministic delay guarantees can be given. That is, the

network can give a source a 100% guarantee that all of its tra�c will be delivered within

its delay bound.

Alternatively, the network may choose to overallocate its link bandwidth. In this



14

case, the network provides a source percentile guarantees regarding the delays of that

source's tra�c. For example, the network may be able to guarantee that at least 99%

of a source's tra�c will meet the given delay requirements. For real-time tra�c which can

sustain minor delay violations, a percentile guarantee may be acceptable. Percentile guar-

antees are a more inexpensive option for a user than deterministic guarantees, since the

network will be able to accept more connections; hence, reduce the cost on a per-VC basis.

Both schedulability condition algorithms, Equations 2.4 and 2.5, discussed in Sec-

tion 2.3 take a user's maximum delay request, dreq, into consideration when deciding whether

or not to accept a connection. In our CAC algorithm we make a simplifying assumption

and do not reject connections on this basis alone. In other words, given that dmax is the

theoretical maximum delay bound for EDF scheduling, we assume that each VC makes a

delay request dreq such that dreq = dmax. Thus we will accept N connections as long as their

cumulative SCRs do not exceed the input and output link capacity, C. Thus the following

must be satis�ed at all times:

NX
i=1

SCRi � C: (3.1)

We note that with the non-preemptive Packetized General Processor Sharing

(PGPS) scheduling algorithm, Equation 3.1 is used in determining whether or not to accept

a VC. We use this same equation in our work, since the theoretical maximum delay bound

for EDF (which we are using as our dreq value) is not greater than that for PGPS. In other

words, if PGPS accepts a VC then our CAC for EDF will also accept that VC.

3.2 The Degree of Multiplexing

Another important factor in studying cell delay results from the \degree of mul-

tiplexing". With the term degree of multiplexing we mean the greatest number of VCs

multiplexed onto a single input link into our switch.

With a relatively low degree of multiplexing, sources generally will not incur much

delay at a multiplexer in competition with other sources multiplexed onto that same input

link. However, in this scheme sources may incur relatively large delays inside of the switch

while awaiting transmission onto the output link.

With a high degree of multiplexing, sources may incur large delays at a multiplexer



15

in competition with other multiplexed sources; however, inside the switch they will have

smaller delays. Of course, the above two arguments assume that all other parameters are

kept constant.

It is important to note that from a user's perspective, it is irrelevant whether the

bulk of delay occurs at a multiplexer or inside a switch. The user's only concern is the end-

to-end delay. However, this is not the case for the network. Since the multiplexers physically

reside outside of the switch, the network is not concerned with multiplexing delays, rather

only the delays while a cell is inside of the switch. The key notion here is that if the delay

of a tra�c 
ow can be diverted from a switch to a multiplexer, then the network can accept

more VCs which reduces each user's cost while still delivering the same end-to-end QoS.

3.3 Leaky Bucket Policing and Shaping

A leaky bucket is a mechanism which may alter cell tra�c patterns entering a

network node. A leaky bucket typically resides at source, or at the output of an intermediate

network node, or both. A leaky bucket serves two purposes, namely tra�c policing and

tra�c shaping.

In its tra�c policing role, a leaky bucket insures that a source does not exceed

its negotiated tra�c contract with the network, whether intentionally or unintentionally.

From the network's point of view, a source cannot be trusted. Without tra�c policing, a

single misbehaving source could severely degrade the QoS of all other behaving VCs using

the link.

In its tra�c shaping role, a leaky bucket \smoothes" tra�c that is inherently

bursty. The term smoothing refers to spreading out a burst of cells over time. Clearly,

network delays can be minimized when tra�c is more regular.

Many leaky bucket variants and related tra�c shapers and tra�c policers exist. We

chose to use the leaky bucket model recommended by the ATM Forum in [3] which suggests

a virtual scheduling algorithm based on the Generic Cell Rate Algorithm (GCRA).

3.4 ATM Switch Technology

In this section we discuss the characteristics of ATM switches in general, with

emphasis on the properties that we chose to implement. A discussion regarding our imple-



16

. . .

. . .

. . .

. . .

CPU
Memory
Control

Memory
Cell

Processor
Packet

Processor
PacketSwitch Fabric

Output BufferInput Buffer

ATM Switch

Port

OutputInput

Port

Figure 3.1: A generic ATM switch architecture

mentation speci�cs can be found in Chapter 4.

ATM networks typically involve many ATM switches along the path from source

to destination. For simplicity, we focus on observing the delays in a single-node network

topology. The multiple ATM switch case is reserved for future work.

A typical ATM switch architecture is shown in Figure 3.1. In a single-node network

all tra�c passes through the common ATM switch which connects each of the input links1

to each of the output links. Typically, the number of input links and the number of output

links are multiples of 2, most commonly 32 or 64, and are in most cases equal to each other.

Of course, multiple VCs may be multiplexed onto each input and output link and input

links are often shaped and policed by leaky buckets.

The switch fabric (see Figure 3.1) is the architecture by which cells are transferred

from an input bu�er to an output bu�er. This switch fabric may be blocking or non-

blocking. In a blocking switch fabric, two cells simultaneously bound for the same output

port will result in one of the cells being dropped. A non-blocking fabric is designed such

1We use the term \link" to designate the transmission medium on which a cell travels and the term
\port" to denote a link's interface to the switch.



17

that only one cell may be bound for a given output port at any point in time. For simplicity,

in our study we assume a non-blocking fabric. The amount of time it takes for a cell to

propagate through the switch fabric can be considered constant.

Because all cells have a relatively small and unit length, an ATM switch will not

preempt a cell once it has begun transmission. In general, preemption involves signi�cant

overhead in context switching to the next packet and saving the state of the preempted

packet if non-duplication of work is required. This overhead is clearly not justi�ed for the

small cell transmission times that ATM produces. Even if preemption was implemented

in ATM switches, the decrease in delay for the preempting cell would be at most one cell

transmission time|a very minimal decrease.

Inside of a switch, there typically exists one input bu�er per input link and one

output bu�er per output link (see Figure 3.1). These bu�ers allow cells to be queued

for transmission while waiting for other cells to depart. Also, each link contains a packet

processor whose function is to serve the cells from their respective bu�er.

The operation of the switch is managed by the Central Processing Unit (CPU). It

is the responsibility of the CPU to obey the scheduling algorithm in keeping cells moving

through the switch fabric. The CPU uses the control memory and cell memory in accom-

plishing this (see Figure 3.1). The control memory stores a linked list of tasks which the

CPU executes. The cell memory provides temporary storage for cells.

3.5 Theoretical Maximum Delay Bounds

A theoretical maximum delay bound, for real-time tra�c, is the greatest amount

of delay permissible for a VC's cells to still be of use to the destination, i.e. such that a

cell does not miss its playback instant. Theoretical maximum delay bounds may di�er on

a per-VC basis.

As we discussed in Section 2.3, Goyal [10] provides a means for calculating the

theoretical maximum delay bound for a 
ow. Equation 2.3 is repeated here for reference,

d
j
f �

�f + (K � 1)maxn2[1::j]l
n
f

rf
+

n=KX
n=1

(�n + �n;n+1):

Since we are only considering the single node case, K = 1 for our experiments. Since

we ignore propagation delays, we ignore �n;n+1. Further, for EDF �n is de�ned to be



18

the amount of time required to transmit a cell at link speed, tcell. Therefore, the termPn=K
n=1 (�

n + �n;n+1) = tcell.

We are left with a much simpli�ed version of the above formula, namely,

d
j
f �

�f

rf
+ tcell: (3.2)

We note that because EDF is a dynamic priority scheduling algorithm, its the-

oretical maximum delay bound is impossible to calculate. Equation 2.3 holds for PGPS

scheduling. We use this PGPS theoretical maximum delay bound as an approximate EDF

theoretical maximum delay bound, since we expect these bounds to be very close. This the-

oretical maximum delay bound was used in all of our experiments and was never exceeded.

3.6 Earliest Deadline First

A brief background on EDF can be found in Section 1.2.5. In this section we pro-

vide a more in depth discussion on the characteristics of EDF and our reasons for studying

this algorithm.

3.6.1 Characteristics

In Section 2.1 we reviewed Liu and Layland's [15] early work on EDF. In their

paper, they showed that EDF is an optimal scheduling algorithm in that if a task set is

schedulable, then EDF is guaranteed to be able to schedule it. They also showed that if a

deadline is missed, then there was no idle period just prior to this. In this sense EDF is

work-conserving.

Further, EDF is a dynamic priority scheduling algorithm. As such, the priority

of a cell may change in time. Associated with each VC using the switch is a theoretical

maximum delay bound, dmax
j . dmax

j is given such that each cell of a particular VC, VCj , will

not incur a greater delay than dmax
j . If a cell on VCj has a delay greater than dmax

j , then,

assuming we want to provide 100% guarantees, our CAC has failed us by overallocating the

output link.

In measuring the delay of cells while in a switch, each cell has associated with it

an arrival time, aj , and a deadline, Dj . The theoretical maximum delay bound for a cell's



19

VC is added to its arrival time to compute the cell's deadline. Thus for VCj ,

Dj = aj + dmax
j : (3.3)

It is important to note that the deadline assigned to a cell does not change in time.

However, its priority relative to other cells may change in time depending on the priorities

of newly arriving cells. Note that cells with smaller deadline values, are those cells which

are closer to their theoretical maximum delay bound, and thus have higher priority in the

switch.

The EDF scheduler operates such that at any given instant of time, the cell with

the smallest deadline is served, i.e. transmitted on a switch's output link. The exception

being when a cell is in the process of being transmitted onto the output link and a higher

priority cell arrives at the switch.

In a multi-node network, tra�c reshaping is often performed at the output of each

node in order to make the input of the subsequent node more regular. Further discussion

of tra�c reshaping is given on p. 10.

In commercial ATM switches the WFQ scheduling algorithm (see Section 1.2.4)

and the FIFO scheduling algorithm (see Section 1.2.2) have achieved more popularity than

has EDF. One of the reasons for this is the complexity of the CAC algorithms for EDF

in comparison to those for WFQ and FIFO. Despite these obstacles with CAC complexity,

EDF scheduling is much better suited for di�erent QoS levels than is FIFO. Further, EDF

is a much simpler algorithm to implement in the hardware inside of an ATM switch than

is WFQ.

3.6.2 Rationale for Choosing EDF for Scheduling

We chose to research the behavior of the EDF scheduling algorithm in an ATM

switch for several reasons. First and foremost, as was mentioned in Section 2.1, EDF is

an optimal scheduling algorithm for a single node. As such, EDF can provide a feasible

schedule if such a schedule exists. Clearly, no other scheduling algorithm can improve on

EDF's ability to schedule tasks.

Also, EDF has some clear advantages over WFQ|its main competition in ATM.

Although Elsayed and Perros [5] show that a CAC algorithm for EDF may admit fewer

connections than a CAC algorithm for WFQ, the hardware complexity for WFQ is such



20

that it may limit the number of connections which WFQ, in theory, could accept. A large

advantage of the EDF algorithm is that it is much simpler to implement in a switch's

hardware than WFQ.



21

Chapter 4

Simulation Environment

The event-driven simulation program was written in C++ and compiled on UNIX

Solaris SPARCstation 4 terminals. The simulator consists of 15 C++ classes and contains

approximately 5,000 lines of code. Instructions on running the simulator and its utilities

are provided in Appendices A and B, respectively. All of the simulations were run on

SPARCstation 4 machines in the public laboratories of North Carolina State University.

4.1 System Topology

In this section, we describe the details of the single-node network we are modeling.

4.1.1 Sources

In our model each of a number of sources in the system transmits real-time tra�c

to a single destination (see Figure 4.1). Of course, in an actual implementation, an ATM

switch will connect many permutations of source-destination pairs. However, by focusing

on only the tra�c bound for a single destination, we bring our attention to the increase in

cell delays due to competing sources.

We also assume that before the simulator has begun all of the sources have success-

fully established exactly one virtual circuit to the common destination. Thus, all sources are

initially prepared to send their data cells (as opposed to connection establishment overhead

cells). Further, we make the assumption that the connection set-up time is constant for all

VCs, and since we are only interested in data cell delay, the connection set-up time can be

eliminated from further consideration.



22

Multiplexer

..

..Source
Bucket
Leaky

Source
Bucket
Leaky

Multiplexer

..

..Source
Bucket
Leaky

Source
Bucket
Leaky

EDF

Scheduler
. . .

Output Buffer

Destination

. . .

. . .

. . .

. . .

Input

Link

Output

Link

Input Buffer

Input Buffer

Input

Link

ATM Switch

Figure 4.1: System topology used in simulations

Similarly, we ignore propagation delays from each source to the ATM switch and

also from the ATM switch to the destination. We assume that these propagation delays are

the same for all sources; hence, they can be disregarded as a delay constant.

We assume that there is a �nite amount of time between cell transmissions from

a source. In this light, we assume that sources never close their virtual circuit with the

destination. In other words, a source will not �nish sending cells for the duration of each

simulation. Further, no new VCs may be established while the simulator is in progress.

These simplifying assumptions give us more uniform behavior of the sources.

Each source may transmit according to either the CBR or VBR modes as described

in Section 1.1.2. A discussion of each mode follows.

CBR Tra�c

A source transmitting at constant bit rate is deterministic. The PCR for CBR

sources is determined by an input parameter.



23

Active Period (A)

Pause Period
(P)

Cell Cell Cell Cell Cell Cell Cell

Idle Period (I) Idle Period (I)

Packet 1 Packet 2 Packet M

Figure 4.2: The three state model for simulating bursty source behavior

VBR Tra�c and The Three State Source Model

The ATM Forum [3] recommends the following three state source model for sim-

ulating VBR tra�c. The model introduces the following concepts: active periods (A), idle

periods (I), pause periods (P ), the number of packets per active period (M), and the size

of packets (S). For reference see Figure 4.2.

Each source alternates between active and idle states. While in the active state,

a source is being given data from an application to transmit. When in the idle state, the

source is waiting for the next units of data from an application. The length of an idle period

is randomly distributed according to the exponential distribution with mean, I , given as an

input parameter. Each idle period is calculated according to the formula:

I = I � � ln(random[0::1]): (4.1)

The packet size, S, is given as an input parameter. Given that tpacket is the amount

of time required to transmit a packet, the length of each active period is determined by the



24

following expression:

A =MStpacket + (M � 1)P:

M , the number of packets in the active period, is determined by a geometrically distributed

random variable. The mean of this distribution, M , is provided to the simulator as an input

parameter on a per-VC class basis. The value of M is computed according to the formula:

M =

2
666
ln(random[0::1])

ln
�
1� 1

M

�
3
777 :

While in the active state, a source packetizes data for transmission. Each packet

is then divided into 48 byte units for placement into the payload of an ATM cell. Padding

is assumed for the last cell in a packet if the packet size is not evenly divisible by 48 bytes.

These cells are then sent from the source without any inter-cell delay. Since it is very small

and constant for all sources, we neglect the time it takes a source to divide a packet into

ATM cells and add the ATM cell header.

In between generating each of theM packets, a source will pause for time P , where

P is a randomly distributed variable according to the exponential distribution. The pause

period takes into consideration the time that sources spend accumulating data into a packet.

Pause periods are generated using the following equation where P is the distribution mean:

P = P � � ln(random[0::1]):

Intuitively, pause periods should be less than idle periods on average. Our choosing of their

respective mean values re
ects this intuition.

In initializing the three state source model, we experimented with starting a source

at the beginning of both an active period and an idle period. When we started all sources

on active periods, each source sent the �rst cell from the �rst packet in the active period to

its leaky bucket at a global time of zero. We refer to this mode of initialization as \aligned"

mode, since all sources are synchronized to begin initial transmissions at the same instant

in time.

In other experiments, we started sources at the beginning of an idle period. In

this case, at simulation initialization each source waits for a random idle period (see Equa-

tion 4.1) before becoming active and transmitting its �rst burst of cells. We refer to this

mode of initialization as \staggered" mode, since all sources begin initial transmissions at



25

di�erent instants in time. We have observed that \staggered" mode experiments produce

much more favorable worst-case cell delays than do similar \aligned" mode experiments.

An advantage of the three state source model is that depending on the distributed

variable means, the sources produced are very bursty. In measuring the ratio of observed

peak cell rate to mean cell rate over 1 second intervals, we found that for typical input

parameters, this ratio has maximum values on the order of 100. This means that these

simulated sources can be extremely bursty. As a comparison, peak to mean ratios for the

MPEG video traces we used were typically on the order of 10 to 20 (see Appendix D).

A disadvantage of the three state model can be found in the choice of the expo-

nential distribution for generating random variables for the idle and pause periods. The

exponential distribution employs the \memoryless" property wherein lies the principle that

each random variable is independent of its predecessor. This simplifying assumption; how-

ever, is not the case found in actual VBR sources. Typically, idle periods will be correlated,

as a source will likely have smaller idle periods when the transmitting application has data

to send and likely have longer idle periods when the application needs to wait for user input,

disk I/O, etc. These events are likely to be correlated.

Despite this disadvantage, we chose this three state model because of its ease in

implementation as well as its conformance to the ATM Forum's recommendation for source

modeling [3].

The Persistent Source Model

In addition to our experiments with the three state model, we have also experi-

mented with two source models with which we obtained worst-case leaky bucket output.

We call the �rst such model the "persistent" source model. In this model the leaky buckets

accept individual cells as soon as their parameters allow. In the persistent source model,

sources transmit cells continuously at a rate of PCR. Thus, the vast majority of cells are

dropped by the leaky buckets.

The pattern of cells output from the leaky buckets is shown in Figure 4.3. In this

�gure, we note that the �rst MBS cells are leaky bucket conformant. After the last cell in

the �rst burst, cells are leaky bucket conformant at a rate of SCR.



26

MBS
Cells

PCR

MBS - 1

Cell
1

Cell
1

PCR

MBS - 1

SCR

2
+

PCR

MBS - 1

SCR

1
+

Time

0

Figure 4.3: Leaky bucket output pattern from a persistent source

The Repetitive Burst Source Model

With the "repetitive burst" source model we experimented with another worst-

case model in terms of leaky bucket output. In this model, the leaky buckets accept entire

bursts of cells as soon as their parameters allow. In the repetitive burst source model,

sources begin the transmission of a burst of cells every MBS
SCR units of time. All cells are

leaky bucket conformant in this model.

This pattern of cells output from the leaky buckets is shown in Figure 4.4. In this

�gure, we note that the leaky bucket output follows the pattern of the leaky bucket input.

4.1.2 Leaky Buckets

The leaky buckets that we implemented at each source follow the virtual scheduling

algorithm standard of ATM Forum [3].

CBR sources have a single leaky bucket for policing the PCR of the source. This

leaky bucket ensures that each CBR source does not transmit cells in excess of its negotiated

PCR with the switch. Cells which do not conform to the PCR leaky bucket are dropped

and not transmitted to the multiplexer.

VBR sources are more complex and have two leaky buckets for policing the PCR

and the SCR, respectively, of the source. A cell must conform to both leaky buckets in order



27

MBS

SCR

MBS
Cells

MBS
Cells

MBS
Cells

SCR

2 MBS

Time

0

Figure 4.4: Leaky bucket output pattern from a repetitive burst source

for it to be passed from the source to the multiplexer. If a cell conforms to exactly one

leaky bucket, then that cell is dropped and the leaky bucket from which it was conformant

is reset to unconditionally accept the next arriving cell. If a cell does not conform to either

of the leaky buckets, then that cell is dropped and neither of the leaky buckets are reset.

In our simulations, we drop non-conformant cells. In some real-time applications,

such as voice or video tra�c where a certain degree of cell loss is tolerable, this behavior

may be acceptable assuming that the number of conformant cells is large enough to deliver

the QoS desired. In most non-real-time applications, such as a �le transfer where cell loss

is intolerable, this behavior is clearly unacceptable.

In most actual implementations, a source will be able to bu�er non-conformant

cells at the leaky bucket until such time has elapsed such that they will be conformant.

This prevents any cells from being dropped. Naturally, this scenario potentially results in

larger delays from a user perspective. Nevertheless, we ignore these delays since our focus is

on the delays incurred while a cell is resident in the switch. For a more in depth discussion

on user delays versus network delays see p. 15.

4.1.3 Multiplexers

The multiplexer is a place of storage for cells which conformed to their leaky

buckets, but need to wait for transmission on their input link due to competition with



28

cells from other VCs (see Figure 4.1). A multiplexer may not transmit cells at a higher

rate than its input link capacity. Also, cells must wait at the multiplexer if another cell is

currently being transmitted. The multiplexer consists of a separate, virtually in�nite cell

queue for each VC that it is multiplexing. If more than one cell is awaiting transmission

from a multiplexer, then that multiplexer chooses cells from VCs in a round-robin fashion

to ensure fairness.

The amount of delay a cell spends in the multiplexer will add to the delay from

a user point of view. For a more in depth discussion on user delays versus network delays

see p. 15. The number of VCs that are multiplexed also has a large impact on network

observed delay values. For more details see Section 3.2.

4.1.4 Links

A link is simply the physical means on which a cell travels. Our system contains

di�erent types of links, including links from a source to the multiplexer, links from the

multiplexer to the switch connecting at an input port, and a link from the output port to

the destination (see Figure 4.1). Often, the terms link and port are used interchangeably.

Here, we mean that a link is the communication path and a port is its interface to the

switch.

4.1.5 Bu�ers

In our system, there are two types of bu�ers: input bu�ers and output bu�ers.

Their lengths are given by input parameters. Inside our switch there exists one separate in-

put bu�er dedicated to each VC and one common output bu�er for all VCs (see Figure 4.1).

Arriving cells are stored in an input bu�er until such time that they can be trans-

ferred to the output bu�er. Since there exists a dedicated input bu�er for each VC, each

input bu�er acts as a FIFO queue for a VC's cells. This FIFO behavior is due to the fact

that the deadlines for each cell are calculated using the time of a cell's arrival at the switch

(see Equation 3.3).

As long as there are vacancies in the output bu�er, cells will continue to be trans-

ferred to the output bu�er from their input bu�er. When a cell arrives at the output bu�er,

it is inserted into the output bu�er in order of increasing deadlines. In the event that the

output bu�er is full, no cells will be transferred from an input bu�er to the output bu�er



29

causing cells to become backlogged in their input bu�er. Therefore, in our simulations cells

will never be dropped in an attempt to enqueue in the output bu�er. Although it never

occurred in our simulations, cells could, in theory, be dropped at their input port if their

input bu�er is full. In this light, we can view the output bu�er as merely a shared extension

of the input bu�ers.

As soon as the output bu�er is non-empty, the switch will begin transmitting a

cell at the output link speed. The switch will continuously transmit cells at this rate until

the output bu�er becomes empty. While the bits of a cell are being transmitted, we assume

that the head of the output bu�er is still occupied by this cell. For this reason, we do not

allow insertion at the head of the output bu�er regardless of the deadline of a cell. If a

cell arrives at the output bu�er with an earlier deadline than all of the cells in the output

bu�er, then the arriving cell will be placed in the second bu�er slot and transmitted second,

assuming no other cells with earlier deadlines arrive before it begins transmission. In the

case of ties, a tie is arbitrarily broken in favor of a lower VC number.

Since each VC has its own input bu�er and the input bu�ers are served in a FIFO

order, we implemented the input bu�ers as circular queues. Since we must search the output

bu�er when enqueueing a cell, we implemented the output bu�er using a heap. With Q cells

in the output bu�er, the heap gave us O(logQ) search times.

4.1.6 Switch Fabric

Our model of a single ATM switch contains input and output ports, input and

output bu�ers, and a switch fabric. We assume that the switch fabric is non-blocking, such

that a cell is never prohibited from being transferred from its input bu�er to the output

bu�er because another cell is transferred to the output bu�er at the same time. We simulate

this by only allowing one cell to be transferred at a time.

In our simulations we assume that the amount of time required to transfer a cell

through the switch fabric with J input ports and a cell transmission time of tcell is uniformly

tcell
J
. We chose this as our cell transfer time so that all newly arriving cells can be transferred

to the output bu�er before the next cells arrive at each port.



30

4.2 Parameter Set and Values Used in Experimentation

In this section we describe the parameters that are input to the simulator and

the values that were frequently chosen in our experiments. A discussion of the impact of

the variation of these parameters follows. For reference, an example input �le is given in

Appendix A.

4.2.1 Number of Cells

The number of cells input parameter dictates how many total cells, regardless of

VC, pass through the switch. Once this number of cells has exited the switch, the simulator

stops and outputs various statistics. In order to get more accurate results, our goal has been

to pass as many cells through the simulator as possible. Often, time dictated how many

cells each simulation produced. Most of our experiments were run for 10,000,000 total cells.

At a minimum, experiments were run for 1,000,000 total cells. These numbers were chosen

arbitrarily and proved to have a great impact on the run-time of the simulations.

4.2.2 Number of Input Ports

The number of input ports input parameter tells the simulator about the topology

of the switch. The simulator dynamically creates this number of input ports onto which VCs

will be multiplexed. The values chosen for this parameter were 1, 2, 4, 8, 16, 32, and 64.

These values were chosen so that we could observe the e�ects of the degree of multiplexing

(see Section 3.2) by varying the number of input ports and keeping the total number of VCs

constant.

4.2.3 VC Topology

The VC topology input parameter has two purposes. First, it de�nes di�erent

classes of VCs in the simulation by enumerating them starting with 1. Secondly, it de�nes

how many VCs are multiplexed onto each input link. We experimented with both single

and multiple VC classes.



31

4.2.4 Size of Input Bu�ers

The size of input bu�ers input parameter dictates the cell capacity of every input

bu�er in the switch. Each VC has its own dedicated input bu�er. All experiments were

performed with each input bu�er able to store 5,000 cells. This value, coupled with the size

of the output bu�er, was chosen large enough so that there would not be any cells dropped

inside of the switch due to limited bu�er capacity.

Further justi�cation of our choice of input bu�er size is necessary. In Equations 2.1

and 2.2, Georgiadis et al. [7] give a theoretical lower and upper bound range for our �xed

allocation input bu�ers. In our discussion in Section 2.1, we stated that these theoretical

bounds were overly conservative. As an example, in a typical experiment set we simulated

256 VCs with an MBS of 171 cells. Using these values with Equations 2.1 and 2.2, the lower

and upper bounds for our input bu�er capacity are 44,288 cells and 88,065 cells!

In the interest of executable �le sizes, we implemented our input bu�ers with

capacities of 5,000 cells and closely monitored the input bu�er behavior. We found this

value to be overly su�cient as cells were never dropped due to lack of input bu�er space.

The input bu�ers rarely contained more than 100 cells at any given time.

4.2.5 Size of Output Bu�er

The size of output bu�er input parameter dictates the cell capacity of the single

output bu�er in the switch. Each VC shares a common output bu�er. All experiments were

performed with the output bu�er able to store 5,000 cells. This value, coupled with the size

of the input bu�er, was chosen large enough so that there would not be any cells dropped

inside of the switch due to limited bu�er capacity. During our simulations, cells were never

dropped inside of the switch. During our simulations, the output bu�er was often full at

which point cells were backlogged into their input bu�er.

We note that since the output bu�er is merely a shared virtual extension of the

input bu�er space, we do not need to give further consideration to its theoretical bu�er size

bounds.

4.2.6 Input and Output Link Speed

The input and output link speed input parameter determines the transmission rate

of cells into and out of the switch. The simulator requires that these rates be the same;



32

however, the transmission speeds of the sources may vary. In all of our experiments, we set

this value to 149.76 Mbps1.

4.2.7 Source Speeds

The source speeds input parameter determines the transmission rate of cells from

a source, through its leaky buckets, to the multiplexer. The source speeds can vary for each

class of VC. In our experiments we did not vary this value, setting it to 149.76 Mbps1 in

all experiments.

4.2.8 Packet Size

The packet size input parameter determines the number of bytes of data that are

packetized for transmission, as explained in Section 4.1.1. This parameter may be varied

for each class of VC. For most experiments, we set this value to 8 KB for all VCs in order

to simulate Transmission Control Protocol (TCP) packets. This parameter is relevant for

VBR tra�c and not for CBR.

4.2.9 Idle Period Mean

The idle period mean input parameter determines the amount of time (in �sec)

that a VBR source, on average, will remain in the idle state between successive active

periods, as explained in Section 4.1.1. This parameter is relevant for VBR tra�c and not

for CBR. In our experiments the mean idle periods were varied to create di�erent levels

of total bandwidth reservation. Typical values included 100,000 �sec, 300,000 �sec, and

500,000 �sec.

4.2.10 Pause Period Mean

The pause period mean input parameter determines the amount of time (in �sec)

that a VBR source, on average, will remain in the pause state between successive packet

transmissions, as explained in Section 4.1.1. This parameter is relevant for VBR traf-

�c and not for CBR. In our experiments the mean pause periods were varied greatly to

achieve di�erent levels of total bandwidth reservation. Typical values included 125,000 �sec,

1Commonly referred to as 155 Mbps, 149.76 Mbps is the OC-3 data transmission rate as described in the
ATM Forum [21].



33

135,500 �sec, 156,400 �sec and 182,000 �sec. These values were chosen through trial and

error methods in order to determine the exact amount of bandwidth reservation desired.

4.2.11 Number of Packets per Active Period Mean

The number of packets per active period mean input parameter determines the

number of packets that a VBR source, on average, will generate while the source is in

the active state. Therefore, this parameter, along with the pause period mean parameter,

determines how long a VBR source is in the active state, as explained in Section 4.1.1.

This parameter is relevant for VBR tra�c and not for CBR. In our experiments the mean

number of packets per active period were varied to create di�erent levels of total bandwidth

reservation. Typical values included 50 and 100 packets.

4.2.12 Source Start Times

The source start times input parameter determines the time at which a source

starts transmitting its �rst cell. This parameter can be varied for each VC class in the

system. For our experiments, the source start time was assigned to 0 for all VCs so that we

could focus our e�orts on studying the simulator's warm-up period.

4.2.13 Tra�c Mode

The tra�c mode input parameter tells the simulator which VC classes are CBR

tra�c and which are VBR tra�c. If a numerical value is speci�ed for this parameter, then

the simulator will assume that this is a CBR VC. The CBR VC's PCR will be set to the

inverse of this input value in �sec. If a word is entered that begins with a \v" or \V", then

the simulator assumes that this a VBR VC and uses the input parameters: packet size,

mean idle period, mean pause period, and mean number of packets to determine the VC's

SCR. For a more detailed description on how this value is calculated see Section 4.2.18. In

most of our experiments we used the VBR setting for this input parameter.

4.2.14 Cell Delay Variation Tolerance for Peak Cell Rate

The CDVTPCR input parameter is used in determining the limit value for the PCR

leaky bucket. This value is given in �sec. In all of our experiments, the CDVTPCR value

was set to zero.



34

4.2.15 Cell Delay Variation Tolerance for Sustained Cell Rate

The CDVTSCR input parameter, along with the BT, determines the limit value

for the SCR leaky bucket. This value is given in �sec. In most of our experiments, the

CDVTSCR value was set to zero. In our experiments using the repetitive burst source model,

we set the CDVTSCR to 1 �sec in order to o�set precision errors. We observed that although

each cell should, in theory, be conformant to the SCR leaky bucket, the last cell of each

burst was being dropped due to precision errors in our simulator. By setting the CDVTSCR

to 1 �sec this last cell became conformant.

4.2.16 Verbose Modes

Several verbose modes exist in the simulator for debugging purposes. These ver-

bose modes allow us to print out debugging statements to a �le and to the terminal in

regards to several di�erent aspects of the simulator including: the sources, the leaky buck-

ets, the event list, and the motion of cells through the switch. These verbose modes can be

set on in any combination by specifying a word beginning with \t" or \T" for true. These

verbose modes do not a�ect the results of the simulation, but they do drastically increase

run-time and �le sizes.

4.2.17 Random Number Seed

The random number seed input parameter is used to provide the initial seed to

the stream of random numbers generated by the erand48()function used by the simulation.

This parameter was arbitrarily set to zero for all of our experiments.

4.2.18 Derived Values

The following parameters are not explicitly input into the simulator, but are in-

stead derived from the above input values.

The MBS is set equal to the size of a packet in cells. The packet size is given in

bytes, so the MBS is equal to the ceiling function of the packet size divided by 48, since

there are 48 bytes in an ATM cell's payload. The ceiling function is used since we pad the

last cell with zeros if necessary.

In the CBR case, the PCR is equal to the inverse of the input parameter described

in Section 4.2.13. In the VBR case, the PCR is assigned as the amount of time to transmit



35

one cell at the source's link speed.

In the CBR case, the SCR is equal to the PCR. However, in the VBR case the

SCR is dictated by the three state model parameters, as described in Section 4.1.1, where

M is the mean number of packets per active period, tpacket is the amount of time required

to transmit a packet, I is the mean idle period, P is the mean pause period, and S is the

packet size in bytes. Then the SCR is given by the following formula,

SCR =
M
l
S
48

m

Mtpacket + I + (M � 1)P
: (4.2)

Given that tcell represents the amount of time required to transmit a cell at the speed of the

output link, the theoretical maximum delay bound is computed according to the formula,

dmax =
MBS

SCR
+ tcell: (4.3)

This formula is analogous to Equation 3.2. More detail on theoretical maximum delay

bounds can be found in Section 3.5.

The BT is used in the SCR leaky bucket. We used the ATM Forum's recommen-

dation [3] in calculating the BT as follows:

BT = (MBS� 1)

�
1

SCR
�

1

PCR

�
: (4.4)

4.3 Parameter Prioritization and Impact

After designing the simulator to be as 
exible as possible, one of the challenges we

are left with is in choosing our parameter sets for experimentation. Clearly, from the above

discussions our parameter space is in�nite. In this section we justify our choices above.

Among the parameters most often varied was the number of input ports. By

keeping the total number of VCs constant and varying the number of input links we vary

the degree of multiplexing. This has a very profound impact on the delay values we obtain.

The greater the degree of multiplexing, the less worst-case delays we observe. For a more

in depth discussion regarding the degree of multiplexing see Section 3.2.

As can be seen in Equation 4.2, the choice of the mean pause period, P , has the

most profound impact on the resulting SCR value, since P dominates the denominator given

a large mean number of packets per active period, M and a small tpacket. The idle period



36

mean and number of cells mean were also often varied, but these parameters do not have

nearly as much impact on the SCR and therefore the reservation level (see Equation 3.1)

as does the mean pause period, P .

Perhaps the most critical of the parameter variations for our studies is the number

of VC classes we simulate. In the homogeneous cases, we observe the tails of the cell delay

functions to be monotonically decreasing. However, in the heterogeneous cases, we note

that the competition between the various VC classes can lead to peaks at the tails of the

cell delay functions.

The remaining parameters not mentioned here were not deemed as important for

the purposes of our experimentation. These parameters were rarely, if ever, varied. However,

the varying of these parameters could lead to interesting future work.

4.4 Bin Size Rationale

In order to produce meaningful delay measurements from our simulations, we must

keep track of the amount of delay each cell has incurred upon exiting the switch. As the

number of total cells increases, this becomes an issue both in program size and output size.

Clearly, we would not have enough memory to store 10,000,000 real numbers for the entire

duration of our simulation. Even if we could, managing all of these values would not be

practical. Therefore, we introduce the concept of cell delay \bins".

Each VC in the simulator has allocated to it a pre-de�ned number of cell delay

bins. As each cell exits the switch, the bin whose delay range covers the actual delay value

gets incremented. The width of these bins is determined as a compile-time parameter. Each

VC is allocated enough bins such that the sum of the bin widths for each VC is at least as

large as its theoretical maximum delay bound.

In our initial simulations, the bin width was set to the time it takes for one cell

to be transmitted (2.8312 �sec at 155 Mbps). As we increased the number of VCs to 256

and also increased the theoretical maximum delay bounds, it soon became apparent that

the number of bins was making the program and the output too large. Thus, we increased

the width of the bins to the time it takes for 10 cells to be transmitted (28.312 �sec at

155 Mbps). Even this increase in coarseness was insu�cient for obtaining a reasonably

sized executable �le and output �les, so the bin width was �nally increased to the time it

takes for 100 cells to be transmitted (283.12 �sec at 155 Mbps). Each of our experiments



37

reported here was run with the bin width equal to 100 cell transmission times.

A disadvantage of increasing the bin width is that we lose the detail of knowing

exactly how many cells exited the switch with a given amount of delay on a per-VC basis.

However, this lack of precision is acceptable since we are examining comparatively large

theoretical maximum delay bounds.

All cell delays are reported as the value of the right-most (greatest) delay in the

bin range. Therefore, we are reporting the worst-case behavior as each cell in a bin may

have had a delay anywhere in that bin's delay range.

4.5 Worst-Case Cell Delay and The Warm-Up Period

We focus our research on worst-case cell delays and thus the tails of cell delay

distribution functions. Our interest in worst-case cell delay is coupled with our interest in

EDF's behavior in these worst-case scenarios. Through our experimental results, we provide

a barometer for both future research in this �eld and also in ATM switch development using

EDF scheduling.

An advantage of our worst-case approach is that we are able to o�er delay guar-

antees independent of the actual network tra�c. The disadvantage of this approach is that

while these worst-case scenarios are possible, they would rarely occur in an actual ATM net-

work. It should therefore be kept in mind that the results from our worst-case experiments

are more pessimistic than would likely be observed under average network conditions.

To simulate worst-case scenarios, in most of our experiments we aligned each source

to start transmitting cells at the same instant of time through the use of the source start

times parameter. When all sources transmit bursts of cells simultaneously at the beginning

of the simulation, worst-case delays result since the switch is 
ooded with cells. We use

the term \warm-up period" to denote that time from simulation onset until a switch has

recovered from the initial 
ood of cells in the aligned sources case. After its warm-up

period, the switch begins serving cells with much less delay. There is no exact measure of

the warm-up period as warm-up periods vary greatly depending on the switch topology,

initial burst sizes, and subsequent burst sizes.

Finally, in analyzing our simulation results, we focus on the VC from each class

for which its maximum delayed cell is also the maximum delayed cell over all VCs in its

class.



38

Chapter 5

Simulation Results

In the course of our research we have studied worst-case cell delays inside of an

ATM switch using EDF scheduling. In our work we experimented with four di�erent source

models: the three state model, the persistent model, the repetitive burst model, and the

MPEG trace model.

The three state model is described in detail in Section 4.1.1. This model gen-

erated very bursty VBR tra�c and was chosen for experimentation largely because it is

recommended by the ATM Forum in [3].

Using the three state model, we studied the e�ect of the degree of multiplexing

for VCs belonging to a common VC class. We observed that as fewer VCs are multiplexed

onto each link, the cell delays inside of the switch approach their theoretical maximum

delay bounds during the switch's warm-up period. We note that after the switch's warm-up

period very minimal cell delays are observed, regardless of the degree of multiplexing. We

observed that in these experiments the cell delay functions decrease monotonically and then

alternate between one and zero cells at the tails of these functions.

We also studied delay bound percentages for a variety of di�erent degrees of multi-

plexing and output link reservation levels. In these experiments, larger cell delays occur as

the degree of multiplexing decreases and also as the output link reservation level increases.

We observed substantial decreases in delay bound percentages from a minimal drop in delay

guarantee percentage. However, we note that since the worst-case cell delays occur during

the switch's warm-up period, it is possible to provide arbitrarily favorable delay bound

percentages by increasing the length of the simulation.

Also using the three state model, we studied the e�ects of multiple classes of VBR



39

tra�c. We examined the characteristics of the second burst of cells from a particular VC

and the e�ect on its delay due to cells from other VCs. We observed that the second burst

of cells can cause a sharp peak at the tails of delay functions. Through manipulation of

the three state source model we determined that we could decrease delays incurred by the

second burst of cells.

In another experiment using multiple classes of VBR tra�c, we observed that de-

lays in consecutive bursts of cells can increase during the switch's warm-up period. Through

manipulation of the three state source model we determined that we could maximize the

delays incurred by any single burst of cells.

Also using the three state model, we studied the behavior of the EDF scheduler

by focusing on the sequence in which cells are output from the switch on a VC class basis.

We observed that as the degree of multiplexing decreases, cells from initial bursts tend to

be transmitted back-to-back with other cells in their same VC class.

The persistent source model and the repetitive burst source model were designed

to examine the worst-case behavior of the leaky buckets at each source. These two patterns

of source behavior explore the limits of the leaky buckets in terms of accepting individual

cells and accepting bursts of cells, respectively.

In the persistent model, a source continuously sends cells to its leaky buckets. The

leaky buckets are such that they accept the �rst burst of MBS cells and after which they

accept individual cells at a rate equal to the SCR. We chose to study this source model

because of our interest in examining cell delays under worst-case leaky bucket behavior.

This source model produces worst-case leaky bucket behavior in the sense that the leaky

buckets always accept a cell as soon as the leaky bucket parameters allow.

With the persistent source model, we studied multiple classes of VCs and aligned

all sources to begin transmission simultaneously as well as staggered each source to start

transmission at a random point in time. Our results showed that in the worst-case alignment

of sources, cell delays during the switch's warm-up period were very large. Further, we

observed that the cell delay functions were roughly constant during the switch's warm-up

period. We also observed a drastic decrease in cell delays when staggering the sources'

initial transmission times.

In the repetitive burst model, a source repeats a cycle of sending a burst of MBS

cells to its leaky buckets and then waiting before sending another burst of MBS cells. The

wait time between each burst is just long enough such that every cell of the burst will



40

be conformant to the leaky buckets. We chose to study this source model because of our

interest in examining cell delays under worst-case leaky bucket behavior. This source model

produces worst-case leaky bucket behavior in the sense that the leaky buckets always accept

an entire burst of cells as soon as the leaky bucket parameters allow.

With the repetitive burst model, we studied multiple classes of VCs in both the

aligned and staggered mode of initial cell transmission. We observed that in the aligned

mode the switch has an in�nite warm-up period in the sense that it is not able to serve

the vast majority of its cells with very minimal delays. This is not the case with each

of our other source models. We also observed that in the aligned mode, cell delays closely

approach their theoretical maximum delay bounds and that the tail of the cell delay function

decreases concavely. The worst-case cell delays in this experiment are slightly smaller than

in the analogous persistent source model experiment. Finally, we observed major decreases

in cell delays when sources were initially staggered; however, these delay improvements were

not as profound as in the persistent model case.

In the MPEG trace model, actual MPEG video traces were used to determine

source cell generation times. We chose to examine this source model in order to compare

actual video tra�c cell delays to cell delays incurred in our other worst-case models.

In our experimentation using MPEG video traces, we simulated worst-case MPEG

behavior. In the experiment reported here, we aligned all sources to transmit the �rst cell

of each frame simultaneously with subsequent cells in each frame transmitted consecutively.

We observed that the tails of the delay functions are much further from their theoretical

maximum delay bounds than any of our other worst-case experiments.

In addition to the aforementioned VBR experiments, we also experimented with

CBR sources; however, the deterministic nature of CBR produced very uninteresting results

and they are therefore not reported here.

Details of our simulation results are organized in this chapter according to their

source behavior. We begin our discussion in Section 5.1 with a study of both the homo-

geneous and heterogeneous cases of the three state model. In Section 5.2, we explore the

aligned and staggered cases of the persistent source model. In Section 5.3, we examine the

aligned and staggered cases of the repetitive burst source model. Finally, in Section 5.4, we

show the results from an MPEG source trace experiment.

Appendix C is provided as a reference of the parameters which were varied in

the experiments presented in this chapter. Appendix C also lists output link utilization



41

percentages observed in our experiments.

5.1 Three State Source Model Experiments

Each of the experiments discussed in this section use the three state source model

for VBR tra�c as described in detail in Section 4.1.1.

5.1.1 Homogeneous Virtual Circuits

In each of these experiments, we simulated one class of VC tra�c. We refer to these

VCs as \homogeneous" or of the same VC class since each VC is given an identical set of

input parameters, such as PCR, SCR, MBS, etc.. Note that although VCs are homogenous,

the randomness introduced by the three state model prevents each source from transmitting

cells in an identical fashion.

The E�ect of the Degree of Multiplexing

In the following two experiments we kept all input parameters constant|only

varying the number of VCs multiplexed onto each link. Our intent was to examine the

impact of the degree of multiplexing. As more VCs are multiplexed onto an input link, the

bulk of delay that a cell encounters during the switch's warm-up period tends to shift from

occurring inside the switch to occurring inside the multiplexer. The inverse of this is true as

the degree of multiplexing is decreased. From a user's perspective, where the delay occurs

along a cell's path is irrelevant. However, our focus on delays is from the perspective of the

switch which is only concerned with cell delays incurred while it contains the cells. It is to

the bene�t of the user if a large degree of multiplexing can be achieved, since this will allow

the switch to accept more VCs while still providing the same end-to-end QoS to the user

at a reduced cost.

Each of these two experiments was run for 10,000,000 total cells and consisted of

256 homogeneous VBR VCs which each used the three state model. The input parameters

of the three state model (mean idle period, mean pause period, packet size, and mean

number of packets per active period) were deliberately chosen such that the percentage of

output link bandwidth reserved for these connections would be approximately 97%. This

reservation level was chosen to be relatively close to the output link capacity because of



42

0

5000

10000

15000

20000

25000

0 20000 40000 60000 80000 100000 120000 140000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #1
VC #256

Theoretical Maximum Delay Bound

Figure 5.1: Cell delays with 256 VCs on 64 input links

our interest in examining worst-case behavior. Intuitively, the larger the reservation level of

an output link, the greater the potential for competition among cells using the link, thus a

better chance for larger cell delay values. For more information on how the CAC algorithm

calculates the amount of output link bandwidth to reserve on a per VC basis see Section 3.1.

The �rst of these two experiments, shown in Figure 5.1, consisted of 64 input links

resulting in 4 VCs per input link. The second experiment, shown in Figure 5.2, consisted of

2 input links resulting in 128 VCs per link. Due to the large number of VCs present in these

simulations, we plot only the VCs with the worst and best observed maximum delay values.

These worst-case and best-case VCs are VC #256 and VC #1 in Figure 5.1, respectively

and VC #134 and VC #1 in Figure 5.2, respectively.

In both Figures 5.1 and 5.2, we observe that the vast majority of cells for these

VCs incur very small delays, as evidenced by the large peaks at the left-most edge of

the delay functions. We also observe that after these large peaks, the delay functions

decrease dramatically after which a long tail is produced. Cells which contribute to the

tails of these functions are those which depart during the switch's warm-up period. Since in

these experiments all sources are aligned to begin transmitting simultaneously, the switch is



43

0

5000

10000

15000

20000

25000

30000

0 20000 40000 60000 80000 100000 120000 140000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #1
VC #134

Theoretical Maximum Delay Bound

Figure 5.2: Cell delays with 256 VCs on 2 input links


ooded with cells from all sources and large delays result. After this warm-up period, source

transmissions are more dispersed in time, thus these cells will encounter less competition

with other cells inside of the switch and smaller delays result.

The theoretical maximum delay bound for all cells is marked on these �gures with

a vertical line at 127,237 �sec. This value was calculated according to Equation 4.3. We

note that due to the homogeneous nature of all of the VCs in these experiments, their

theoretical maximum delay bounds are all equivalent. As discussed in Section 3.5, the

theoretical maximum delay bounds are an upper limit to permissible cell delay in order

for real-time tra�c to meet its playback instant. We observe that because we did not

overallocate the output link, all cells are delivered by their theoretical maximum delay

bound.

In comparing these two experiments, we note that in Figure 5.1 the delay \gap"

between the maximum cell delays incurred and the theoretical maximum delay bound is

relatively small during the warm-up period, whereas in Figure 5.2 this delay \gap" is much

larger. These results are evidence of the degree of multiplexing property discussed in Sec-

tion 3.2. In Figure 5.1, during the warm-up period cells spend less time competing with



44

other cells in the multiplexer, yet spend more time competing with other cells once inside

the switch. Since we measure our cell delays as the di�erence in time between cell arrival at

the switch and cell departure from the switch, larger delays are observed. For Figure 5.2,

the opposite is true.

It is important to note that in our homogeneous VC experiments, we did not

observe the e�ects of EDF scheduling. Since all VCs had the same input parameters,

the calculated theoretical maximum delay bound was constant for all VCs, thus causing

deadlines to increase uniformly as arrival times increased. Therefore, cells were served in

the order of their arrivals and our EDF scheduler behaved as if it was a FIFO scheduler

(see Section 1.2.2).

In Figure 5.3, we zoom in on the tail of the cell delay function presented in Fig-

ure 5.1. In Figure 5.3, we show the four VCs which are multiplexed onto the �rst input

link into the switch. At the tails of these functions we observed an alternating pattern of

one or zero cells falling into each cell delay bin. These patterns are due to the fact that the

initial burst of cells for these VCs are served in a round-robin fashion. That some cells fall

into the same cell delay bin is attributed to our setting the delay bin width to 100 times

the unit of cell transmission in these experiments.

Percentages of Delay Bounds

Next, we examine percentile delay guarantees as described in Section 3.1. In our

percentile delay guarantee experiments we simulated 28 di�erent scenarios varying only the

degree of multiplexing from 256 to 4 VCs per link and the amount of output link bandwidth

reserved from a 97% to a 65% reservation level. For each of these experiments we simulated

10,000,000 total cells on 256 total VCs. Also, VCs were distributed uniformly over the input

links and each VC used the same input parameters in generating VBR tra�c according to

the three state model. (Note that Figures 5.1 and 5.2 are speci�c examples from this

experiment set.)

An explanation of our method of calculating percentile guarantees is necessary.

Because we use cell delay bins (see Section 4.4) as our unit of measuring cell delay, we are

restricted to this level of granularity. Therefore, on a per-VC basis, we declare that an n%

delay guarantee is �rst satis�ed at time t, where t is the right edge of the �rst cell bin in

which at least n% of the total number of cells have fallen into it and all earlier cell bins



45

0

1

2

110000 112000 114000 116000 118000 120000 122000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #1
VC #2
VC #3
VC #4

Figure 5.3: Tail behavior of cell delays with 256 VCs on 64 input links

cumulatively.

Graphs of the 97% and 65% reservation levels are given in Figure 5.4 and Fig-

ure 5.5, respectively. In Figures 5.4 and 5.5, we plot 5 di�erent delay guarantee percentiles

ranging from 100% to 95% as a percentage of the common theoretical maximum delay bound

for 7 di�erent degrees of multiplexing ranging from 256 VCs per input link to 4 VCs per

input link. Since the input parameters were the same for each VC, the calculated theoretical

maximum delay bounds are therefore the same for each VC.

In Figure 5.4, we observe that with a low degree of multiplexing, providing a 100%

or 99.99% delay guarantee results in delays which closely approach the theoretical maximum

delay bound. Note that for a degree of multiplexing equal to 256 there is only 1 input link

into the switch; therefore, each cell is immediately served in a FIFO order and little cell

delay is incurred inside of the switch.

Also of interest is the large drop in cell delay (dropping in half for low degrees of

multiplexing) resulting in the small drop from a 99.99% guarantee to a 99.5% guarantee.

This is attributed to the fact that with a low degree of multiplexing, only a small percentage

of cells incur very large delays. These large delays occur during the simulator's warm-up



46

20%

40%

60%

80%

100%

48163264128256

P
er

ce
nt

ag
e 

of
 T

he
or

et
ic

al
 M

ax
im

um
 D

el
ay

 B
ou

nd

VCs per Input Link

100% Delay Guarantee
99.99% Delay Guarantee
99.5% Delay Guarantee

99% Delay Guarantee
95% Delay Guarantee

Figure 5.4: Delay percentages with 256 VCs and 97% output link reservation

20%

40%

60%

80%

100%

48163264128256

P
er

ce
nt

ag
e 

of
 T

he
or

et
ic

al
 M

ax
im

um
 D

el
ay

 B
ou

nd

VCs per Input Link

100% Delay Guarantee
99.99% Delay Guarantee
99.5% Delay Guarantee

99% Delay Guarantee
95% Delay Guarantee

Figure 5.5: Delay percentages with 256 VCs and 65% output link reservation



47

period since all sources are synchronized to start transmitting at the same instant. In

Figure 5.4 it is also interesting to note that 95% of the cells encounter very minimal cell

delays regardless of the degree of multiplexing.

By comparison, Figure 5.5 shows even more favorable delay guarantee results.

This is intuitive since the SCR in this case is smaller for each VC than in Figure 5.4. In

Figure 5.5, 99% of the cells encounter very minimal cell delays.

A very important point must be explained when analyzing these percentile guar-

antee results. In each of the experiments described here, 10,000,000 total cells were passed

through the switch. We have observed that because the largest cell delays occur during the

warm-up period, an increase in the total number of cells simulated minimizes the e�ect of

the warm-up period cell delays on the entire simulation. Therefore, by increasing the num-

ber of cells simulated, we can provide arbitrarily favorable delay guarantees. For this reason,

we change our focus from worst-case percentile guarantees to worst-case heterogeneous VCs.

5.1.2 Heterogeneous Virtual Circuits

Up until this point we have shown experiments where all of the VCs were homo-

geneous. As a result of this, our EDF scheduler behaved as a FIFO scheduler would. Next

we examine heterogeneous VC behavior.

In these experiments we de�ne two separate VC classes (roughly simulating 2

classes of VBR tra�c, such as two types of video; one requiring more bandwidth than the

other). We refer to these VC classes by assigning them letters in decreasing alphabetic order

of their SCRs. For example, a class A VC would have a greater SCR than a class B VC. All

VCs within a class are given the same three state model parameters. In these experiments

we observe the EDF nature of our scheduler.

Second Burst Behavior

In the next two experiments, we analyze what we call the \second burst behavior"

of a VC. In the �rst experiment, we simulated 10,000,000 total cells from 256 VCs multi-

plexed uniformly onto 32 input links. For each VC, the MBS was set to 8 KB, or 171 cells.

The three state model parameters for each VC class were chosen such that the output link

reservation level was set at approximately 97% of its 155 Mbps capacity and the ratio of

class A SCRs to class B SCRs was 1.85:1.



48

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

1

2

a

b

c

d

VC #97 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #34 (Class B)
Theoretical Maximum Delay Bound (Class B)

Figure 5.6: Cell delays with 256 VCs in 2 VC classes on 32 input links

The cell delay function is shown in Figure 5.6. Due to the large number of VCs

simulated, we plot only the VCs in each class which have the greatest cell delay. These are

VC #97 for class A tra�c and VC #34 for class B tra�c.

VC #97's �rst and second bursts are marked with a \1" and \2", respectively.

VC #97's �rst burst of cells is represented in the range of delay bins from approximately

1,000 �sec to 58,000 �sec and produces a height of one cell in each delay bin. VC #97's sec-

ond burst of cells creates the small peak in the delay function at approximately 58,000 �sec.

Similar to VC #97's �rst burst, VC #34's �rst burst, labeled \a" in Figure 5.6,

spans the cell delay bins from approximately 75,000 �sec to 139,000 �sec. VC #34's

next 3 bursts, labeled \b", \c", and \d", respectively, create the peaks at approximately

139,000 �sec, 115,000 �sec, and 60,000 �sec.

All subsequent bursts for both VC #97 and VC #34 occur after the switch's warm-

up period and therefore incur very small delays as evidenced by the extremely large peaks

at the left-most edge of the delay functions in Figure 5.6.

It is interesting to note that by aligning the transmissions of the �rst burst of cells,

the �rst bursts of cells were served in a round-robin sequence within each VC class. This



49

results in large ranges of bins for these bursts similar to those observed in Figures 5.1 and

5.2.

The fact that VC #34 and VC #97 had the largest cell delays in their respective

classes is attributed to the randomness of the three state model which gave these VCs small

�rst pause periods. Since the BT (see Equation 4.4) is used in the limit parameter of the

leaky bucket, the �rst burst of cells always conforms to the leaky buckets. With these small

�rst pause periods, the second burst from VC #34 and from VC #97 arrive at their leaky

buckets relatively soon after the �rst burst has left the leaky bucket. Because of this, only

a few of the second burst of cells are conformant to the SCR leaky bucket and the rest are

dropped. Because these leaky bucket conformant second burst cells arrive at the switch

after all of the �rst burst cells, their deadlines are such that they must wait until all �rst

burst cells from their entire VC class have been served. Once all of the �rst burst cells in

their VC class have exited the switch, the second burst cells from VC #34 and VC #97

must only compete with the few other VCs with similarly small �rst pause periods. Because

of this, the second burst of cells for these VCs exited the switch nearly consecutively and

therefore were placed into the same delay bin, resulting in a peak in the cell delay function.

Clearly, the large cell delays incurred by the �rst four bursts from VC #34 are

attributed to their competition with both class A and class B cells. Since in this experiment

all sources are aligned to begin transmission at the start of the simulation, class B cells

are bu�ered in the switch until such time elapses that they are closer to their theoretical

maximum delay bound than any other cell. Here we see EDF in action! Intuitively, during

the warm-up period, class B cells have larger delay values than class A cells, since class B

cells have a smaller SCR and thus a larger theoretical maximum delay bound.

In a previous experiment (see Figure 5.3), the tails of the cell delay functions

alternated between one and zero cells per bin. However, this is not the case in Figure 5.6

as the second burst caused a peak to occur at the tail of the distribution function. This is

somewhat alarming if percentile guarantees are desired, since naturally a peak at the tail

of the distribution function will result in a worse xth percentile guarantee for all x < 100%.

From this experiment we devised a series of controlled experiments to study the

behavior of the second burst of cells from VC #97. By manually setting the �rst pause pe-

riod for VC #97 and keeping all other input parameters constant, we were able to decrease,

but not increase, the delay of the second burst of cells from VC #97.

We were not able to increase the delay of the second burst since manually de-



50

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

1

2

a

b

c

d

VC #97 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #34 (Class B)
Theoretical Maximum Delay Bound (Class B)

Figure 5.7: Manipulation of the second burst of cells

creasing the already small �rst pause period for VC #97 merely caused more cells to be

non-conformant at the leaky buckets. This resulted in a smaller second burst size for VC#97

and therefore less cell competition for those second burst cells. We predict that manually

decreasing the �rst pause periods for several other class A VCs would cause greater cell

delays in the second burst of VC #97.

We were, however, able to decrease the cell delay of the second burst cells of

VC #97 by manually increasing VC #97's �rst pause period as shown in Figure 5.7.

In Figure 5.7, we show a controlled experiment where VC #97's �rst pause period

was manually set to 20,000 �sec. In increasing this pause period, we observed that VC #97's

second burst of cells encountered less competition from class A �rst burst cells. Therefore,

the delays incurred by VC #97's second burst are reduced. By increasing this pause period

we also observed that more cells from VC #97's second burst were conformant to the leaky

buckets, since enough time had elapsed such that more of these second burst cells arrived

within the limit parameter of the SCR leaky bucket. This resulted in an increase in the size

of the peak at approximately 43,000 �sec.

The cell delay and number of cells in the peak attributed to the second burst in



51

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

1

2

3

4

5

6

7

a

b

c

d

VC #99 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #34 (Class B)
Theoretical Maximum Delay Bound (Class B)

Figure 5.8: Cell delays with 256 VCs in 2 VC classes on 16 input links

this �gure can be compared to Figure 5.6, where the �rst pause period for VC #97 was

randomly chosen according to the exponential distribution as 1,921.14 �sec.

Second Bounce Behavior

In another experiment set, we analyze what we call the \second bounce behavior"

of a VC. In the �rst such experiment, we simulated 10,000,000 total cells from 256 VCs

multiplexed uniformly onto 16 input links. For each VC, the MBS was set to 8 KB, or

171 cells. The three state model parameters for each VC class were chosen such that the

output link reservation level was set at approximately 97% of its 155 Mbps capacity and

the ratio of class A SCRs to class B SCRs was 1.85:1.

Again, we plot only those VCs, VC #99 and VC #34, with the greatest amount

of cell delay in their respective VC class. VC #99 and VC #34 had the greatest amount of

delay because their �rst pause periods are relatively short and thus have peaks at the tails

of their distribution functions. This graph is shown in Figure 5.8. In this �gure, the �rst

7 bursts from VC #99 are numbered consecutively on the graph.

The most striking result from this experiment is in the observation that cells



52

generated during the sixth burst from VC #99 encounter greater delays than those from

either the fourth or �fth bursts. In order to understand this somewhat counter-intuition

we must �rst de�ne a parameter we call the \EDF threshold". We de�ne a cell's EDF

threshold as the time at which no new arrivals at the switch will exit the switch before this

cell exits the switch under EDF scheduling. The EDF threshold, Ti, for a given cell from

VCi with theoretical maximum delay bound, dmax
i , is given by

Ti = dmax
i �maxfdmax

j g (5.1)

where dmax
j < dmax

i .

Now the delay incurred by the sixth burst from VC #99 can be explained by the

fact that between the time at which the last cell from VC #99's �fth burst exits the switch

and the time at which the �rst cell of VC #99's sixth burst arrives at the switch, the delay

values of the �rst burst of cells from all class B VCs have surpassed their EDF thresholds.

Because of this, cells from the sixth burst of VC #99 must wait until all 128 of the class B

�rst bursts have been served, giving them greater delays than the �fth burst of VC #99.

In this experiment, since each VC within a VC class has the same theoretical max-

imum delay bound and since we have 2 VC classes, we have 2 di�erent theoretical maximum

delay bounds, dmax
A and dmax

B , for class A and B VCs, respectively. Since dmax
A < dmax

B ,

we de�ne the EDF threshold for all cells of class A, TA, to be

TA = 0:

Similarly, from Equation 5.1, we get

TB = dmax
B � dmax

A :

It is also interesting to note another property of the EDF threshold. When a cell

incurs less delay than its EDF threshold, then there were no cells inside the switch with a

smaller theoretical maximum delay bound at the time of the cell's departure.

Because we observe an increase in a burst's delay from the previous burst's delay,

we term this e�ect a \bounce". We consider the behavior of the sixth burst of cells from

VC #99 in Figure 5.8 to be VC #99's second bounce, the �rst bounce occurring with the

�rst burst of cells. Next, we designed controlled experiments to gain further insights into

this second bounce phenomenon.



53

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

1

2

3

4

5

6
7

a

b

c

d

VC #99 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #34 (Class B)
Theoretical Maximum Delay Bound (Class B)

Figure 5.9: Manipulation of the second bounce in cell delays

In Figure 5.9 we show the results of a controlled experiment where VC #97's �fth

pause period was manually set to 91,533 �sec while all other input parameters remained

the same as in Figure 5.8. VC #99's �fth pause period was carefully chosen such that the

�rst cell of VC #99's sixth burst arrived at the switch just after the delays of the �rst burst

of all class B VCs had passed their EDF threshold. Clearly, this results in worst-case delays

for the sixth burst. In Figure 5.9, we observe that the cell delays of VC #99's sixth burst

increase signi�cantly and are almost at the tail of the cell delay function.

Switch Output by Virtual Circuit Class

In order to more completely understand the behavior of heterogeneous VC classes

during the warm-up period of simulations, we observed the cell output patterns for each

class of VC over time at the beginning of our simulations. In each of these experiments we

simulated 256 VCs using the three state model. The MBS for each VC was set at 8 KB,

i.e. 171 cells, and the output link reservation level was set at approximately 97%. Two VC

classes were used in these simulations with the same input parameters given for each VC

within a class. As before, the ratio of class A SCRs to class B SCRs was 1.85:1.



54

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 250000 300000 350000

N
um

be
r o

f C
el

ls
 O

ut
pu

t

Time (in microseconds)

Class A
Class B

Figure 5.10: Cell output times by VC class with 64 input links

We simulated a mere 100,000 total cells since this proved to be su�cient for cap-

turing the warm-up period. It was important to minimize the number of cells due to the

enormous �les output by these simulations.

The results of the two extreme experiments with 64 and 2 input links are shown

in Figures 5.10 and 5.11, respectively. In both �gures we observe pure class A tra�c being

output from the switch from time 0 until class B's EDF threshold, which occurs at time

83,777 �sec. This e�ect can be explained by a property of the EDF threshold which states

that no class B cells may exit the switch before its EDF threshold as long as class A cells

are present in the switch. For a more in depth discussion on the EDF threshold see p. 52.

After the EDF thresholds of the �rst class B cells have been reached, class B cells

have greater priority than newly arriving class A cells; therefore, at this point we start to

see an increase in the number of class B cells output. This class B increase occurs decidedly

more sharply in the 64 input link case (see Figure 5.10) than in the 2 input link case (see

Figure 5.11). This is attributed to the degree of multiplexing �rst discussed in Section 3.2.

In the 64 input link case, warm-up period cells incur larger delays inside the switch

than do similar cells in the 2 input link case which incur larger delays inside a multiplexer.



55

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 250000 300000 350000

N
um

be
r o

f C
el

ls
 O

ut
pu

t

Time (in microseconds)

Class A
Class B

Figure 5.11: Cell output times by VC class with 2 input links

Therefore, at the time that the �rst class B cell departs from the switch there will be

more class B cells inside the switch in the 64 input link case than in the 2 input link case.

This, coupled with the observation that relatively few class A cells are in the switch at

time 83,777 �sec (since up until that point in time only class A cells have been served),

accounts for the steeper class B increase in Figure 5.10 than in Figure 5.11 beginning at

time 83,777 �sec.

At approximately 140,000 �sec, we notice that the sharp increase in class A cells

(more noticeably observed in Figure 5.10 for reasons given above) results from the build up

of the class A cells which arrived while the initial class B cells were being transmitted. Of

course, this is also attributed to having fewer class B cells in the switch since many class B

cells were recently transmitted.

Finally, we observe that after approximately 200,000 �sec have elapsed, the switch

has overcome the warm-up period and only minor variations between Figures 5.10 and 5.11

exist.

Note that in these �gures, the rate of increase of one VC class is inversely propor-

tional to the rate of increase of the other one, since only one cell is output from the switch



56

at any given point in time.

5.2 Persistent Sources

In addition to examining the behavior of cells using the three state model, we also

observed the worst-case behavior of cells conforming to their leaky buckets. We explored two

di�erent varieties of this worst-case behavior. In the experiments reported in this section

we abandoned the three state model and made every source \persistent", i.e. each source

continually sent cells to the leaky bucket. The persistent source model is �rst described on

p. 25.

With this persistent source behavior the leaky buckets accepted the entire �rst

burst of cells and then admitted only one cell every 1
SCR interval of time thereafter. (An

explanation how our simulated cell drops would actually be implemented in a leaky bucket

is given in Section 4.1.2). The �rst MBS cells conform due to the fact that the BT is used

in the limit of the SCR leaky bucket. Subsequent cells conform every 1
SCR thereafter, since

this is the increment value of the SCR leaky bucket. Note that cells always conform to the

PCR leaky bucket since the PCR is set to the time to transmit a cell at source link speed.

In both the persistent source experiments reported here, we simulated 256 VCs

evenly distributed onto 64 input links with an MBS size of 8 KB, or 171 cells. As in previous

experiments, we reserved 97% of the output link bandwidth in order to capture worst-case

behavior.

5.2.1 The Aligned Case

In this section we consider the aligned case where all 256 sources begin transmis-

sion simultaneously. In the following section, we look at the case were these sources were

randomly staggered.

We simulated 2 classes of VCs, 128 VCs per class, with an SCR ratio of class A

VCs to class B VCs of 1.85:1.

The leaky bucket non-conformance rate of 170 out of each burst of 171 cells (after

the initial burst) resulted in much longer simulation execution times for the same number

of cells output in most other experiments (10,000,000 cells). Thus, we ran the experiment

described here for 2,500,000 total cells output onto the output link. This number of cells was

su�ciently large to fully satisfy our curiosity regarding the warm-up period and beyond.



57

1

10

100

1000

10000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #255 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #256 (Class B)
Theoretical Maximum Delay Bound (Class B)

Figure 5.12: Cell delays with 256 persistent VCs in 2 VC classes on 64 input links in aligned
mode

We show the cell delays from this experiment in Figure 5.12. In this �gure we

observe that cell delays come very close to reaching their theoretical maximum delay bounds.

The reason these warm-up period cells incur much larger delays than in previous three

state model experiments (see Figure 5.6 for a comparison), lies in the fact that all sources

persistently send cells to the switch at SCR after their �rst burst. As compared to the three

state model in which sources pause for a random amount of time between bursts, in our

persistent source model the switch does not have as much time to output as many of the

initial cells before new cells start arriving.

We note that the cells which incur more than approximately 1,000 �sec of delay

contribute to the warm-up period of the switch. We note that after these cells have been

output, the switch stabilizes and easily serves cells arriving at their SCR with very minimal

delays. This is evidenced by the large peaks of cells in the extremely low cell delay bins.

We also observed that the worst-case delay of class B cells occur for the last cell of

the �rst burst, since this cell must wait until many class A cells and all other class B cells

in its same burst have been served. The worst-case delays for class A cells occur for those



58

cells which arrive at the switch just after the �rst class B cells reach their EDF threshold

(see p. 52).

It is not coincidence that the worst-case VCs for each type plotted in Figure 5.12

are the largest VC numbers for each VC class. Deadline ties are broken arbitrarily in favor

of lower VC numbers. Since the cell arrivals are deterministic within a class, VC #255 and

VC #256 will lose the tie-breaker to other VCs in its VC class and incur slightly larger cell

delays.

One �nal point to note in Figure 5.12 is that the deterministic nature of our

persistent sources results in round-robin service within a VC class. Of course, this is not

pure round-robin from a global perspective as there are varying degrees of overlap between

cell delays in the two classes. This round-robin behavior results in the relatively even

distributions of cells over large delay ranges. A distinct increase in the number of cells from

VC #256 occurs precisely at VC #256's EDF threshold (83,777 �sec). Cells from VC #256

which incurred more delay than this threshold are those which were competing with the

initial 
ood of class A cells. Those cells from VC #256 which incurred less delay than

this threshold arrived after the initial 
ood of class A cells had exited the switch. They,

therefore, competed largely with other class B cells as well as the relatively few class A cells

which continued to arrive at SCR.

5.2.2 The Staggered Case

Next, we explore the behavior of the persistent source model when sources have

staggered start times instead of aligned start times as in Figure 5.12. In this experiment

sources were staggered such that at simulation initialization each VC waited for a random

idle period (as described in the discussions of the three state model on p. 23). After this

initial idle period, a source will persistently send cells to its leaky buckets as described in

the previous experiment.

In this experiment we broadened our experiment to include four VC classes, let-

tered A through D. Each class contained 64 VCs and classes A, B, and C had SCR ratios

with respect to class D given by 1.85:1, 1.60:1, and 1.24:1, respectively. This experiment

was run for a total of 5,000,000 cells.

As can easily be seen in Figure 5.13, the maximum observed cell delays are so

minimal that it is staggering! (pun intended) In this experiment, we see that cells do not



59

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #9 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #202 (Class B)
Theoretical Maximum Delay Bound (Class B)

VC #123 (Class C)
Theoretical Maximum Delay Bound (Class C)

VC #176 (Class D)
Theoretical Maximum Delay Bound (Class D)

Figure 5.13: Cell delays with 256 persistent VCs in 4 VC classes on 64 input links in
staggered mode

even come close to their theoretical maximum delay bounds. The reason for this is that the

sources' initial pause periods are such that they seldom overlap. Therefore, each VC's �rst

burst of cells must only compete with other VCs which had shorter initial pause periods

and are likely transmitting cells at SCR. As we also observed in Figure 5.12, delays are very

small when all VCs transmit cells at SCR.

This profound result explains more about the impact of worst-case behavior. Even

though the leaky buckets are functioning with worst-case behavior, simply staggering the

sources such that they do not have worst-case starting behavior results in drastic improve-

ments in worst-case cell delays.

5.3 Repetitive Burst Sources

In this section we explore the second of the two worst-case leaky bucket behaviors

mentioned previously in Section 5.2. We use the term \repetitive burst" source to describe

sources with this behavior. The repetitive burst source model is �rst described on p. 26.

In the experiments in this section all sources in�nitely repeat a pattern of trans-



60

mitting a burst of cells, then pausing for the time interval MBS
SCR �

MBS
PCR . This pause period is

the smallest time interval such that all cells will conform to their leaky buckets, since after

this time has passed, the SCR leaky bucket will then be able to accept the next MBS burst

of cells due to the BT used in the SCR leaky bucket's limit parameter (see Equation 4.4).

Note that in this source model, all cells will be leaky bucket conformant.

In both the repetitive burst source experiments discussed here, we simulated

256 VCs evenly distributed onto 64 input links with an MBS size of 8 KB, or 171 cells.

As in previous experiments, we reserved 97% of the output link bandwidth in order to

capture worst-case results.

5.3.1 The Aligned Case

In this section we consider the aligned case where all 256 sources begin transmis-

sion simultaneously. In the following section, we look at the case were these sources were

randomly staggered.

We simulated 2 classes of VCs, 128 VCs per class, where the SCR ratio of class A

VCs to class B VCs was approximately 1.8:1. For consistency with Figure 5.12, 2,500,000 to-

tal cells were also output in this experiment.

Cell delays from this experiment are shown in Figure 5.14. We observe that as

was the case in the persistent source model (see Section 5.2), the worst-case cell delays are

relatively close to their theoretical maximum delay bounds.

In this experiment class A cells incur large delays when class B cells in the switch

have deadlines such that the class B cells have higher priorities than the class A cells. The

very sharp drop in VC #255 cells which incurred delays in excess of 60,000 �sec is evidence

of this. At the time of most class A cell arrivals, few class B cells have surpassed their EDF

threshold. Therefore, in these cases cells from VC #255 compete only with other class A

cells, and are served in a round-robin fashion within the set of class A VCs. All class A

cells send bursts simultaneously in this model, thus if no class B cells have a higher priority,

the last cell in a burst from VC #255 will have a delay of approximately 59,800 �sec. This

explains the drop in class A cells at approximately this delay value.

The behavior of the class B cells is not as clear-cut. It is rare that at the arrival

time of a class B cell, few other cells are in the switch, since previous class B cells would

likely be awaiting transmission. The few class B cells with very small delays support this



61

1

10

100

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #255 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #256 (Class B)
Theoretical Maximum Delay Bound (Class B)

Figure 5.14: Cell delays with 256 repetitive burst VCs in 2 VC classes on 64 input links in
aligned mode

intuition.

It is interesting to note that in the repetitive burst source model's aligned case, the

switch is never able to overcome its warm-up period. Since cells arrive in bursts which have

synchronized arrival times within each VC class, the switch is not able to service all of these

cells before the next bursts arrive. Therefore, we note that unlike previous experiments,

where post-warm-up period cells encountered small delays which resulted in very large

peaks at the beginning of the delay functions, relatively few cells incur very minimal delays

as there are no extremely large peaks at the beginning of the delay functions shown in

Figure 5.14.

It is not coincidence that the worst-case VCs for each type plotted in Figure 5.14

are the largest VC numbers for each VC class. Deadline ties are broken arbitrarily in favor

of lower VC numbers. Since the cell arrivals are deterministic within a class, VC #255 and

VC #256 will lose the tie-breaker to other VCs in its VC class and incur slightly larger cell

delays.



62

1

10

100

1000

10000

100000

0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #9 (Class A)
Theoretical Maximum Delay Bound (Class A)

VC #78 (Class B)
Theoretical Maximum Delay Bound (Class B)

VC #231 (Class C)
Theoretical Maximum Delay Bound (Class C)

VC #88 (Class D)
Theoretical Maximum Delay Bound (Class D)

Figure 5.15: Cell delays with 256 repetitive burst VCs in 4 VC classes on 64 input links in
staggered mode

5.3.2 The Staggered Case

Next, we experiment with staggering the sources' start times in the same fashion

as our persistent source staggered experiment on p. 58. As in the persistent source staggered

experiment, the same four VC classes and the same initial idle period random numbers were

used in this experiment. The cell delays from this experiment can be seen in Figure 5.15.

In Figure 5.15 we make two important observations. First, we notice that the

worst-case cell delays are not quite as favorable as in the persistent staggered experiment

(see Figure 5.13). However, these delays are clearly much less than in the repetitive burst

source aligned case (see Figure 5.14). As was seen in the persistent source experiments (see

Section 5.2), the worst-case alignment of sources has a much more severe impact on the cell

delays than does the worst-case leaky bucket behavior.

Secondly, we note that in Figure 5.15 we observe distinct cell peaks. Since all

sources have the same MBS (171 cells) and the link speeds are all uniform at 155 Mbps, the

sources will transmit bursts in a uniform amount of time. Also note that each source within

a VC class will pause for the same amount of time
�
MBS
SCR � MBS

PCR

�
between successive bursts.



63

Therefore, since sources start transmitting cells at random points in time, a source's bursts

will be o�set from the bursts from other sources in its VC class by the di�erence in their

initial idle periods. Therefore, cells encounter less competition while inside the switch (thus

have less delay) and a burst of cells from a given VC will tend to be transmitted nearly

back-to-back on the output link. In general, when cells from the same source are output

back-to-back, they encounter the same delay (since they arrived at the switch roughly back-

to-back) and a peak on the cell delay graph results.

5.4 MPEG Traces

In this section we discuss our experimentation with MPEG video traces. A more

in depth discussion of the speci�cs surrounding our MPEG trace data is outlined in Ap-

pendix D.

While we feel that experiments using the three state model described earlier in this

chapter are reasonably good approximations of actual VBR tra�c, there is no substitute

for actual VBR video traces. We explored the results of actual MPEG video cell delays in

order to benchmark our previous worst-case behavior.

We had at our disposal 18 of the MPEG traces from the FTP site listed in Ap-

pendix D. Unfortunately, in this experiment we needed more MPEG traces since we wanted

to achieve a 97% reservation level and keep the output link speed at 155 Mbps as it was

in all previous experiments. To solve this problem, we arbitrarily chose 6 MPEG traces to

use twice each in our simulation. To prevent sources that used the same trace from having

identical cell arrival times, each source began transmission at a random I-frame in the trace

and looped to the beginning of the trace if the end of the trace was reached. Each trace

�le listed the size of the frames in bits. Since each trace contained 30 minutes of video, the

trace �les were su�ciently large for this experiment.

Next, we explain our calculations of the tra�c parameters in this experiment. The

PCR for each VC was no di�erent than any of our other experiments|it was set to the time

required to transmit a cell at our output link speed of 155 Mbps, 2.8312 �sec. The MBS

for each VC was determined by �nding the largest frame in the trace before running the

simulation and then dividing this frame into cells, padding the last cell if necessary. The

SCR was determined by multiplying the MBS by the frame rate. This SCR was such that

all of the cells in a frame were leaky bucket conformant. The theoretical maximum delay



64

bound was calculated by dividing the MBS by the SCR and adding the time to transmit a

cell at output link speed, according to Equation 4.3.

Note that this correlation between the MBS and SCR gives all cells the same

theoretical maximum delay bound. Because of this, our EDF scheduler behaves as a FIFO

would in this experiment.

In the MPEG trace experiment described in this section, we simulated 10,000,000

total cells from 25 di�erent MPEG sources, each on its own input link into the switch. We

chose the 25 MPEG sources such that their cumulative output link reservation level was

approximately 97% as in previous experiments. A frame rate of 30 frames per second was

used for all sources.

To capture worst-case source behavior in this experiment, all sources were aligned

such that they all started transmitting their �rst I-frame at the same time. Also, there

are two di�erent assumptions that can be made concerning how the cells from a frame are

transmitted. In one assumption called \smoothed mode" cells from a frame are evenly

distributed through out each frame interval, i.e. the inverse of the frame rate. In the other

assumption called \burst mode", cells from a frame are transmitted back-to-back soon as

each frame is generated. In this experiment we chose burst mode because of our interest in

worst-case behavior.

The cell delays of VCs with the worst-case (VC #2 and VC #23) and best-case

(VC #19) behavior are shown in Figure 5.16. In this �gure, we see that the majority of

cells from these VCs experience very small delays and those cells with the largest delays are

still relatively far from their theoretical maximum delay bounds. Clearly, the delays for the

MPEG trace �les are substantially less than any of our other worst-case source scenarios.



65

1

10

100

1000

10000

100000

0 5000 10000 15000 20000 25000 30000 35000

N
um

be
r o

f C
el

ls

Cell Delay (in microseconds)

VC #2 
VC #19
VC #23

Theoretical Maximum Delay Bound

Figure 5.16: Cell delays with 25 MPEG video sources



66

Chapter 6

Summary and Future Work

6.1 Summary

The focus of our research has been the analysis of worst-case cell delays in an

ATM switch using EDF scheduling. In particular, our interests are in the behavior of the

tails of cell delay functions and their proximity to their theoretical maximum delay bounds.

We have built a simulation program with which we closely studied cell delays and EDF

scheduling behavior.

In our studies we simulated real-time VBR tra�c using four di�erent source mod-

els: the three state model, the persistent model, the repetitive burst model, and the MPEG

trace model.

With the three state model, we showed that when sources are aligned to transmit

simultaneously, worst-case cell delays occur while the switch is in its initial warm-up state.

We also noted that after such time that these initial bursts of cells are served, cell delays

are minimal, since large numbers of sources no longer transmit cells simultaneously.

We also examined the e�ects of the degree of multiplexing on cell delays inside the

switch. We learned that during the switch's warm-up period, smaller cell delays result as

the number of VCs multiplexed onto each link is increased. This is due to the fact that as

the degree of multiplexing is increased, a larger proportion of the end-to-end delay shifts

from occurring inside the switch to occurring inside the multiplexer.

We also researched providing delay guarantees as percentages of the theoretical

maximum delay bounds for two di�erent levels of output link reservation. We noted that

worst-case cell delays decrease as the level of output link reservation decreases. We also



67

noted that large improvements in delays can result from minimal drops in delay percentages

guaranteed. However, since these worst-case delays occur during the switch's warm-up pe-

riod, these percentile results are skewed by the fact that we can provide arbitrarily favorable

delay results by increasing the length of the simulation and thereby decreasing the e�ect of

the warm-up period on the entire simulation.

We also experimented with multiple VC classes and noted that peaks may occur

at the tails of the delay distribution functions as a result of competition inside the switch

with cells both in the same and di�erent VC class. We were able to manipulate the behavior

of these peaks by manually setting some of the three state model parameters.

Also, in experimenting with multiple VC classes, we examined properties of a cell's

EDF threshold|the time at which no newly arriving cells will depart the switch before this

particular cell. The EDF threshold proved to be an important factor in the cell delays we

observed.

In addition to the three state model, we also experimented with two source models

with which we studied the limits of the leaky buckets. In the persistent source model, sources

continuously send cells to the leaky buckets which accept the �rst burst of cells and then

one cell at a rate equal to the SCR thereafter. In the repetitive burst model, sources send

bursts of cells and then pause for just enough time such that the next burst of cells will be

conformant to the leaky buckets.

With these two models, we explored both the aligned and staggered cases of cell

transmission. With both source models, the staggered case resulted in drastic reductions in

cell delay over the aligned case. In the aligned case, the worst-case delays were equally large

for both of these source models. However, the repetitive burst model exhibited worse be-

havior in that very few of its cells have minimal delays, whereas in the persistent model, the

post-warm-up period cells incurred very small delays. In the staggered case, the persistent

model produced smaller worst-case cell delays than the repetitive burst model.

Finally, we reported our �ndings using actual MPEG video trace �les. The worst-

case cell delays observed using MPEG traces were far less than any of our other worst-case

experiments.



68

6.2 Future Work

We feel that while we have made signi�cant strides in analyzing cell behavior in

an ATM switch using EDF scheduling, there still remains much more left to be considered.

While we have only considered a single-node network, we believe that another

interesting area of research would be that of analyzing delays across multiple ATM switches

implementing EDF scheduling. We believe that by performing tra�c shaping at the output

of each switch, favorable delay values may be obtained using EDF. Some challenges with

this work may prove to be narrowing the scope of the parameter space. This would also

include deciding onto which paths through the network 
ows should be placed.

Another future area of research would be an in depth analysis of the bu�er re-

quirements necessary for EDF scheduling in an ATM switch.

Finally, the development of CAC algorithms for an ATM switch using EDF would

also be interesting future work.



69

Bibliography

[1] Jon C. R. Bennett and Hui Zhang. WF2Q: worst-case fair weighted fair queueing. In

Proceedings of IEEE INFOCOM, volume 1, pages 120{128, 1996.

[2] H. Jonathan Chao, Hsiling Cheng, Yau-Ren Jenq, and Daein Jeong. Design of a

generalized priority queue manager for ATM switches. IEEE Journal on Selected Areas

in Communications, 15(5):867{879, June 1997.

[3] The ATM Forum Technical Committee. Tra�c management speci�cation. Technical

Report 95-0013R10, The ATM Forum, February 1996.

[4] R. L. Cruz. SCED+: e�cient management of quality of service guarantees. To appear

in Proceedings of IEEE INFOCOM '98, San Francisco, CA, March 1998.

[5] Khaled M. Fuad Elsayed and Harry G. Perros. A comparative performance analysis

of call admission control schemes in ATM networks. To appear in the Journal of

Computers and ISDN.

[6] Victor Firoiu, Jim Kurose, and Don Towsley. E�cient admission control for EDF

schedulers. In Proceedings of IEEE INFOCOM, volume 1, pages 310{317, 1997.

[7] Leonidas Georgiadis, Roch Gu�erin, and Abhay Parekh. Optimal multiplexing on a

single link: delay and bu�er requirements. IEEE Transactions on Information Theory,

43(15):1518{1535, September 1997.

[8] Leonidas Georgiadis, Roch Gu�erin, Vinod Peris, and R. Rajan. E�cient support of

delay and rate guarantees in an internet. Computer Communication Review, 26(4):106{

116, October 1996.



70

[9] Leonidas Georgiadis, Roch Gu�erin, Vinod Peris, and Kumar N. Sivarajan. E�cient

network QoS provisioning based on per node tra�c shaping. IEEE/ACM Transactions

on Networking, 4(4):482{501, August 1996.

[10] Pawan Goyal and Harrick M. Vin. Generalized guarantee rate scheduling algorithms:

a framework. IEEE/ACM Transactions on Networking, 5(4):561{571, August 1997.

[11] Miki Hirano and Naoya Watanabe. Characteristics of a cell multiplexer for bursty

ATM tra�c. In International Conference on Communications, volume 1, pages 399{

401, 1989.

[12] Takeshi Kawasaki, Miwako Nakashima, Toshio Soumiya, and Masafumi Katoh. A

strategy of quality control on ATM switching network - quality control path (QCP).

In IEEE Global Telecommunications Conference, volume 1, pages 432{436, 1996.

[13] Shih T. Liang and Maria C. Yuang. Departure process analysis for earliest-due-date

scheduling discipline in ATM switches. Computer Systems Science and Engineering,

11(6):343{352, November 1996.

[14] J�org Liebeherr, Dallas E. Wrege, and Domenico Ferrari. Exact admission control

for networks with bounded delay service. IEEE/ACM Transactions on Networking,

4(6):885{901, December 1996.

[15] C.L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the Association for Computing Machinery,

20(1):46{61, January 1973.

[16] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach

to 
ow control in integrated services networks: the single-node case. IEEE/ACM

Transactions on Networking, 1(3):344{357, June 1993.

[17] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing approach

to 
ow control in integrated services networks: the multiple node case. IEEE/ACM

Transactions on Networking, 2(2):137{150, April 1994.

[18] Oliver Rose. Statistical properties of MPEG video tra�c and their impact on tra�c

modeling in ATM systems. In Proceedings of the 20th Annual Conference on Local

Computer Networks, volume 1, pages 397{406, 1995.



71

[19] Henning Schulzrinne, Jim Kurose, and Don Towsley. An evaluation of scheduling

mechanisms for providing best-e�ort, real-time communication in wide-area networks.

In Proceedings of INFOCOM '94, volume 3, pages 1352{1361, 1994.

[20] Marco Spuri and Giorgio C. Buttazzo. E�cient aperiodic service under earliest deadline

scheduling. In Proceedings of the Real-Time Systems Symposium, pages 2{11, 1994.

[21] S. Wright. Delay bound simulation studies: VBR source behavior. Technical report,

Fujitsu Network Communications, Inc., December 1997.

[22] Tarif Zein, Gerard Maral, and Dominique Seret. Performance modeling of a cell mul-

tiplexer for bursty ATM tra�c. International Journal of Electronics, 71(6):967{975,

December 1991.

[23] Hui Zhang and Edward W. Knightly. Providing end-to-end statistical performance

guarantees with bounding interval dependent stochastic models. Performance Evalua-

tion Review, 22(1):211{220, May 1994.



72

Appendix A

How to Run the Simulator

This appendix gives the reader a detailed account of how to run the simulator on

UNIX. If the reader would like to use this simulator for similar research, the author may be

contacted for a copy of the simulation program; however, the simulator will not otherwise

be made publicly available.

The 12 C++ source �les and 15 header �les can be compiled and linked using the

Make�le. To compile and link, simply type \make" in the directory where these �les reside

on a UNIX command line.

The simulator requires three arguments: \input �le", \output �le", and \plot

�le". These �les can be arbitrarily named. The \input �le" must exist before running the

simulator. If the \output �le" or \plot �le" exist, then they will be overwritten, otherwise

they will be created.

The \input �le" is a text �le which provides the simulator with information about

the switch topology, VCs using the switch, and the VC's parameter set. A sample \input

�le" is shown below. Comments are any line beginning with a backward slash (\/"). Any

number of blank lines may separate values. Parameters must be listed in the \input �le"

in the exact order shown below. A class of VCs is indicated by an integer starting with 1.

For many parameters such as: source speed, packet size, idle period mean, etc., there must

be as many values listed as there are VC classes.

// A sample input file for use with the simulator

// Total number of cells to transmit from the switch

1000000



73

// Number of input ports

4

// Topology of the VCs--the number of VCs per input link their classes

1 2

3 4

1 2

3 4

// Input buffers size

5000

// Output buffer size

5000

// Input and output link speed (in Mbps)

149.76

// Speeds of the sources per VC class (in Mbps)

149.76 149.76 149.76 149.76

// Packet sizes per VC class (in Bytes)

8192 8192 8192 8192

// Mean idle period values per VC class (in microseconds)

10000 23000 36000 50000

// Mean pause period values per VC class (in microseconds)

1770 3150 4300 5500

// Mean number of packets in each active period per VC class

100 83 66 50

// Source transmission start times per VC class

0.0 0.0 0.0 0.0

// Traffic mode per VC class

VBR 32 VBR VBR

// CDVT for PCR per VC class

0.0 0.0 0.0 0.0

// CDVT for SCR per VC class

1.0 1.0 1.0 1.0



74

// Verbose mode for variables

True

// Verbose mode for sources

False

// Verbose mode for leaky buckets

False

// Verbose mode for the event list

False

// Verbose mode for the ATM switch

False

// Random number seed

0

Note that in the above example, there are 8 VCs multiplexed onto 4 input links,

2 per link. Class 1 and class 2 VCs are multiplexed onto input link 1 and input link 3.

Class 3 and class 4 VCs are multiplexed onto input link 2 and 4. Class 2 VCs are CBR

tra�c and the rest are VBR.

The \output �le" is a text �le which gives the user a detailed account of the results

of the simulation. Various statistics surrounding the simulation parameters and results are

recorded in this �le. This same information is also printed on the screen as the simulator

runs. A sample \output �le" showing the results of the above sample \input �le" is given

below.

----------------------

ATM SWITCH SIMULATOR

----------------------

MaxCells = 1000000

InputPortCount = 4

NumVCs = 8

VCsPerPort = {2, 2, 2, 2}

InputBufferLength = 5000

OutputBufferLength = 5000

InputPortSpeed = 149.76

InputPortCellXmitTime = 2.8312

Transfer time = 0.707799



75

SourceSpeed = {149.76, 149.76, 149.76, 149.76, 149.76, 149.76,

149.76, 149.76}

SourceCellXmitTime = {2.8312, 2.8312, 2.8312, 2.8312, 2.8312

2.8312, 2.8312, 2.8312}

PacketXmitTime = {484.135, 484.135, 484.135, 484.135, 484.135,

484.135, 484.135, 484.135}

IdlePeriodMean = {10000, 23000, 36000, 50000, 10000, 23000,

36000, 50000}

PausePeriodMean = {1770, 3150, 4300, 5500, 1770, 3150, 4300, 5500}

NumPacketsMean = {100, 83, 66, 50, 100, 83, 66, 50}

StartXmitAtTime = {0, 0, 0, 0, 0, 0, 0, 0}

PeakCellInterval = {2.8312, 32, 2.8312, 2.8312, 2.8312, 32, 2.8312, 2.8312}

SustainedCellInterval = {13.6634, 32, 30.7862, 40.1996, 13.6634, 32,

30.7862, 40.1996}

MaxBurstSize = {171, 1, 171, 171, 171, 1, 171, 171}

CellDelayVarTolerancePCR = {0, 0, 0, 0, 0, 0, 0, 0}

CellDelayVarToleranceSCR = {1, 1, 1, 1, 1, 1, 1, 1}

DelayBound = {2339.27, 34.8312, 5267.27, 6876.97, 2339.27, 34.8312,

5267.27, 6876.97}

TCPPacketSize = {8192, 8192, 8192, 8192, 8192, 8192, 8192, 8192}

CellsPerPacket = {171, 171, 171, 171, 171, 171, 171, 171}

Seed = 0

verbose_Variables = true

verbose_Source = false

verbose_LB = false

verbose_EventList = false

verbose_Switch = false

-------------------------------

---------------------------

CAC

---------------------------

VC #1 reserves 31.0319 Mbps

VC #2 reserves 13.25 Mbps

VC #3 reserves 13.7724 Mbps

VC #4 reserves 10.5474 Mbps

VC #5 reserves 31.0319 Mbps

VC #6 reserves 13.25 Mbps

VC #7 reserves 13.7724 Mbps

VC #8 reserves 10.5474 Mbps

---------------------------

Total reserved = 137.203 Mbps

Input Link Speed = 149.76 Mbps



76

Percentage reserved = 91.6155 %

Cell count of 1000000 has been reached.

0 cells were dropped inside of the switch.

Average delay of cells is 163.413

Output link utilization is 67.5743 %

Delay Bin Width = 100 times Cell Transmission Time.

InputBuffer maximum sizes = {1, 1, 1, 1, 1, 1, 1, 1}

OutputBuffer maximum size = 747

VC maximum delay = {646.221, 9.15625, 2613.78, 4049.32, 649.052, 9.20139,

2202.07, 4052.15}

Greatest observed VC maximum delay for VC Type 1 = 649.052

Greatest observed VC maximum delay for VC Type 1 occurs on VC #s = {5}

Greatest observed VC maximum delay for VC Type 2 = 9.20139

Greatest observed VC maximum delay for VC Type 2 occurs on VC #s = {6}

Greatest observed VC maximum delay for VC Type 3 = 2613.78

Greatest observed VC maximum delay for VC Type 3 occurs on VC #s = {3}

Greatest observed VC maximum delay for VC Type 4 = 4052.15

Greatest observed VC maximum delay for VC Type 4 occurs on VC #s = {8}

Number of Cells Per VC = {213758, 130930, 83679, 65779, 215637, 130930,

91103, 68184}

The \plot �le" is a text �le which gives the user cell delays on a per-VC basis.

This generated �le can be used to produce the cell delay functions shown in Chapter 5. The

�rst column of data in this �le represents the right (greatest) edge of the delay bin given

in �sec. Data in subsequent columns represent the number of cells which were captured in

each bin on a per-VC basis starting with VC #1. A sample \plot �le" showing the results

of the above sample \input �le" is shown below.

283.12 202986 131836 54606 29288 199032 131836 50770 32630

566.239 13333 0 14711 11626 12688 0 13219 8717

849.359 395 0 12332 7579 294 0 10260 6456

1132.48 0 0 5607 6360 0 0 6287 4898

1415.6 0 0 3087 3010 0 0 3422 4030

1698.72 0 0 932 2318 0 0 1187 3316

1981.84 0 0 258 2112 0 0 485 1554

2264.96 0 0 63 1044 0 0 166 1318

2548.08 0 0 98 931 0 0 62 736

2831.2 0 0 0 672 0 0 0 472

3114.32 0 0 0 146 0 0 0 258

3397.44 0 0 0 112 0 0 0 81

3680.56 0 0 0 116 0 0 0 268



77

Note in the above \plot �le" example, the bin width is 283.12 �sec. Also note that

the vast majority of cells incur minimal delays.

Finally, the simulator can be run by typing:

unix% simulator inputfilename outputfilename plotfilename



78

Appendix B

Simulator Utilities

This appendix describes various small utility programs which complement the

simulation program described in Appendix A.

B.1 CAC

The CAC program allows a user to view the CAC statistics for a given parameter

set without actually running the simulation. The CAC program itemizes the amount of

bandwidth needed by each VC in the simulation and computes the sum of these reservation

amounts as a percentage of the input and output link speed. This same CAC program is

run by the simulator at the beginning of each simulation.

The necessary .cpp and .h �les can be compiled and linked on UNIX using the

make�le \Make�leCAC". To compile and link this utility, type the following in the directory

where these �les reside on a UNIX command line:

unix% make -f MakefileCAC

The CAC program displays the results to the terminal. This utility takes one or

two parameters. The �rst parameter is required and contains the name of an \input �le",

speci�ed with the format described in Appendix A. An optional \output �le" may also be

speci�ed as the second parameter. If an \output �le" is speci�ed, the same data printed to

the screen is also printed to this �le. If this �le exists prior to execution, it is overwritten;

otherwise, it is created. To run the CAC utility type:

unix% CAC inputfilename



79

or

unix% CAC inputfilename outputfilename

B.2 ExtractColumns

This utility program is used for condensing the simulation-generated \plot �le" as

described in Appendix A. The need for this utility arose out of the limitations of gnuplot, our

graphing program on UNIX. We ran into obstacles when we tried plotting \plot �les" with

a large number of columns, like 257. The ExtractColumns utility condenses the simulation-

generated \plot �le" by saving only the columns requested by the user into a separate �le|a

\condensed plot �le".

ExtractColumns currently supports the extraction of at least one, but not more

than four columns of data. However, this feature could easily be expanded to support more

columns. The �rst column of data in a \plot �le" always represents the right edge of a cell

bin (see Appendix A) and is always copied to the resulting \condensed plot �le".

ExtractColumns may have anywhere between three and six arguments depending

on how many columns are desired. The �rst parameter is required and is an integer repre-

senting a VC number. This number corresponds to a column in the \plot �le" beginning

with zero. Three additional VC numbers may optionally be speci�ed. The next to last pa-

rameter given is the name of a valid \plot �le". The \plot �le" must exist prior to executing

this utility. The last parameter is the name of a \condensed plot �le". If the \condensed

plot �le" exists, it will be overwritten; otherwise, it is created.

An example use of the ExtractColumns utility is:

unix% ExtractColumns 73 42 203 plotfilename condensedplotfilename

This example extracts the 1st, 74th, 43rd, and 204th columns from the \plot �le".

Note, the order of the integers given in arguments one, two, and three is irrelevant.

The ExtractColumns utility may also be desired by isolating VCs of interest if disk

space is at a premium.

B.3 GetPercentile

This utility is used in determining in which cell bin a given percentile of cells

cumulatively exist. This was used in studying percentile guarantees in our simulations.



80

GetPercentile requires a percentile ranging from 0 to 100 and a valid \plot �le"

name (see Appendix A) as parameters. The utility passes through the \plot �le" once

counting the total number of cells on a per-VC basis. Next, the utility makes a second pass

through the \plot �le", this time counting cells until the input percentile is reached. Once

this percentile is reached, the right edge of each cell bin (see Appendix A) is stored for each

VC. These bin edges are reported for each VC. Finally, the maximum and minimum bin

edges over all VCs at this particular percentile are reported.

The following example shows how to report the 99:9th percentile using this utility:

unix% GetPercentile 99.9 plotfilename



81

Appendix C

Simulation Parameters

This appendix provides additional information regarding the simulations discussed

in Chapter 5. In Table C.1, we summarize the input parameters which were varied in our

simulations. In Table C.2, we provide the output link utilization percentages for relevant

simulations.



82

Table C.1: Selected simulation input parameters

Source Start Input VC
Figure Model Mode Links VCs Cells Classes Reserved

5.1 Three State Aligned 64 256 10,000,000 1 97%

5.2 Three State Aligned 2 256 10,000,000 1 97%

5.3 Three State Aligned 64 256 10,000,000 1 97%

5.4 Three State Aligned 1: : :64 256 10,000,000 1 97%

5.5 Three State Aligned 1: : :64 256 10,000,000 1 65%

5.6 Three State Aligned 32 256 10,000,000 2 97%

5.7 Three State Aligned 32 256 10,000,000 2 97%

5.8 Three State Aligned 16 256 10,000,000 2 97%

5.9 Three State Aligned 16 256 10,000,000 2 97%

5.10 Three State Aligned 64 256 100,000 2 97%

5.11 Three State Aligned 2 256 100,000 2 97%

5.12 Persistent Aligned 64 256 2,500,000 2 97%

5.13 Persistent Staggered 64 256 5,000,000 4 97%

5.14 Repetitive Burst Aligned 64 256 2,500,000 2 97%

5.15 Repetitive Burst Staggered 64 256 5,000,000 4 97%

5.16 MPEG Aligned 25 25 10,000,000 1 97%

Table C.2: Output link utilization percentages

Figure Utilization

5.1 61.64%

5.2 61.64%

5.6 61.45%

5.7 61.45%

5.8 61.45%

5.9 61.45%

5.12 99.99%

5.13 96.00%

5.14 99.99%

5.15 95.59%

5.16 10.46%



83

Appendix D

MPEG Traces

The MPEG traces were created by Oliver Rose [18]. The MPEG encoder param-

eters used in his collection of traces are listed in Table D.1.

The MPEG traces and additional information can be found at the following FTP

address: ftp-info3.informatik.uni-wuerzburg.de/pub/MPEG/

A statistical analysis of these traces was performed by the Real-Time Communi-

cation team at North Carolina State University. The statistics are given at the following

URL: www2.ncsu.edu/eos/service/ece/project/rtcomm/ewfulp/WWW/

Table D.1: MPEG encoder parameters used in generating traces

Parameter Value

Encoder Input 384 x 288 pel

Color Format YUV (4:1:1, resolution of 8 bits)

Quantization Values I=10, P=14, B=18

Pattern IBBPBBPBBPBB

GOP Size 12

Motion Vector Search 'Logarithmic' / 'Simple'

Reference Frame 'Original'

Slices 1

Vector/Range half pel / 10


